LAPLACE TRANSFORMS AND THEIR APPLICATIONS

Size: px
Start display at page:

Download "LAPLACE TRANSFORMS AND THEIR APPLICATIONS"

Transcription

1 APACE TRANSFORMS AND THEIR APPICATIONS. INTRODUCTION Thi ubjc w nuncid fir by Englih Enginr Olivr Hviid (85 95) from oprionl mhod whil udying om lcricl nginring problm. Howvr, Hviid` rmn w no vry ymic nd lckd rigour which lr on ndd o nd rcpiuld by Bromwich nd Cron. plc rnform coniu n imporn ool in olving linr ordinry nd pril diffrnil quion wih conn cofficin undr uibl iniil nd boundry condiion wih fir finding h gnrl oluion nd hn vluing from i h rbirry conn. plc rnform whn pplid o ny ingl or ym of linr ordinry diffrnil quion, convr i ino mr lgbric mnipulion. In c of pril diffrnil quion involving wo indpndn vribl, lplc rnform i pplid o on of h vribl nd h ruling diffrnil quion in h cond vribl i hn olvd by h uul mhod of ordinry diffrnil quion. Thrfr, invr plc rnform of h ruling quion giv h oluion of h givn p.d.. Anohr imporn pplicion of plc Trnform i in finding h oluion of Mhmicl Modl of phyicl problm whr in h righ hnd of h diffrnil quion involv driving forc which i ihr diconinuou or c for hor im only. Dfiniion: f() b funcion dfind for ll. Thn h ingrl, { } f fd if xi, i clld plc Trnform of f(). i prmr, my b rl or complx numbr. Clrly {f()} bing funcion of i brifly wrin fif ().. { ()} f (). Hr h ymbol which rnform f() ino f () i clld plc Trnform Opror. Thn f() i clld invr plc rnform of f () or imply invr rnform of fi ().. { f ()} 755. No: Thr r wo yp of lplc rnform. Th bov form of ingrl i known on idd or unilrl rnform. Howvr, if h rnform i dfind f { } fd, whr i complx vribl, clld wo idd or bilrl lplc of f(), providd h ingrl xi. If in h fir yp rnform, vribl i complx numbr wih rul h

2 756 Enginring Mhmic hrough Applicion lplc rnform i dfind ovr porion of complx pln. If {f()} xi for rl nd hn {f()} xi in hlf of h complx pln in which R > (Fig..). Th rnform f () i n nlyic funcion wih propri: (i) f() viz. h ncry condiion for f () o b rnform. R. (ii). f A, if h originl funcion h limi. f() A Imgn. o Fig..: Rl xi. EXISTENCE CONDITIONS Th lplc rnform do no xi for ll funcion. If i xi, i i uniquly drmind. For xinc of lplc, h givn funcion h o b coninuou on vry fini inrvl nd of xponnil ordr i.. if hr xi poiiv conn M nd uch h f () M for ll. Th funcion f() i om im rmd objc funcion dfind for ll nd f () i rmd h ruln img funcion. Hr h prmr hould b ufficinly lrg o mk h ingrl convrgn. In h bov dicuion, h condiion for xinc of f () i ufficin bu no ncry, which prcily mn h if h bov condiion r ifid, h lplc rnform of f() mu xi. Bu if h condiion r no ifid, h lplc rnform my or my no xi. For.g. in c of f (), f (), prcily mn f () i no picwi coninuou on vry fini inrvl in h rng. Howvr, f() i ingrbl from o ny poiiv vlu, y. Alo f () M for ll > wih M nd. Thu, f() π, > xi vn if i no picwi coninuou in h rng.. EXISTENCE THEOREM ON APACE TRANSFORM If f() i funcion which i picwi* coninuou on vry fini inrvl in h rng nd ify f () M for ll nd for om poiiv conn nd M mn, f() i of xponnil ordr, hn h lplc rnform of f() i.. f() d xi.

3 plc Trnform nd hir Applicion 757 { } () () () Proof: W hv f () f d f d+ f d () Hr f () d xi inc f() i picwi coninuou on vry fini inrvl. Now () () f d f d M d, inc f () M ( ) ( ) Md M ; > ( ) () ( ) Bu M cn b md mll w pl by mking ( ) ufficinly lrg. Thu, from (), w conclud h {f()} xi for ll >. *No: A funcion i id o b picwi (cionlly) coninuou on clod inrvl [, b], if hi clod inrvl cn b dividd ino fini numbr of ubinrvl in ch of which f() i coninuou nd h fini lf hnd nd righ hnd limi. A funcion i id o b of xponnil ordr ( > ), if hr xi fini poiiv conn nd M uch h f() M or f() M for ll..4 TRANSFORMS OF EEMENTARY FUNCTIONS By dirc u of dfiniion, w find h lplc rnform of om of h impl funcion:. (), ( > ). ( > ). n n!, whr Γ ( n+ ) n,,,, ohrwi n + 4. (in ), + 5. (co ), + 6. (inh ), 7. (coh ), Proof:. () d, > n + ( > ) ( > ) ( > ) ( > )

4 758 Enginring Mhmic hrough Applicion ( ) d d, > ( ) ( ) ο. ( ) Rmrk: Hr h condiion > i ncry o nur h convrgnc of h ingrl inc ohrwi divrgn for.. n n n p p dp d on king p, d dp p n p ( n+ ) Γ ( n+ ) p dp p dp, n+ n+ n+ if n > nd > in in in co d, > ο co co co in d, > ο d d d 6. ( inh inh ) ( + ) + > + + d d d 7. ( coh coh ) ( + + ).,. + > +.5 PROPERTIES OF APACE TRANSFORMS Sr. No. Propry f(), funcion f, () lplc rnform. inriy f() + bg() ch() f() + bg () ch (). Chng of cl f() f, >. Iniil vlu f () f() 4. Finl vlu f () f() 5. Fir hifing f() f ( ) 6. Scond hifing f( )u( ) f()

5 plc Trnform nd hir Applicion 759 d 7. Driviv f () d d d f () n d n d f () f() f(), > f f() f'(), > n n n n f() f() f () f (), > 8. Ingrl fudu f ( du) f du n f (), > f () () f n, > for ny poiiv ingr n. d 9. Muliplicion by f() f () d f() ( ) n f() d fs d n n d f n d. Diviion by f () f () f () n fd (), providd h ingrl xi. f ()( d ), providd h ngrl xi. f ()( d ) n, providd h ingrl xi. Convoluion f()*g(), fg () () Thorm whr f * g fug ( udu ),. Priodic Funcion f( + T) f() T f() d T

6 76 Enginring Mhmic hrough Applicion Proof of Som of h propri r kn in ubqun dicuion. P inriy Propry: f(), g(), h() b ny funcion who lplc rnform xi, hn for ny conn, b, c nd k, w hv (i) [f() + bg() hf()] [f()] + b[g()] c[h()] (ii) [kf()] k[f()]. Proof: (i) (ii) HS f() + b g() ch() d. [ ] f() d + b g() d c h() d f () + b g () c h() Thi rul cn ily b gnrlizd. HS kf() kf() d k f() d kf () In viw of bov dicuion, plc opror i linr in nur. P Fir Shif Propry: [KUK, ] If r f() f() hn f() f ( ) ( ) p f () f () d fd () fd () fp, whr p Thu, if w know h rnform of f(), w cn wri h rnform of f() imply rplcing by ( ) in f () f () f () Trnlion long xi f ( ) Fig.. Applicion of hi propry giv ri o following impl rul:. ( ), ()

7 plc Trnform nd hir Applicion 76 n.. ( in b) 4. ( co) n!, n + ( ) b, + b 5. ( inh b) 6. ( cohb) + b b b, b whr in ch c >.,, n! n n + in( b) b + b + b ( cob) b b ( inhb) b ( cohb) P If Chng of Scl: f() f() hn f ( ) f dp f( ) f( ) d f( p) on puing p, d p dp ( ) p f() p dp f. No: Chnging o, h rul chng o f f( ) P 4 Chng of Scl wih Shifing: b b f f f f If () (), hn ( ) b b ( b) f( ) f( ) d f( ) d on king p, d dp b f() p dp f b p Exmpl : Find h lplc rnform of h following: (i) in co (ii) in (iii) in (iv) in (iv) coh inb (v) in inb

8 76 Enginring Mhmic hrough Applicion Soluion: in co in 5 in in 5 in (i) 5, > ( 5) (ii) ( ) (in ) in in6, Uing inθinθ in θ 4 4 (iii) ( in ) ( in ) ( in6) , > ! 5! 5 7 Γ Γ Γ 5 + 7! 5! 5 π π π π + + π 4 4! 4! 4 co (iv) ( in ) which comprbl o ( f ) f( ) co () co + 4 whr ( in ) ( + ) ( ) ( + + 5) ( + )( + ) ( + )

9 plc Trnform nd hir Applicion 76 ( + )( + + 5) + (v) ( coh in ) in ( in ) + ( in ) in, + > ; hn by hif propry, ( coh in ) + ( ) + ( + ) + Bu { + + } + {( + ) } { } {( ) } ( + ) coh whn coh,. > Alrnly: Finding h imginry pr of i { } i i i i (vi) i i ( in in b) inb ( inb) ( inb) b in b, + b >, hn by hif propry, Bu b b ( in inb) i ( i) + b ( + i) + b b i i+ b + i+ b b i { + ( b )} i + ( b ) + i { } ({ + ( b )} + i) ({ + ( b )} i) { + ( )} b i b 4i b 4i i 4 { + b + ( b )} + 4

10 764 Enginring Mhmic hrough Applicion b + b + b + 4 b ( + ( b+ ) ) + ( b ) in inb co b co b, co(a + B) Alrnly: ( ) ( + ) uing ina inb co(a B) Exmpl : Find h plc rnform of (i) (iii)*, < < f (), >, whn () T < < T f, whn > T (ii) { in (), < <π f, >π [Mdr, 5] (iv) ( π ) co, > f (), π < π *[Krl Tch. 5, NIT Kurukhr, ] (v) f () + +, o [NIT Kurukhr, ] Soluion: (i) For funcion f() dfind for ll, lplc rnform i dfind : () () (), f f f d Providd h hi ingrl xi. ( ) ( ) ( + ) d & od d ( ) ( ) i ny prmr, my hv rl or complx vlu. (ii) { in (), < < π f, >π By dfiniion, ( f() ) f() d I( y) π π I ind+ d ind π π π (. co) ( )( co) d

11 plc Trnform nd hir Applicion 765 π π π ( + ) ( in ) (. ) ind ο π π I ( + ) ind (Sinc vlu of h xprion in i zro boh h limi) I ( π + ) I or I( + ) ( + π ) π + I f() + Hnc h rul. (iii) Hr, whn < < T f () T, whn > T T T f () fd () fd () + fd () d+ d T T T T d + T ο o T T T + T T T ( ) T T T + T π π co, > (iv) Hr f () π, < T T T ( ) ( ) π π π T (Ingrion by pr) Hnc h rul π f () fd () fd () fd () co + d Now ingr by pr king co ( π/) nd funcion nd funcion. π π π I in ( ) in d π π in d π (Sinc h vlu of h xprion π in i zro boh h limi). π π I co ( ) co d π π

12 766 Enginring Mhmic hrough Applicion π I d π + co co π π π I I or I( + ) I f() π ( + ) Hnc h rul. (v) Hr f () + +, Clrly f() for for > Sy, if, if, if, i.. for ll vlu of vrying from o, vlu of + + i lwy. ikwi for >, i i. Hnc, f() f() d d+ d + d ( ) + ( ) + d ( ) P 5. Trnform of Funcion Muliplid by n If f() i funcion of cl A nd if f() f(), hn n d n n d f ( ()) f () nd f ( ()) f () n d d Hnc h rul.

13 plc Trnform nd hir Applicion 767 By dfiniion of lplc of f(), w hv f() d f() () d Diffrniing () wih rpc o, d f() d f() () d d By ibniz rul of diffrniion undr ingrl ign, () rduc o d f() d f() d d ( ) f() d f() or d d f() d f() d Thi prov h horm for n (i.. fir rul) Now um h horm i ru for n m (y), o h () giv m m m d ( f() ) d ( ) f() m d d hn m+ m m d m+ d f() d f() d Agin by ibniz rul, (5) rduc o m+ m m+ m d ( ) m+ d f () d f () d f () () (4) (5) m or m+ + m+ d m+ d f() d f() (6) Thi clrly how h if h horm i ru for n m, i i ru for n m + i.. for n +, n +, o on. Hnc h horm i ru for ll poiiv ingr vlu n. No: A funcion which i picwi or cionlly coninuou on vry fini inrvl in h rng i of xponnil ordr ( i... f() ) i known funcion of cl A. Exmpl : Find plc of (i)* (in ) (ii) co (iii) ** inhco [* KUK, ; ** NIT Kurukhr, 5] Soluion: n n! nd d n ( f ()) f () + d d 4 4 in. d (i) ( in ) ( co ) ( co) A { } ( + )

14 768 Enginring Mhmic hrough Applicion d co f (), whr f () co, > d + (ii) ( co ) ( + ). ( + ) ( + ) d d d d + d d co co 4 (iii) ( + inh co ) ( ) ( + ) ( ) ( co + co) 4 ( ) ( ) (uing fir hif propry, rplc by ) { } { } { }{ } P 6 Trnform of Funcion Dividd By f () If f f hn f d, providd h ingrl xi. Proof: W hv () () () f f fd Ingring h bov quion wih rpc o bwn h limi nd, w g f d f d d f d d (On umpion h h chng of ordr of ingrion xi). f () f () d d Sinc lim, > o x () () () o. f () fd ()

15 plc Trnform nd hir Applicion 769 f () Rmrk: Sinc corrpond o h ingrion of lplc rnform of f() wih rpc o bwn f () h limi nd, hrfor h rpd pplicion of h rul giv f()( d) n n providd for 4444 nim f () poiiv ingr n, lim x n xi. co Exmpl 4: Find h lplc rnform of. [Omni, ] Soluion: Hr, Agin co d, inc + (), co log ( + ) log log + log + log log +, + log + A, whn + + f () log d log d co d + log d + d, ingrion by pr + + log + d + + log + + d log + + n π log+ + n co log+ in Exmpl 5: Prov h n rnform of co xi? nd hnc find in. Do h lplc

16 77 Enginring Mhmic hrough Applicion f () in f () in, l l nd in f ()( y) o o + Soluion: For in π f d d n n co n + Now in in n n (Uing chng of cl propry, co f,( y), hn + Agin, f( ) f, > ) ( log ). log log co d l + Which do no xi l log ( + ) i infini. Hnc co do no xi. Exmpl 6: Uing plc Trnform, how h in d π Soluion: W know h [in( )], > + π d n n co + in () Howvr by dfiniion, From () nd (), in d co in in d () On king nd in h bov rlion, w g P 7 plc Trnform of Ingrl of f() in d π co f() u du f() whr f() f()

17 plc Trnform nd hir Applicion 77 φ () f( u) du nd φ () hn φ '() f() W know h, [ ] ( ) i.. [ ] φ ' φ φ() φ () φ(), in c φ () On puing h vlu of φ() nd φ (), w g i.. [ φ () ] ( φ () ) f() u du f() f() o Rmrk: If h bov prpoiion hold, hn h invr rnform i.. f( u) du f or fudu f lo hold. P 8 plc Trnform of Driviv f() b coninuou funcion for ll nd b of xponnil ordr, nd f () if lo b pic wi coninuou for ll nd b of xponnil ordr, hn [(f ()] (f()) f(). ( f () ) f () d () ( ). () lim () () + () o f f d f f f Now, uming f() o b uch h f() (Whn hi condiion i ifid, f() i id o b of xponnil ordr ). f () f() f() Thrfor, w conclud h (f ()) xi nd Rmrk: By ucciv pplicion of h bov rul, w obin h lplc rnform of n f () follow: fn nf nf() nf () fn(), if f (), f(),, fn () r coninuou, fn() i picwi coninuou for ll nd if f (), f (),, fn() ll r of xponnil ordr, whn. Exmpl 7: Find (co) nd dduc from i (in) [KUK, ] Soluion: By df n., ( co ) i i + d, co ( i) ( + i) d+ d ( i ) ( + i) + ( i) + i o o i + i

18 77 Enginring Mhmic hrough Applicion + ( i) ( + i), i i () + Now o dduc (in ) uing (co ), wri, in cod () Tk lplc on boh id, ( in ) cod () f () By formul, f() d, whr f() f() + ( in ) + + d in co f d Alrnly: Wri, Tk lplc on boh id, Now by h formul, (4) in f' (5) f f () f(), whr f + nd f() (co ) Uing bov, (5) bcom in Hnc h rul. (6) Exmpl 8: Find in nd hnc dduc co. [KUK, ] d co Soluion: in f, hn f (in ) d or π f f f f Bu (), whr ( in ) 4 co π.. f() in co π 4 4

19 plc Trnform nd Thir Applicion 77 Exmpl 9: Evlu in d Soluion: (), whr () (in) in f d f + π d n n co + in co ( ), by fir hif propry Now in f () co ( ) d P 9 Evluion of Ingrl by plc Trnform Exmpl : Evlu (i) Soluion: in d (ii) ind OR Find lplc of (i) in (ii) in [MDU, ; KUK,, 4, 5, 6; VTU, 7] (i) Th Ingrl ind i comprbl o f() d wih nd f() in. Now (in ) f, > + d d in f d d + + Hnc h ingrl ( + ) ( + ). d 5 in ( in ), whn. (ii) Th ingrl ind i comprbl o Hnc, f() in Now (in ) f, ( > ) + f() d

20 774 Enginring Mhmic hrough Applicion d + d ( ) d ( ) + + ( + ) d d d 4 ( in ) ( ) 4 Hnc h ingrl 4 ind in whn 4 ( + ) Exmpl : Evlu d [KUK, 5] Soluion: Wri d d comprbl o d d () g() f, whr f(), g() f() d, whn log log + d + d f () uing f d Alrnly: log log + + log + log (log), whn d d d f () f () d d (dfn. By d fn. whn f() ) for for d d log log log log for for for for for for + ( + log) + log log, (On rforming) ASSIGNMENT Find plc Trnform of following:. (i) cohco (ii) *cohin

21 plc Trnform nd Thir Applicion 775 (iii) in hco (iv) inhin (v) in coh + co inh (vi) in coh co inh *[NIT Kurukhr; Dlhi, ]. in (i) in co (ii). 4. (i), < < f (), < < 7, > (ii) in π π, > f () π, < (i) in [Ripur 5] (ii) inh (iii) co (iv) coh 5. (i) in + co (ii) inh + coh (iii) in co (iv) inh coh 6. (i) co in (ii) coh + inh 7. *(i) co cob co (ii) *[VTU 6; INTU 5; UPTU 5] in in (iii) [WBTU, 5] **(iv) [KUK,*-4, **6] 8. Find h lplc rnform in nd hnc dduc (co). uing rnform of diffrniion. 9. Find h lplc rnform of coh nd hnc dduc (inh). uing h rnform of driviv.. Find h lplc rnform of h following: *(i) cod (ii). Show h (i) co d, 5 (iii) * (ii) co cob d in log 5, d 4 *[Punjbi Univ., ] co cob b d log *[KUK, 6, ]

22 776 Enginring Mhmic hrough Applicion.6 INVERSE APACE TRANSFORMS To find h invr lplc rnform of givn funcion, w ry o rcogniz h givn funcion ihr in h givn form comprbl o om ndrd xprion who invr funcion i known ndrd funcion or pli h givn funcion of ino numbr of xprion in (wih h hlp of pril frcion) comprbl gin o om ndrd funcion of of which invr funcion r known. u li fir invr lplc rnform of om ndrd lmnry funcion nd ocid funcion. n ( n)! n in + inh ( ) + b b in b in ( + ) co ( + ) n ( ) n! + n co coh ( ) + b co b inh ( ) + coh ( ) (in co ) ( + ) (in co ) ( + ) + (co in ) ( + ) inh.in coh.in (inh coh ) ( ) (inh coh ) ( ) + (coh inh ) ( ) coh.co 4 4 inh.co

23 plc Trnform nd Thir Applicion 777 (coh in inh co ) (coh in inh co ) J ( ) J ( ) + I( ) ( ) I ( ) Invr rnform buld bov will b frqunly ud rdy rcknr, priculrly for olving diffrnil quion uing lplc rnform. Wihou going ino dil of drivion of h, w my dicu om of hm undr: + ( + ) ( + ) ( + ) ( + ) ( ) ( + ) ( + ) ( + ) in co co in ikwi, + ( ) ( ) ( ) inh coh + coh + inh A lrdy d, in dducing h rul, w nd o mk u of pril frcion. Som of h propri of invr lplc rnform nd Convoluion Thorm r kn up in ubqun dicuion. m m m Tip for Pril Frcion: In ny gnrl xprion n n b + b + + b A Corrponding o non-rpd linr fcor ( ), wri ( ) A A A Corrponding o non-rpd linr fcor ( ), wri r r A + B Corrponding o non rpd qudric fcor ( + + b), wri ( + + b) Corrponding o rpd qudric fcor ( + + b), wri n

24 778 Enginring Mhmic hrough Applicion A + B A + B A r + Br r ( + + b) ( + + b) ( + + b) Thn drmin unknown conn A, B, C, A, A, A, by quing h cofficin of qul powr of on boh id. Exmpl : Find h invr plc rnform of (i), ( + ) n (ii) ( A + B) whr A, B nd r conn nd n i poiiv ingr. Soluion: n, (i) (ii) n n n, uing fir hif propry. ( + ) n! B B n A A n n n n n n ( A B) A B A + A n! + A A + B A + B Exmpl : Find h invr lplc rnform of nd C + D + E C + D + E Soluion: A + B A B (i) + C + D + E C D E C D E C C C C A + B, whr F D nd G E C + F+ G C + F+ G C C A B + C C F F F F S+ + G S+ + G 4 4 (By compling qur) () C I: Whn F G >, hn h xprion ( + F + G) k h form ( + ) + b, whr 4 F F nd 4, hn b G A B A B + + C D E C + + ( + ) + b C ( + ) + b ( + ) B C A + C + + b + + b.

25 plc Trnform nd Thir Applicion 779 ( + ) C A B C b + + b + + b A B C + b b + + C + b A B inb cob in b. C + b C b A co B b A + inb C bc () C II: whn F G <, hn 4 A B A B + + C + D + E C ( + ) b C ( + ) b ( + ) B C A + C + b + b ( + ) B C A C + + b + b + b A B C + b b C b A B inhb cohb inh b. C + b C b A + B A B A cohb + inh b C + D + E C bc () C III: whn F G, hn 4 A + B A B C D E C F F C F F + G+ + G 4 4 A B + C ( + ) C ( + )

26 78 Enginring Mhmic hrough Applicion ( + ) B ( + ) C ( + ) A + C A B C + + ( + ) C ( + ) A B. C + C A B ( ) + C C A + B A B + C + D + E C C ( ) + Exmpl 4: Find invr lplc of ( + ) ( ) + A B C D Soluion: Wri ( + ) ( ) + ( + ) ( ) ( ) Implying ( + ) A( + )( ) + B( ) + C( + ) ( ) + D( + ) () A( + )( + ) + B( + ) + C( )( ) + D( ) A( + ) + B( + ) + C( + 4) + D( ) ( + ) (A + C) + (B + C + D) + ( A B + 4D) + (A + B 4C + 4D) () From (), if ; hn ( + ) D( + ) implying D () if ; hn ( 4 + ) B( ) implying B (4) Furhr on quing cofficin of nd conn rm on boh id of quion (), w g, A + C nd A + B 4C + 4D (5) Thu on puing D nd B ; quion (5) rul in A C ( + ) ( ) ( + )

27 plc Trnform nd Thir Applicion 78 Exmpl 5: Find Soluion: Wri ( ) ( + ) ( + + )( + ) A+ B C+ D Thu, or (A + B)( + + ) + (C + D)( + ) (A + C) + (A + B C + D) + (A + B + C D) + (B + D) On compring cofficin of qul powr of on boh id, All h quion oghr giv () For, A + C For, A + B C + D For, A + B + C D Conn, B+ D 4 B, D By I hif propry in in in inh in

28 78 Enginring Mhmic hrough Applicion Exmpl 6: Find invr plc rnform of 4 4 [NIT Jlndhr, 7] A+ B C+ D Soluion: wri ( )( + ) ( ) ( + ) Implying (A + B)( + ) + (C + D)( ) (A + C) + (B + D) + ( A C) + (B D) On compring cofficin of qul powr of,, nd conn on boh id w g, A+ C B+ D All oghr implying A C, B D. ( A C) ( B D) 4 4 coh co + + [ + ] Exmpl 7: Find invr rnform of (i), 4 4 (ii) , (iv) + 4, 4 4 (v)** + 4 ( ) 4 4 (iii)* + 4, 4 4 [*KUK,, ; **NIT Kurukhr, ] Soluion: (i) Wri, ( + ) () ( + )( + + ) A B C D o h By pril frcion, A C, B D 8 4 Now ( + ) + ( + ) + ( ) + ( ) (By fir hif propry)

29 plc Trnform nd Thir Applicion 78 8 co in co in + + ( + ) ( ) in + co 4 in coh co inh 4 (ii) By pril frcion 4 ( ) + ( + ) ( ) in in in in inh 4 (iii) , (By pril frcion) ( ) + ( + ) co + in co + in 4

30 784 Enginring Mhmic hrough Applicion + co + in co inh + in coh (By pril frcion) (iv) + 4 (v) Hr co co coh co + ( ) A + B C + D On rolving pril frcion w g A C nd B D co co. co inh co..7 SOME IMPORTANT PROPERTIES ON INVERSE APACE TRANSFORMS: If f() f(), hn (i) ( f ) f ( ), (ii) () d f f (), providd f() d (iii) f () f() u du, d (iv) f() f(), d f () (v) f() d (vi) () (), whr () f f F F > <,

31 plc Trnform nd Thir Applicion 785 Exmpl 8: Find h invr lplc of (i) ( + ) ( ), (ii) co (iii) + Soluion: (i) Wri ( + ) d d f () + + d 4 5 d ( 4 5) ( + + ) () Now on uing propry; if d f() f() hn f() f() d Hr f () in ( ) ( ) + ( + ) + + f() in ( ) (ii) W know h 4 x x co + + uing, cox 4 +! 4!! 4! co +! 4! + 5! 4! 4 + (!) (4!) (iii) A in, hrfor inudu co + ( + ) implying ( + ) u du ( co ) ( in ) nd ( ) + ( + ) u inu du co

32 786 Enginring Mhmic hrough Applicion Exmpl 9: Find invr lplc rnform of.log + [NIT Kurukhr ] d d d f () log log + log d d + d Soluion: Hr, φ() Tking invr lplc on boh id, log( ) log( + + ) + + { log ( + ) log ( ) } + + φ, whr φ () { log( + ) log } () f.() () coh () d d d d Agin, φ φ log log( + ) inh + inh or φ () Uing rul () in (), w g () inh inh coh f () coh or f () Exmpl : Find invr lplc rnform of (i) ( + ), (ii) ( + ) (SVTU 7) (iii)* ( + ) [Mdr ; *KUK, Jun 4] Soluion: ( + ) ( + ) () i comprbl o f () d d i comprbl o φ + d d Now ( + )

33 plc Trnform nd Thir Applicion 787 φ φ in (), whr () + ( ) ( + ) Implying ( + ) in, which prov rul (ii)...() For (i), f ( ) ( ) + + fudu uin udu, uing () cou cou u du co in (in co ) + For (ii), Alrnly f () fd () or f () d d + + ( + ) ( + ) Tking invr, For (iii) ( ) ( + + ) f () in in or f comprbl o f d f() f(), whr f() f() nd f() ( + ) d Hr Implying in f(), rul( ii) ( + ) d in + in co ( + ) d.8 CONVOUTION THEOREM Convoluion: f() nd g() b wo funcion of cl A, hn h convoluion of h wo funcion f() nd g() dnod by f g i dfind :

34 788 Enginring Mhmic hrough Applicion f g f() u g( u) du,whrf g i lo known fling of f() nd g(). Th convoluion f g i (i) Commuiv i.. f g g f (ii) Aociiv i.. (f g) h f (g h) (iii) Diribuiv wih rpc o ddiion i.. f (g + h) f g + f h Smn: If Proof: f() f() nd g() g(), hn f() g() f( u)( g u) du ( f g) ( f g) d f()( u g u) dud () f( u) g( u) dud () (Exprion () clrly how h h ingrion i I kn long h vricl rip PQ from P o Q, P ring on h curv u nd Q ring on h curv u nd finlly h rip PQ lid bwn o o covr h full dod rgion) On chnging h ordr of ingrion, w g u ( f ( g) fug ( ud ) ) du () u ( ( u + u) f() u g( u) d) du u u ( u) f() u ( g( u) d) du u u p f() u g() p dpdu, (on puing u p o h d dp) Whnc h dird rul. f( u) g() du f() u du g() f() g() (Uing df n. of lplc) u u Exmpl : Uing Convoluion horm, find (i) ( + ) (ii)* 4 4 ( + ) *[KUK,,, NIT Kurukhr, 5] u u u Q P Fig:. Soluion: (i) Wri,, ( + ) ( + )( + ) whr in co ( + ) nd

35 plc Trnform nd Thir Applicion 789 in ( + ) in ( u) (co u) du + (ii) co u (in co u co in u ) du co co udu in inu du in co ( + co u) du in udu in in co cou + ( in )( co) in co + + co in f() g() f() g() ( )( ) ( ) whr, f () f () coh nd g () g () co + u u du I 4 4 ( ) coh co, Ingr by pr, king cohu I funcion nd co ( u) cond funcion, { } in ( u) in ( u) I coh u. inh du in ( u cou + inh u in ( u) du co( u) co ( u) ( in ) + inh u. coh u. du

36 79 Enginring Mhmic hrough Applicion in inh u co ( u) I + I implying in inh I + or I (in + inh ) Hnc [in inh ] u u + Alrnly, my k cohu in ingrl I. Exmpl : Uing convoluion horm, find Soluion: Wri χ [ KUK, 4] ( + 4) comprbl o fg wih in f () nd f () ; g () nd + + co( u) in( u) du ( 4) + co( u) ( co ) 4 4 Alrnly: ; co f () nd g () o h uco( u) du ( co ) ( 4) + 4 ASSIGNMENT Find h invr lplc rnform of. (i) (iv). ( ) A + B + ( + ), ( C + D + E) (ii) (v)* ( )( 4) ( + ) ( + ) whr A, B, C, D, r conn., (iii), *[NIT Kurukhr, 5]

37 plc Trnform nd Thir Applicion 79. (i), + 4+ (ii) + 7, (iii) (i)* + ( ), (ii) + ( + 6+ ), (iii)** [*Mdr, ; PTU, 5; **KUK, 5] 5. (i)* + log ( + ) (ii) co or n (iii)** n [*VTU, 4; **Bomby, 5] (iv)* ( + ) log ( + b ) (v) log ( + ) ( + )( + ) (vi)* log [*Ann, UP Tch ] ( + ) (vii)* log ( ) (viii) co ( + ) (ix)** log b + + [*Mdr, 5; **VTU, 7] 6. (i)* + b (ii) ( + ) + (iii)** [*Mdr, 5; **KUK, 4] 7. (i) + (ii) ( +) (iii)* ( + ) [*NIT Kurukhr, ] 8. Show h 5 in + (! ) ( 5! ) 9. U Convoluion horm o find invr of h following: (i) ( + )( + b) (ii) ( + ) (iii) + (iv) ( + ) (v)* ( + )( + 9) (vi)** ( + )( + 4) (vi)*** ( + )( + b ) [KUK, *4, 5-6; **4-5 *** JNTU, 5, SVTU, 7; KUK, ]

38 79 Enginring Mhmic hrough Applicion No: Mo of h bov problm cn b hndld ihr by pril frcion or convoluion horm. Howvr, for y hndling of problm 4 & 5, pply propry d f() f(); d in problm 7 & 8, pply propry f () f( u) du. d f() f(); d in problm (6), pply propry.9 APPICATION TO DIFFERENTIA EQUATIONS Exmpl : Uing lplc rnform, olv (D 4 K 4 )y whr y(), y () y () y () [NIT Kurukhr, 4] Soluion: Tking lplc rnform of ch individul rm of h givn quion, (D 4 y) K 4 (y) Implying 4 4 y y() y () y () y () Ky i.. 4 K 4 y() implying Thn by pril frcion, y () ( K)( + K)( + K ) A B C+ D + + () K + K + K K + K + K () implying A( + K)( + K ) + B( K)( + K ) + (C + D)( K ) On compring cofficin of qul powr of on boh id (A + B + C) (i) (A B) K + D (ii) (A + B C)K (iii) (AK BK D)K (iv) Subrcing (iii) from (i), w g C Subrcing (iv) from (ii), w g D Wih vlu of C nd D, quion (i) nd (iv) bcom A+ B A B implying A nd B 4 4 Puing h vlu of A, B, C nd D in quion () or mor prcily in (), w g y () K 4 + K + K () Tking invr rnform of ch individul rm on boh id,

39 plc Trnform nd Thir Applicion 79 K K K K + y + + cok + cok cohk + cok 4 4 dy dy dy Exmpl 4: Solv + y dx dx dx whn dy d y y, x dx dx Soluion: Tking lplc rnform on boh id of h givn quion y y y y + y y y y y y () () () () () () () () () () () Mking u of h givn condiion, y + y y y i.. ( ) y ( 4 5) () y () () 5 y () + (By pril frcion) (4) + + Tking invr lplc on boh id of quion (4), w g 5 yx () which i h dird oluion. x x x + (5) Exmpl 5: Solv h quion (D + )x co ; x Dx [KUK, ] Soluion: Tking lplc on boh id, d () () + d 4 Uing h givn condiion ( + ) x + 4 i x x x x x () By pril frcion, ( 4) ( + 4) ( + ) ( 4) A + B C + D E + F + + ( + ) ( + ) ( + ) ( + 4) 4 ( + 4) or ( 4) (A + B)( + 4) + (C + D)( + )( + 4) + (E + F)( + ) On compring cofficin of qul powr of on boh id, w g ()

40 794 Enginring Mhmic hrough Applicion 5, A+ C...( i) A C E 4, B+ D...( ii) 5 B, 8A + 5C + E...( iii) 9 5, F + 8B+ 5D...( iv) D 9, 6A+ 4C + E...( v) 8, 6B+ 4D+ F 4...( vi) F () Thu, x () ( + ) ( + ) ( + ) Tking invr lplc rnform on boh id, x () in+ in+ inco 9 8. ( + ) () uing in co whr in hi c x() in + in + ( in co) 5 4 x () in+ in co. Hnc h rul. 9 9 dx Exmpl 6: Solv + 9x co d if x () nd x(π/). [UPTch ; Ripur 4] Soluion: Tking lplc on boh id of h givn quion, x() x() x () + 9 x() + 4 i.. (). 9 (), king (), y + 4 x + x x + x ( 9) x () or x () (By pril frcion) () Tking invr lplc rnform on boh id x [ co co] + co + in () 5

41 plc Trnform nd Thir Applicion 795 A π, + + or () 5 5 x co + 4co + 4in 5 [ ] dy in, d + +. Exmpl 7: Solv y yd y Soluion: Tking lplc on boh id, y () ( y() y() ) + y() + +, uing f() d On uing h givn condiion, + ( + ) ( + ) A B C+ D + + ( + ) ( + ) ( + ) ( + ) ( + ) + + y or y By pril frcion, i.. ( + ) A( + )( + ) + B( + ) + (C + D)( + ) On compring h cofficin of qul powr of nd olving for A, B, C, D. f () A, B, C, D y () Tking invr, Exmpl 8: Solv y () + + in y () + y( u)coudu if y() 4. Soluion: Tking lplc of ch individul rm on boh id of h givn quion, y ( ()) () + y ( u)coudu n y() y() + y co ; uing df. f g f( u)( g u) du or y() 4 + y() ; ( f g) f() g() +

42 796 Enginring Mhmic hrough Applicion ( 4 + )( + ) implying 4 5 y() + 4 or y() Tking invr, y () Exmpl 9: Show h h oluion of h quion y () φ () + yu g ( u) du cn b rprnd y, whr φ ( φ ) nd g ( g ) olv φ() g y () uy ( u) du. Soluion: plc rnform of h givn ingrl quion rul in y () () φ + yug ( udu ) φ () + ( y g) φ () + yg () () On implificion, g y φ or φ() y () g Implying, () y () φ g or y () φ () φ() ψ(), whr ψ g () g φ() u ψ( u) du Now, for hnc pr y () ( y) y () + y or y or y or + + Tking invr, y ( co).. Hnc, Exmpl : Solv h quion dx dx + + x, x(), x (). d d [NIT Kurukhr, 6] Soluion: Tking lplc of ch individul rm on boh id of h givn quion, dx dx + + ( x) d d ()

43 plc Trnform nd Thir Applicion 797 d d () () '() () () () d + d ( x x x ) ( x x ) ( x ) d uing formul, f ( ) f d d d x x + x, (Tking x(), nd x () (y)) d d dx dx x + x + d d dx dx ( + ) + x + d d x + On ingring, + ( + ) C log x log logc x () + Tking invr lplc rnform, x() CJ () (I i ndrd lplc of Bl Funcion) () On uing givn condiion, x() ; CJ () or C J (). Hnc x() J () Exmpl : Solv h quion dy dy x + + xy ; dx dx y(), y'(). [NIT Kurukhr, ] Soluion: Tking invr lplc on boh id of h givn quion dy dy x + + xy, () dx dx d d W g, y y() y () + ( y y() ) ( y) d d d dy ( y ) ( y ) d + d, uing h condiion y(), y () dy implying + y d + On ingrion, w g or dy + d y ( + ) + ( + ) C log y log logc i.. y + Tking Invr lplc on boh id of quion (), w g y(x) CJ (x), Whnc h rul. (Sinc + () i ndrd rnform of Bl Funcion J (x)

44 798 Enginring Mhmic hrough Applicion dx dx Exmpl : Solv h quion + x, x(), x () d d Soluion: Tking plc Trnform of n ch individul rm of h givn quion, dx dx + () x () d d () d x() x() x () + x() x() + x() d d x () + x () + x () d dx x () + + x+ x d dx + ( + ) x + + d dx + + x + + d () Now hi quion cn b rd ibniz linr diffrnil quion in x () nd. + Hr, P, Q d + log log Pd IF.. () Now for oluion, x().. IF. (..) IF Qd+ c (4) + + d+ c d d + + d + c d d d c d d d d + + d+ c d + + d + c x () ( + ) + c or c x + + (5) Tking Invr plc Trnform on boh id, w g x() + + c.f(), whr F() i om funcion of. (6) On uing boundry condiion,

45 plc Trnform nd Thir Applicion 799 Whn x(), x() +. + c.f() i.. c.f() (7) whn x (), c.f () (8) (7) & (8) oghr imply c Whnc x() +. Exmpl : y + y + y in, y() y'() [Punjb Univ., ; NIT Kurukhr, 5] Soluion: (y ) + (y ) + (y) (in ), ( ) d d y () y() y() + y () () y y () d d d d y y + y() + y y() y d d d ( + ) y y() d +, d ( + ) y +, y() d + d y () + d + ( + ) Tking Invr plc on boh id of (), y in + (in co ), uing (in co ) ( + ) in co y () Alrnly: y () d dn d + ( + ) ( + ) Now for ( ) d I, k nθ o h d c θ + c θ + θ θ θ Implying co in I dθ θ θ θ + ( + θ) co d d n 4 n nθ I +, inθ n θ Puing (4) ino (), + + () () () () n n + y y () n + y () ( n ) ( + ) (4)

46 8 Enginring Mhmic hrough Applicion () (n ) co y (5) d g () n (6) d + Tking Invr plc on boh id, Now l g() (n ) o h g() in or () in g (7) in co Puing (7) in (5), f () in co f () Exmpl 4: A volg E i pplid o circui of inducnc, nd Rinc R. Show by h rnformion mhod h currn ny im i R E R. [VTU, ] Soluion: Equion govrning h currn flow in -R circui i or di di R E + Ri E or + i d d Tking lplc on boh id. R E i() i() + i() ( + ) E E i () R ( + ) R R R + ( + ) + Tking invr lplc rnform on boh id, R E i () R Exmpl 5: U lplc rnform mhod o obin h chrg ny inn of cpcior which i dichrgd in R C circui, fr h wich i clod if R.5 ohm, lf inducnc Hnry, cpcinc, C frd, nd h cpcior h iniilly chrg of coulomb. Iniilly h wich i opn nd hrfor, no currn i flowing. Soluion: Th dird quion in C R circui i dq dq q + R + E. () d d C Hr givn,, R 9/4, C, q(), Wih bov vlu, quion () bcom dq q (), d E

47 plc Trnform nd Thir Applicion 8 dq 9 dq q + + () d 4 d Tking lplc on boh id of h bov quion 9 q q() q () + q q() + q i q() 4 4 i.. ( + ) 4 9 q () ( ) 7 ( 4+ ) ( + ) q () 8 7 ( + 4) + Tking invr lplc rnform on boh id, q () (By pril frcion) () Exmpl 6: Alrning volg in() i pplid o circui wih n inducnc 5 mh (millihnry), Cpcinc µf (micro frd) nd rinc Ω (ohm). Find h currn i ny im cond if h iniil currn i nd chrg q r zro. Soluion: Equion of currn flow in R C circui i dq dq q dq, whr + R + E i () d d c d Hr w r givn R ohm 5 Hnry C 6 Frd E in() Wih bov vlu, quion () bcom dq dq q in 6 d d dq dq q 4in d d Tking plc on boh id, or 4 q q q + q q + q () () () q or q () 4 ( ) ( + )( + ) ( + ) ( + ) Tking Invr plc Trnform, () () q ( ) in (4)

48 8 Enginring Mhmic hrough Applicion dq Alo i ( ) co ( ) d (5) Exmpl 7: Obin h quion for h forcd ocillion of m m chd o h lowr nd of n lic pring who uppr nd i fixd nd who iffn i k, whn h driving forc i F in. Solv hi quion (Uing h plc Trnform) whn k/m, givn h iniilly vlociy nd diplcmn (from quilibrium poiion) r zro. Soluion: Th problm li undr forcd ocillion wihou dmping. (If h poin of uppor of h pring i lo vibring wih om xrnl priodic forc, hn h ruling moion i clld forcd ocillory moion, ohrwi h moion i rmd forcd ocillion wihou dmping) Tking h xrnl priodic forc o b F in, h quion of moion i dx m mg k( + x) + F in () d whr, x i h lngh of h rchd porion of h pring (diplcmn) fr im, i h longion producd in h pring by h m m, k i h roring forc pr uni rch of h pring du o liciy; i ny rbirry conn nd p i ny clr. A B x P F in k ( + x) mg Fig..4 In hi priculr problm, nion mg k, hrfor quion (), bcom dx m kx+ F in or dx F + k x in d d m m dx F + nx in d m Tking lplc on boh id of (), w g F x () x() x () + nx () m + ()

49 plc Trnform nd Thir Applicion 8 k F + x() m m +, uing x(), x () F F k x (), µ m + + k m ( )( n ) m ( + ) + m A + B C + D Now by pril frcion, + ( + )( + n ) ( + ) ( + n ) ( A + B)( + n ) + ( C + D)( + ) ( A+ C) + ( B+ D) + ( n A+ C) + ( n B+ D) On olving for A, B, C, D; w g A, B, C, D n n ( ) () Hnc x () F mn n ( ) ( + ) ( + ) Tking plc Invr on boh id, F x n n mn () in in, ( ) F k k nin in n, whr n nd mn n m m ASSIGNMENT Solv h following inr Diffrnil quion: dx. x in w, x() d + [KUK, ]. dy dy +, whr (), dx dx wy y A B x. y y + y 4 +, whn y() nd y () [Andhr, ; NIT Kurukhr, 8] 4. (D + n )x in(n + α), x Dx 5. y + y y y, givn y() y () nd y () 6 6. (D D + D )y, givn y(), y (), y () 7. dx dx + x d d wih x, x [KUK, 4] 8. y ir () + y + y in, whn y() y () y () y ()

50 84 Enginring Mhmic hrough Applicion 9. dx dy + + 5y in, d dx whr y(), y () [KUK,, 4; Bomby, 5; PTU, 5]. y + y + y co, givn h y(). y + ( )y y, whn y(), y () [Punjbi Univ. ]. u f () co + f ( udu ).: APPICATIONS TO SIMUTANEOUS INEAR EQUATIONS WITH CONSTANT COEFFICIENTS Exmpl 8: Solv h imulnou quion dx dy y, + x in, givn x(), y() [Dlhi, ] d d Soluion: Tking plc Trnform of h givn imulnou quion, [ x() x() ] y() or x() y() or x y () nd y() y() + x() or + On olving () nd () for x () nd y (), x () + ( )( + ) ( + ) x + y + () y () + nd ( )( + ) () ( + ) Tking Invr plc Trnform on boh id of quion () nd (4), w g x ( + ) ( in co) ( in co) (4) ( + in+ co co ) (5)

51 nd y + ( + ) + + in ( + in co) ( in in co ) (6) x ( + in + co co) Hnc, ( in in y co ) Exmpl 9: Th coordin (x, y) of pricl moving long pln curv ny im dy dx r givn by + x in, y co, ( > ). If, x nd y, how by d d uing rnform h h pricl mov long h curv 4x + 4xy + 5y 4. [UPTch, ] Soluion: On king plc on boh id of h givn imulnou quion, y y() + x or x + y, uing (y() ) () Similrly [ x x() ] + y or x + y +, uing (x() ) () For olving x nd y, muliply hroughou () by, () by nd k h diffrnc of h wo, y + 4 or y in () Furhr x + or x ( in + co) Equion (4) impli, x in + co i.. x + y co, uing () (x + y) 4( in ) or 4x + y + 4xy 4 4y, uing () 4x + 4xy + 5y 4 Hnc h dird pricl (x, y) mov long h curv 4x + 4xy +5y 4 Exmpl 4: Solv dy dx d y (4) dx + + in, + co wih h iniil condiion d d d d dx dy x, ; y, whn. d d Soluion: On pplying plc rnform on ch individul rm of h wo givn quion

52 86 Enginring Mhmic hrough Applicion dx dy + + in d d dx dy + co d d nd On implificion of () nd (), + x+ y + nd x y + + Adding () nd (4), w g ( ) ( y ) x + + ( + ) + + x ( y ) () () () (4) x ( ) or x ( + ) Uing (5) in (4), w g y ( + ) ( + ) ( + ) ( + ) ( + ) or y + ( + ) Tking invr of (5) nd (6), x co nd y ( + in ). (5) (6) ASSIGNMENT 4 Solv h following imulnou quion dx. + y in, dy + x co givn x, y whn. d dx [UPTch, 4; Krl, 5]. dx dy dx dy + + x, y ; givn x, y whn. d d d d dx. + 5x y, dy + x+ y ; bing givn h x y d d 4. Th currn i nd i in mh r givn by h diffrnil quion:

53 plc Trnform nd Thir Applicion 87 di di wi co p, + wi in p. Find h currn i nd i by plc rnform d d if i i. 5. Smll Ocillion of crin ym wih wo dgr of frdom r givn by h } quion D x + x y whr x y nd Dx Dx Dy x 5y whn. + + Dy Find x nd y whn.. APACE TRANSFORMS OF SOME SPECIA FUNCTIONS Sr.No. Funcion Nm f() f (). Hviid' Uni Sp Funcion u ( ) {, <, >. Dirc Dl funcion, δ ο > ( ) f() d. Priodic Funcion f () f ( + T) T inu 4. Sin Ingrl Si () du u 5. Coin Ingrl C i () 6. Error Funcion cou du u T n log ( + ) u rf du π + u 7. Complmnry Error Fun. rfc du π ( ) 8. Exponnil Fun. of Ordr Zro () { } u du log ( + ) u Bl Funcion of Ordr Zro J() A fw of h bov funcion r kn up in h ubqun dicuion.

54 88 Enginring Mhmic hrough Applicion. Uni Sp Funcion (Hviid Uni Funcion): In nginring, mny im w com cro uch frcion of which invr lplc i ihr vry difficul or cn no b obind by h formul dicud o fr. To ovrcom uch problm, Uni p funcion (Hviid Uni Funcion) h bn inroducd. Th uni p funcion i dfind follow: u ( ) for < U() u ( ) for, whr i lwy poiiv. From h grph, i i pprn h funcion i zro for ll vlu of up o nd fr which i i uniy. In phyicl problm, i im vribl. u, < A priculr c,, Obrvion: Gnrlly h uni p funcion in mchnicl nginring com ino picur forc uddnly pplid o mchin or mchin componn, whr in lcricl nginring i mnif n lcromoiv forc of bry in circui. Trnform of Uni Sp Funcion: { u( ) } u( ) d d + d nd in priculr, whn, { u ( ) } Scond Shifing Thorm (-hifing): fu (), whn < On h bi of h u( ), w hd h funcion, f (), whn, nd h funcion f( ) rprn h grph of f() diplcd hrough dinc o h righ i.. u () h jump yp of diconinuiy. f() f(), hn f( ) u ( ) f() If { } { ( ) ( )} { ( ) ( )} f u f u d od + f( ) d ( x + ) f( x) dx (on king x) x f( x) dx f Fig..5 Fig..6 Th cond hif horm i lo known hifing i.. i rplcd by in f(). f () f () f( ) u( ) +

55 plc Trnform nd Thir Applicion 89 Exmpl 4: Find plc Trnform of (i) f() ( ) u( ) (ii) f() { u( )} (iii) f() in u( ) (iv) for < < f () { for < < Soluion: (i) Givn f() ( ) u( ) () On compring h givn funcion wih f( )u( ), W h in hi c, f() nd f () ( f ()) Conqunly by cond hif horm, f u f { ( ) ( )} () (ii) Hr in hi c king f (), f () nd hn by cond hif horm + u u f () ( { }) u( ) + + o Fig..7 Exmpl 4: Find h invr lplc rnform of h following: (i)*, / + π > (ii)** (iii)***, w + π ( + b) > (iv) (v) ( )( ) ( + ) [*KUK, ; **NIT Kurukhr, ***KUK 5; VTU, ] Soluion: (i) f (), hn f () cohw w Now by cond hifing horm, { } { } coh w( ) u ( ) w (ii) For f (), f () coπ +π f ( ) f ( ) u ( )

56 8 Enginring Mhmic hrough Applicion π f (), f () inπ +π Alo by cond hifing horm { } f ( ) f ( ) u ( ), { } +π +π +π +π π + coπ u + in π( ) u coπ u + in ( π+ π) u co π u (in π) u (iii) Givn () F + + b b + b b b, (By pril frcion) + b + b b b Furhr b,,, + b Alo by cond hifing horm, f () f ( ) u ( ), ( b) b + b b b (iv) b ( ) u ( ) u ( ) + ( ) u ( ) b b b b ( ) { + b( ) } u ( ) b () F ( + ) u u [By cond hifing horm]

57 plc Trnform nd Thir Applicion 8 ( ) u (v) Hr F () f (), whr ( + ) ( ) ( ) u ( + ) f () ( + ) Exmpl 4: Find h invr lplc rnform of ( ). Soluion: ( ) ( ) ( ) Comprbl o f(), whr f() inchc. + u ( ) + u ( ) + u ( ) + Thu, h funcion cn b wrin f (), <, < f (), < Somim i i clld irc funcion. O Fig..8 Exmpl 44: In n lcricl circui wih.m.f. E(), rinc R nd inducnc, h currn i build up h r givn by di + Ri E(). If h wich i conncd d nd diconncd, find h currn i ny inn., for Soluion: Givn i nd E < < E () o, for > On king lplc of ch rm of h givn quion, w g i () i() + Ri () Ed () ( nd R r conn) ()

58 8 Enginring Mhmic hrough Applicion () + R i E d + d E ( + R) i E o i () E R R ( + ) ( + ) Now king invr lplc on boh id, w g i() E E ( + R) ( + R) By pril Frcion, Equion () bcom, + R R R+ R { } i () E E R R+ R R R+ R () () (4) Now E E i () R R R R + + R ( ) E E i () F () (5) R R F() f() f( ) u ( ), (By cond hifing propry) R R ( ) ( ). u ( ) u ( ) u ( ) R + On puing (6) ino (5), w g h vlu of h currn R R E ( ( ) ) (6) E i () u ( ) (7) R R R E Now, for < <, () ( i ) R Qu ( ), < <, for >, E R E R ( ) E R R i () R R R

59 plc Trnform nd Thir Applicion 8 II Uni Impul Funcion (Dirc Dl Funion) Impul i conidrd forc of vry high mgniud pplid for ju n inn nd h funcion rprning h impul i clld Dirc Dl Funcion. Mhmiclly, i i h limiing form of h funcion δ ( ), ( ) + δ, ohrwi, I i pprn from h figur.9, h, h high of Fig..9 h rip incr indfinily nd h widh dcr in uch wy h h r of h rip i lwy uniy. Th bov fc cn noionlly b d δ( ), for uch h o, for δ( ) d for Obrvion: In mchnic, h impul of forc f() ovr im inrvl, y ( + ) i dfind o b h ingrl of f() from o ( + ). Th nlog of n lcric circui i h ingrl of.m.f. pplid o h circui, ingrd from o ( + ). Of priculr prcicl inr i h c of vry hor ε wih limi ε i.. impul of forc cing for n inn. Trnform Of Uni Impul Funcion: [ ] + + δ( ) δ( ) d od + d + od + + ( + ) d + Tking imi o, [ ( ) δ ] o In priculr, if o, [δ()]. Filring of uni Impul Funcion: If f() i coninuou nd ingrbl for ll, hn Rlion Bwn u ( ) nd δ( ) f () δ( d ) f u u u o [ ( )] [ ( )] ( ) [ δ( )] Exmpl 45: Th diffrnil quion govrning h flow of currn i() in n R circui i givn by di Ri + Eδ() d O +

60 84 Enginring Mhmic hrough Applicion whr E δ() i h impul volg nd i(). Find h currn i(), >. Soluion: On king lplc of ch individul rm in h givn quion, Ri() + i() i() o E. E implying ( R+ )() i E or i() R + R On king invr, lplc, E i () i h rquird xprion for h currn i. Exmpl 46: An impulion volg Eδ() i pplid o n C R circui wih zro iniil condiion. If i() b h currn ny ubqun im, find h limi of i(). Soluion: Th govrning quion for n C R circui i di + Ri + id Eδ(), whr i() whn d C o Tking plc of ch individul rm on boh id of h quion, R i () E i() i() + i() +, whr i() C R E Implying, + + i() R E C or + + i() C E E i () R C b E ( + ) E + i (), ( + ) + b + + b + + b On invrion, E i () cob inb b Tking limi, R whr nd + b C E i. Though, iniilly currn i pplid, y lrg currn will dvlop innnouly du o impul pplid nd i i E. ASSIGNMENT 5. Skch h grph of h following funcion nd xpr hm i rm of uni p funcion. Hnc find hir lplc rnform: (i), for < < π f (), for >π

61 plc Trnform nd Thir Applicion 85 for < < (ii) f (), for > [Hin: f() u ()]. Find h lplc rnform of h following:, > T f () co ω +φ, < < T (i) (ii) k, for < < b, whr > f () for o < < nd > b (iii), < < h f () h, > h [Hin: Expibl f() h [ u ()]] h, < < (iv) f () > [Hin: f() [ u ()] ] (v) () {, < < π f in, >π [Hin: f() in u π ()] (vi) { in (), < π f,. Find h invr rnform of π (i)* + (ii) >π [ ] + + [ ] Hin : f in uπ uπ in in uπ (iii) + b π (iv) + 4 *[KUK, 4] f (), < < 4. Solv y + 4y + y f(), whr, > ; givn h y() y () Hin: f u, y ( ), y f( ) u ( + )( + ) 5. A bm h i nd clmpd x nd x l. A concnrd lod W c vriclly downwrd h poin x l. Find h ruling dfcion. 4 dy ω Hin: Th diffrnil quion nd boundry condiion r l x δ 4 dx EI nd y() y () y() l y () l 6. A cnilvr bm i clmpd h nd x nd i fr h nd x l. I crri uniform lod pr uni lngh from x o x l/. Clcul h dflcion y ny poin. 4 dy ω() x Hin: Th diffrnil quion nd boundry condiion, 4 dx EI l w, < x < ( < x < l) ; ω ( x) nd y() y () y () y (), x > l

62 86 Enginring Mhmic hrough Applicion III plc Trnform of Priodic Funcion If f() b priodic funcion of priod, T(> ) i.. f( + T) f(), hn T f() Proof: By dfiniion, f() d T ( ) f () fd () fd () + fd () + fd () + Subiuing u, u + T, u + T, in h ucciv ingrl, hn T T T u ( u+ T) ( u+ T) f() f( u) du + f( u + T) du + f( u + T) du + Sinc f(u) f(u + T) f(u + T), T T T u T u T u T T T u ( ) f( u) du T u f() u du T f [ fudu + fudu + fudu + ( ()) f ( ) T f() d T ( ) (On chnging h dummy vribl u o ) Obrvion: Hnc h lplc rnform of priodic funcion f() wih priod T i xpribl in h form of ingrl T f() d ovr on priod of f() ind of ovr h mi-infini inrvl. Exmpl 47: Find h lplc rnform of h ringulr wv of priod givn by f (), < <, < < } [Mdr, ; UP Tch, ; VTU, ; KUK, 4; NIT Jlndhr, 6] Or Find h lplc rnform of h ringulr wv funcion f() who grph i hown blow. Soluion: Clrly h grph of f() i righ lin from h origin wih lop in h inrvl o f(), o Howvr in h inrvl, h grph i righ lin who lop i -.

63 plc Trnform nd Thir Applicion 87 f() ( )( ), Thu, h funcion i priodic on, wih priod f() 4 Fig.. f [ ] fd + f() d ( ) d o ( ) + + o ( ) ( ) / / / ( ) / / / / / / ( + ) nh Exmpl 48: Find h lplc rnform of h full wv rcifir f() E inω, o < < π/ω; hving priod π/ω. Soluion: π/ w f() π Einωd ω

64 88 Enginring Mhmic hrough Applicion E π ω ω ω +ω ω ( in co ) π/ w / E π ω π in co ( π ) πω ω ω +ω ω +ω ω π / ω E ω π ω+ +ω +ω ω E ω ( π / ω ) π / ω +ω + Eω + ( +ω) π / ω π / ω Eω coh π x x x + + coh x ( +ω) ω Q x x x Th grph for h funcion f() which i full-in wv rcifir cn b drwn blow: Y y πω / πω / πω / πω / Fig.. X Sinc in w π + inω for ll. ω Exmpl 49: Find h lplc rnform of h qur wv (or mndr) funcion of priod dfind : f() whn < < /, whn / < < [UP Tch, 4] Soluion: [ f] () f() d o + / d d o /

65 plc Trnform nd Thir Applicion 89 / o / / / + + ( ) / / ( ) ( ) ( ) / /4 /4 / /4 /4 nh No: I my b dfind lik, f() k, whn < < / k, whn / < < Y k X o / 5 k X Fig.. Exmpl 5: Find h plc Trnform of h priodic funcion (w ooh wv), f( + T) f(); f () k for < < T T Soluion: T T T T f [ ] fd k d T T k T T T ( ) d k d T (By pr) k T T ( ) T o T o

66 8 Enginring Mhmic hrough Applicion T T k T + T T ( ) T k T T + T ( ) k k T T T ( ) T ( ) No: I my rul o priculr c: whn k, ft T f () T T T T Fig.. Exmpl 5: Find h plc rnform of h funcion (Hlf wv rcifir) π in ω, for < < f () ω π π, for < < ω ω [Mdr, ; KUK, 5] Soluion: f [ ] fd T T π ω π/ ω f() d π f () h priod, T Q ω / / π ω π ω π inω d + o d π/ ω ω π/ ω π in ωd, o ω x, + b Uing x inbxdx ( inbx bcobx)

67 plc Trnform nd Thir Applicion 8 ( inω ωcoω ) π +ω ω π ω ω +ω π ( ) +ω ω π +ω ω + w π +ω ω ω +ω ( ) π ω π/ ω πω / πω / π ω 4π ω 5π ω Fig..4 No: Clrly h funcion f() inω rprn h hlf in wv rcifir wih priod π ω. Th grph of f() in h π π inrnl < < i in funcion which vrnih nd nd f() for h r hlf from ω ω π π o ω ω. Exmpl 5: A priodic qur wv funcion f(), in rm of uni p funcion, i wrin f() k [u () u () + u () u () + ]. Show h h plc rnform of f() i k givn by [ f] nh. Soluion: f() k[u () u () + u () u () + ] f() k [u () u () + u () u () + ] k + + k + + k ( + ) k +

68 8 Enginring Mhmic hrough Applicion k + + k k + + k nh f () T T T T Fig..5 ASSIGNMENT 6 Find h plc rnform of h following priodic funcion: π. f () in ω, whn f () f ( + T); T ω [Hin: f() rprn full in wv rcifir. Ex. 48]. Sw ooh wv funcion of priod T givn by f () +, < T T, < b. Non Symmric qur wv of priod T, givn by f (), b < T 4. Sirc funcion dfind by f() kn, nt < <(n + )T; whr n,,,

69 plc Trnform nd Thir Applicion 8 ANSWERS Aignmn. (i) , (ii) ( + ) , (iii) ( ) , (iv) (i) + 4, (v), , (ii) ( ). (i) ( ) ( 5 ) (vi) (ii) 4, π, > + 4. (i) ( + ), (ii) ( + ), (iii) ( ), > (iv) + ( ), 5. (i) ( + ), (ii) ( + ), (iii) ( ), > (iv) ( ), > 6. (i) ( + ), (ii) ( ), 7. (i) b log + + / (ii) 4 log + 8. (iii) co, + + (iv) co ( + ) 9., +. (i) + + (ii) b log + + Aignmn. (i) inh, co in (ii) ( + )

70 84 Enginring Mhmic hrough Applicion (iii) / co in +, (iv) (v) 5 5 in A B b b B A Ab inb bc. ( ) co + ( + ), (ii) 4, (iii) 4 +. (i) ( 6co 7in) 4. (i) in, (ii) in, (iii) 5. (i) (iv) 6. (i) co + b (vii) ( co) b co (ii), (v) 7. (i) (i) b b, (viii) in, +, (iii) in, (ix) inh inh in, (vi) ( coh) co cob (ii) ( ), (iii) ( 4 + ) 4 (ii) ( ) + (iii) ( in ) in co, (ii) ( ), (iii) ( + ) + ( ) 64 co co (iv) ( in ), (v) 8 ( + 8), (vi) ( ) (vii) ( in binb) ( b ), Aignmn. ω in co x ω ω ω B + +. y Acoω x + inωx ω + ω + ω. y ( ) ( ) x [inncoα nco( n +α)] n

71 plc Trnform nd Thir Applicion y + 6. y x + 8. y [( )in co ] 8 9. y (in + in ). y + in. y. f() co + in Aignmn x +. y + in x ( + 6) + ( + ), 7 7 y ( ) ( ) x in in, x y in in, y x 6 y 5 i p+ω ω + p i p+ω ω p ( in in ) ( co co ) 6 Aignmn 5 π (i) ( u ) ( π ) + u, + (ii) k b ω + φ (ii) ( ). (i) [() u u ( T)co( ) (iv) ( ) ( ) π (v), + (vi) (iii) (), u [ h ] h + + π (i) inu π () (ii) ( ) u () (iii) cob( ) u () (iv) ( u ) y () f () f ( u ) (), whr f () + 6 ωx ( l5x) l, < x < 8 EI yx () ω x ( l 5x) ω l x l +, < x < l 8 EI 6EI π in π

72 86 Enginring Mhmic hrough Applicion ωl l 4 ω ω 4 ω 6. yx () x x + x ( xl ) u( xl ) 6EI EI 4EI 4EI Aignmn 6.. Eω co π h + w ω T b ( + ) T ( ). 4. T k T T ( ) T coh

K x,y f x dx is called the integral transform of f(x). The function

K x,y f x dx is called the integral transform of f(x). The function APACE TRANSFORMS Ingrl rnform i priculr kind of mhmicl opror which ri in h nlyi of om boundry vlu nd iniil vlu problm of clicl Phyic. A funcion g dfind by b rlion of h form gy) = K x,y f x dx i clld h

More information

The Laplace Transform

The Laplace Transform Th Lplc Trnform Dfiniion nd propri of Lplc Trnform, picwi coninuou funcion, h Lplc Trnform mhod of olving iniil vlu problm Th mhod of Lplc rnform i ym h rli on lgbr rhr hn clculu-bd mhod o olv linr diffrnil

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/ Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289. Convrgnc of ourir Trnsform Rding Assignmn Oppnhim Sc 42 pp289 Propris of Coninuous im ourir Trnsform Rviw Rviw or coninuous-im priodic signl x, j x j d Invrs ourir Trnsform 2 j j x d ourir Trnsform Linriy

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

3.4 Repeated Roots; Reduction of Order

3.4 Repeated Roots; Reduction of Order 3.4 Rpd Roos; Rducion of Ordr Rcll our nd ordr linr homognous ODE b c 0 whr, b nd c r consns. Assuming n xponnil soluion lds o chrcrisic quion: r r br c 0 Qudric formul or fcoring ilds wo soluions, r &

More information

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013 Lcur #5 Conrol Sy Modlling Phyicl Sy Gr DC Moor Aoc.Prof. Hluk Görgün 0 Mrch 03 Conrol Sy Aoc. Prof. Hluk Görgün rnfr Funcion for Sy wih Gr Gr provid chnicl dvng o roionl y. Anyon who h riddn 0-pd bicycl

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

Section 2: The Z-Transform

Section 2: The Z-Transform Scion : h -rnsform Digil Conrol Scion : h -rnsform In linr discr-im conrol sysm linr diffrnc quion chrcriss h dynmics of h sysm. In ordr o drmin h sysm s rspons o givn inpu, such diffrnc quion mus b solvd.

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Relation between Fourier Series and Transform

Relation between Fourier Series and Transform EE 37-3 8 Ch. II: Inro. o Sinls Lcur 5 Dr. Wih Abu-Al-Su Rlion bwn ourir Sris n Trnsform Th ourir Trnsform T is riv from h finiion of h ourir Sris S. Consir, for xmpl, h prioic complx sinl To wih prio

More information

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t Coninuous im ourir rnsform Rviw. or coninuous-im priodic signl x h ourir sris rprsnion is x x j, j 2 d wih priod, ourir rnsform Wh bou priodic signls? W willl considr n priodic signl s priodic signl wih

More information

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser Mr n FT Lcur 4CT.5 3CT.3-5,7,8 BME 333 Bimdicl Signls nd Sysms - J.Schssr 43 Highr Ordr Diffrniin d y d x, m b Y b X N n M m N M n n n m m n m n d m d n m Y n d f n [ n ] F d M m bm m X N n n n n n m p

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic h Vsick modl h modl roosd by Vsick in 977 is yild-bsd on-fcor quilibrium modl givn by h dynmic dr = b r d + dw his modl ssums h h shor r is norml nd hs so-clld "mn rvring rocss" (undr Q. If w u r = b/,

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

Bicomplex Version of Laplace Transform

Bicomplex Version of Laplace Transform Annd Kumr l. / Inrnionl Journl of Enginring nd Tchnology Vol.,, 5- Bicomplx Vrsion of Lplc Trnsform * Mr. Annd Kumr, Mr. Prvindr Kumr *Dprmn of Applid Scinc, Roork Enginring Mngmn Tchnology Insiu, Shmli

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique Inrnionl hmil orum no. 667-67 Sud of h Soluions of h o Volrr r rdor Ssm Using rurion Thniqu D.Vnu ol Ro * D. of lid hmis IT Collg of Sin IT Univrsi Vishnm.. Indi Y... Thorni D. of lid hmis IT Collg of

More information

Chap.3 Laplace Transform

Chap.3 Laplace Transform Chap. aplac Tranorm Tranorm: An opraion ha ranorm a uncion ino anohr uncion i Dirniaion ranorm: ii x: d dx x x Ingraion ranorm: x: x dx x c Now, conidr a dind ingral k, d,ha ranorm ino a uncion o variabl

More information

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu Chapr 3: Fourir Rprsnaion of Signals and LTI Sysms Chih-Wi Liu Oulin Inroducion Complx Sinusoids and Frquncy Rspons Fourir Rprsnaions for Four Classs of Signals Discr-im Priodic Signals Fourir Sris Coninuous-im

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

Trigonometric Formula

Trigonometric Formula MhScop g of 9 FORMULAE SHEET If h lik blow r o-fucioig ihr Sv hi fil o your hrd driv (o h rm lf of h br bov hi pg for viwig off li or ju coll dow h pg. [] Trigoomry formul. [] Tbl of uful rigoomric vlu.

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Introduction to Laplace Transforms October 25, 2017

Introduction to Laplace Transforms October 25, 2017 Iroduco o Lplc Trform Ocobr 5, 7 Iroduco o Lplc Trform Lrr ro Mchcl Egrg 5 Smr Egrg l Ocobr 5, 7 Oul Rvw l cl Wh Lplc rform fo of Lplc rform Gg rform b gro Fdg rform d vr rform from bl d horm pplco o dffrl

More information

A Tutorial of The Context Tree Weighting Method: Basic Properties

A Tutorial of The Context Tree Weighting Method: Basic Properties A uoril of h on r Wighing Mhod: Bic ropri Zijun Wu Novmbr 9, 005 Abrc In hi uoril, ry o giv uoril ovrvi of h on r Wighing Mhod. W confin our dicuion o binry boundd mmory r ourc nd dcrib qunil univrl d

More information

Process Modeling of Short-Circuiting GMA Welding and Its Application to Arc Sensor Control

Process Modeling of Short-Circuiting GMA Welding and Its Application to Arc Sensor Control UDC 621. 791. 75 : 681. 3 Proc Modling of Shor-Circuiing GMA Wlding nd I Applicion o Arc Snor Conrol Shinji KODAMA* 1 Yuomo ICHIYAMA* 1 Yuyuki IKUNO* 2 Norimiu BABA* 2 Abrc Th mhmicl modl of g ml rc (GMA)

More information

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation INTERQUARTILE RANGE I cn clcul vribiliyinrquril Rng nd Mn Absolu Dviion 1. Wh is h grs common fcor of 27 nd 36?. b. c. d. 9 3 6 4. b. c. d.! 3. Us h grs common fcor o simplify h frcion!".!". b. c. d.

More information

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012 AE7/AC/A7 SIGNALS AND SYSEMS DECEMBER Q. Drmi powr d rgy of h followig igl j i ii =A co iii = Solio: i E P I I l jw l I d jw d d Powr i fii, i i powr igl ii =A cow E P I co w d / co l I I l d wd d Powr

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

Lecture 2: Current in RC circuit D.K.Pandey

Lecture 2: Current in RC circuit D.K.Pandey Lcur 2: urrn in circui harging of apacior hrough Rsisr L us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R and a ky K in sris. Whn h ky K is swichd on, h charging

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics 6.5, Rok ropulsion rof. nul rinz-snhz Lur 3: Idl Nozzl luid hnis Idl Nozzl low wih No Sprion (-D) - Qusi -D (slndr) pproximion - Idl gs ssumd ( ) mu + Opimum xpnsion: - or lss, >, ould driv mor forwrd

More information

ELECTRIC VELOCITY SERVO REGULATION

ELECTRIC VELOCITY SERVO REGULATION ELECIC VELOCIY SEVO EGULAION Gorg W. Younkin, P.E. Lif FELLOW IEEE Indusril Conrols Consuling, Di. Bulls Ey Mrking, Inc. Fond du Lc, Wisconsin h prformnc of n lcricl lociy sro is msur of how wll h sro

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

Lecture 21 : Graphene Bandstructure

Lecture 21 : Graphene Bandstructure Fundmnls of Nnolcronics Prof. Suprio D C 45 Purdu Univrsi Lcur : Grpn Bndsrucur Rf. Cpr 6. Nwor for Compuionl Nnocnolog Rviw of Rciprocl Lic :5 In ls clss w lrnd ow o consruc rciprocl lic. For D w v: Rl-Spc:

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES Digil Signl Procssing Digil Signl Procssing Prof. Nizmin AYDIN nydin@yildiz.du.r hp:www.yildiz.du.r~nydin Lcur Fourir rnsform Propris Licns Info for SPFirs Slids READING ASSIGNMENS his work rlsd undr Criv

More information

UNIT VIII INVERSE LAPLACE TRANSFORMS. is called as the inverse Laplace transform of f and is written as ). Here

UNIT VIII INVERSE LAPLACE TRANSFORMS. is called as the inverse Laplace transform of f and is written as ). Here UNIT VIII INVERSE APACE TRANSFORMS Sppo } { h i clld h ivr plc rorm o d i wri } {. Hr do h ivr plc rorm. Th ivr plc rorm giv blow ollow oc rom h rl o plc rorm, did rlir. i co 6 ih 7 coh 8...,,! 9! b b

More information

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall Siic 504 0. Aing Normliy Gry W. Ohlr School of Siic 33B For Hll 6-65-557 gry@.umn.u Mny procur um normliy. Som procur fll pr if h rn norml, whr ohr cn k lo of bu n kp going. In ihr c, i nic o know how

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DEFNTE NTEGRATON EXERCSE - CHECK YOUR GRASP. ( ) d [ ] d [ ] d d ƒ( ) ƒ '( ) [ ] [ ] 8 5. ( cos )( c)d 8 ( cos )( c)d + 8 ( cos )( c) d 8 ( cos )( c) d sic + cos 8 is lwys posiiv f() d ( > ) ms f() is

More information

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t AP CALCULUS FINAL UNIT WORKSHEETS ACCELERATION, VELOCTIY AND POSITION In problms -, drmin h posiion funcion, (), from h givn informaion.. v (), () = 5. v ()5, () = b g. a (), v() =, () = -. a (), v() =

More information

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics)

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics) Mh Lr # In-l Workh Vor n Mri (Bi) h n o hi lr, o hol l o: r mri n or in Mh i mri prorm i mri mh oprion ol m o linr qion ing mri mh. Cring Mri Thr r rl o r mri. Th "Inr Mri" Wino (M) B K Poin Rr o

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q). INTEGRALS JOHN QUIGG Eercise. Le f : [, b] R be bounded, nd le P nd Q be priions of [, b]. Prove h if P Q hen U(P ) U(Q) nd L(P ) L(Q). Soluion: Le P = {,..., n }. Since Q is obined from P by dding finiely

More information

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01 CS 1 Algorim nd Progrm Exm Soluion Jonn Turnr 11/8/01 B n nd oni, u ompl. 1. (10 poin). Conidr vrion of or p prolm wi mulipliiv o. In i form of prolm, lng of p i produ of dg lng, rr n um. Explin ow or

More information

UNIT I FOURIER SERIES T

UNIT I FOURIER SERIES T UNIT I FOURIER SERIES PROBLEM : Th urig mom T o h crkh o m gi i giv or ri o vu o h crk g dgr 6 9 5 8 T 5 897 785 599 66 Epd T i ri o i. Souio: L T = i + i + i +, Sic h ir d vu o T r rpd gc o T T i T i

More information

2. The Laplace Transform

2. The Laplace Transform Th aac Tranorm Inroucion Th aac ranorm i a unamna an vry uu oo or uying many nginring robm To in h aac ranorm w conir a comx variab σ, whr σ i h ra ar an i h imaginary ar or ix vau o σ an w viw a a oin

More information

The Procedure Abstraction Part II: Symbol Tables and Activation Records

The Procedure Abstraction Part II: Symbol Tables and Activation Records Th Produr Absrion Pr II: Symbol Tbls nd Aivion Rords Th Produr s Nm Sp Why inrodu lxil soping? Provids ompil-im mhnism for binding vribls Ls h progrmmr inrodu lol nms How n h ompilr kp rk of ll hos nms?

More information

A modified hyperbolic secant distribution

A modified hyperbolic secant distribution Songklnkrin J Sci Tchnol 39 (1 11-18 Jn - Fb 2017 hp://wwwsjspsuch Originl Aricl A modifid hyprbolic scn disribuion Pnu Thongchn nd Wini Bodhisuwn * Dprmn of Sisics Fculy of Scinc Kssr Univrsiy Chuchk

More information

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions 4.0 rincipl of Macroconomic Fall 005 Quiz 3 Soluion Shor Quion (30/00 poin la a whhr h following amn ar TRUE or FALSE wih a hor xplanaion (3 or 4 lin. Each quion coun 5/00 poin.. An incra in ax oday alway

More information

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times.

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times. 2 Pupi / Css Rr W ssum wr hs b r wh i hs b ihr s r us rry s hr ims. Nm: D Bu: fr i bus brhr u firs hf hp hm s uh i iv iv my my mr muh m w ih w Tik r pp push pu sh shu sisr s sm h h hir hr hs im k w vry

More information

can be viewed as a generalized product, and one for which the product of f and g. That is, does

can be viewed as a generalized product, and one for which the product of f and g. That is, does Boyce/DiPrim 9 h e, Ch 6.6: The Convoluion Inegrl Elemenry Differenil Equion n Bounry Vlue Problem, 9 h eiion, by Willim E. Boyce n Richr C. DiPrim, 9 by John Wiley & Son, Inc. Someime i i poible o wrie

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

Charging of capacitor through inductor and resistor

Charging of capacitor through inductor and resistor cur 4&: R circui harging of capacior hrough inducor and rsisor us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R, an inducor of inducanc and a y K in sris.

More information

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8 STAT W 6 Discussion Fll 7..-.- If h momn-gnring funcion of X is M X ( ), Find h mn, vrinc, nd pmf of X.. Suppos discr rndom vribl X hs h following probbiliy disribuion: f ( ) 8 7, f ( ),,, 6, 8,. ( possibl

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series DSP Firs, Lcur 7C Fourir Sris Empls: Common Priodic Signls READIG ASSIGMES his Lcur: Appndi C, Scion C- Vrious Fourir Sris Puls Wvs ringulr Wv Rcifid Sinusoids lso in Ch. 3, Sc. 3-5 Aug 6 3-6, JH McCllln

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

SE1CY15 Differentiation and Integration Part B

SE1CY15 Differentiation and Integration Part B SECY5 Diffrniion nd Ingrion Pr B Diffrniion nd Ingrion 6 Prof Richrd Michll Tody w will sr o look mor ypicl signls including ponnils, logrihms nd hyprbolics Som of his cn b found in h rcommndd books Crof

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

Name:... Batch:... TOPIC: II (C) 1 sec 3 2x - 3 sec 2x. 6 é ë. logtan x (A) log (tan x) (B) cot (log x) (C) log log (tan x) (D) tan (log x) cos x (C)

Name:... Batch:... TOPIC: II (C) 1 sec 3 2x - 3 sec 2x. 6 é ë. logtan x (A) log (tan x) (B) cot (log x) (C) log log (tan x) (D) tan (log x) cos x (C) Nm:... Bch:... TOPIC: II. ( + ) d cos ( ) co( ) n( ) ( ) n (D) non of hs. n sc d sc + sc é ësc sc ù û sc sc é ë ù û (D) non of hs. sc cosc d logn log (n ) co (log ) log log (n ) (D) n (log ). cos log(

More information

Lecture 26: Leapers and Creepers

Lecture 26: Leapers and Creepers Lcur 6: Lapr and Crpr Scrib: Grain Jon (and Marin Z. Bazan) Dparmn of Economic, MIT May, 005 Inroducion Thi lcur conidr h analyi of h non-parabl CTRW in which h diribuion of p iz and im bwn p ar dpndn.

More information

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9 Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

UNSTEADY HEAT TRANSFER

UNSTEADY HEAT TRANSFER UNSADY HA RANSFR Mny h rnsfr problms rquir h undrsnding of h ompl im hisory of h mprur vriion. For mpl, in mllurgy, h h ring pross n b onrolld o dirly ff h hrrisis of h prossd mrils. Annling (slo ool)

More information

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS adjoint...6 block diagram...4 clod loop ytm... 5, 0 E()...6 (t)...6 rror tady tat tracking...6 tracking...6...6 gloary... 0 impul function...3 input...5 invr Laplac tranform, INTRODUCTION TO AUTOMATIC

More information

Partial Fraction Expansion

Partial Fraction Expansion Paial Facion Expanion Whn ying o find h inv Laplac anfom o inv z anfom i i hlpfl o b abl o bak a complicad aio of wo polynomial ino fom ha a on h Laplac Tanfom o z anfom abl. W will illa h ing Laplac anfom.

More information