K x,y f x dx is called the integral transform of f(x). The function

Size: px
Start display at page:

Download "K x,y f x dx is called the integral transform of f(x). The function"

Transcription

1 APACE TRANSFORMS Ingrl rnform i priculr kind of mhmicl opror which ri in h nlyi of om boundry vlu nd iniil vlu problm of clicl Phyic. A funcion g dfind by b rlion of h form gy) = K x,y f x dx i clld h ingrl rnform of fx). Th funcion Kx, y) i clld h krnl of h rnform. Th vriou yp of ingrl rnform r plc rnform, Fourir rnform, Mllin rnform, Hnkl rnform c. plc rnform i widly ud ingrl rnform in Mhmic wih mny pplicion in phyic nd nginring. I i nmd fr Pirr-Simon plc, who inroducd h rnform in hi work on probbiliy hory. Th plc rnform i ud for olving diffrnil nd ingrl quion. In phyic nd nginring i i ud for nlyi of linr im-invrin ym uch lcricl circui, hrmonic ocillor, opicl dvic, nd mchnicl ym. Dfiniion Th plc rnform of funcion f), dfind for ll rl numbr, i h funcion F), dfind by: - {f )} = F f d. Th prmr i complx numbr. i clld h plc rnformion opror. Trnform of lmnry funcion. {} =, >. Proof: - {}.d = if > n! n+ whn n =,,,... = Γn+ ohrwi n+ n. Proof:

2 - n = d = + - n - n n n- n n- n n- n- = =...=... =, > -. Proof: - n! n+ if n i poiiv ingr n n- =... = n+ ohrwi n+ = d = - - d -- = - =, > - - in = +, Proof:. in, co = +, Proof:. co in co in d - - -co+in cod +, + inh = -, 6.

3 Proof: inh, coh =, - 7. Proof: coh, Propri of plc rnform. inriy propry. If, b, c b ny conn nd f, g, h b ny funcion of hn f +bg -ch = f +b g -c h Bcu of h bov propry of, i i clld linr opror.. Fir hifing propry. If {f )} = F) hn f = F -. Proof: -- f = f d = f d - -r = f d whr r = -. = Fr) = F -. Applicion of hi propry ld o h following rul.

4 = n. - n! n+. whn n =,,,... ohrwi b inb = - +b. - cob = - +b. inhb = - b. - b - cohb = - -b whr in ch c >. Γ n+ - n+ Exmpl: Find h plc rnform of h following.. Sin Soluion: in 6 in in in in in in in in inco Soluion: inco in + in 9

5 . co Soluion: co co., f ),, Soluion: f)..d.d d Exrci: Find h plc rnform of. in.. coh in. f in,,. Trnform of ingrl If f) = F hn fu)du = F Proof:

6 φ = f u du, hn φ = f nd φ =. \ φ = φ -φ Hnc φ = φ i.. f udu = F. Muliplicion by n = F If f n n n d hn f = - F n, n =,,,... d Proof: - W hv f d = F d d Byibniz' rul for diffrniion undr h ingrl ign d - d Conidr f d = F - f d = - d f d = - F d F d d which prov h horm for n =. Now um h horm o ru for n = my), o h m - m d f d = - F m d m m+ d - m d Thn f d = - F m+ d d By ibniz' rul, m m+ - m+ d f d = - F m+ d m

7 Thi how h if h horm i ru for n = m, i i lo ru for n = m+. Bu i i ru for n =. Hnc i i ru for n = + =, n = + = nd o on. Thu h horm i ru for ll poiiv ingrl vlu of n. Diviion by If f = F hn f = Fd Proof: - W hv F = f)d - Conidr F d f)d d - f)dd f) Exmpl: Find h plc rnform of. co Soluion: co = + d co d. - in Soluion: chnging h ordr of ingrion - f) d d i indpndn of - + +

8 in 9 d 6 in d 9 9 Now uing fir hifing propry,w g 6 6 in 9. co-cob Soluion: co-cob = - + +b co-cob = - d + +b +b = log + Exrci: Find h plc rnform of h following funcion.. in. - in in.. -cob. - co Priodic funcion: Suppo h h funcion Fi ) priodic wih priod. Thn i plc rnform i givn by F ) F ) d F ) d. u pu n. n) n n Thn F ) xp n ) F n) d. n

9 Bu F n) F ), w g F ) xp n ) xp ) F ) d xp ) xp ) F ) d w Thorm If ) n n xp ) F ) d. F h plc Trnform nd if n F ) d F ) F ), F ). w Exmpl ), c Find h rnform of h funcion, c) ; c, c), c)., c c c d, ). c c c ) Exmpl b) Find h rnform of h qur-wv funcion, c Q, c) ; Q c, c) Q, c)., c c Q c c c d d c c c / c ) ) c, ) nh. c c c c / ) ) Exrci:. Dfin ringulr-wv funcion T, c ), c T, c) ; T c, c) T, c). c, c c plc Trnform. by Skch T, c) nd find i

10 G by G ), c; G c) G ),. Skch h. Dfin h funcion ) grph of G ) nd find i plc Trnform.. Dfin h funcion ) grph of Snd ) find i plc Trnform. S by S ), ; S ) S ),. Skch h, dcribd blow, nd find i. Skch hlf-wv rcificion of h funcion in in, rnform. F ) ; F F ). w, w F whr F ) for nd F ) F ).. Find ) A Sp Funcion: Applicion frqunly dl wih iuion h chng bruply pcifid im. W nd noion for funcion h will uppr givn rm up o crin vlu of nd inr h rm for ll lrgr. Th funcion w r bou o inroduc ld u o powrful ool for conrucing invr rnform., u dfin funcion ) by Th dfiniion y h ) )., i zro whn h rgumn i ngiv nd ) i uniy whn h rgumn i poiiv or i zro. I follow h, c c)., c Th plc Trnform of c) F c) i c) F c) F c) d. c Now pu c v in h ingrl o obin cv) c c) F c) F v) dv F ). Thorm f ) F ), If if c, nd if ) c, f ) F c) c). Exmpl ): c Fb ignd vlu no mr wh on) for

11 , whr y ). 6, y ) ) ) 6 ) ) 6 ) ) Find y) nd ) y 6 ). Exmpl b) : Find nd kch funcion g ) for which g ). g ) ) ) ) ), 7,, g) Exrci:. Skch h grph of h givn funcion for. - i) ) ) ). ii). Expr ) ). Fin rm of h funcion nd find ) i), F )., ii), F ),. 7, iii) in, F )., F.

12 . Find nd kch n invr plc rnform of. Evlu ). ) ). If Fi ) o b coninuou for nd F ), vlu F), F), F ).. INVERSE APACE TRANSFORMS Inroducion: {f)} = F). Thn f) i dfind h invr plc rnform of F) nd i dnod by - {F)}. Thu - F) = f)..) - i known h invr lplc rnform opror nd i uch h In h invr problm ), F) i givn known) nd f) i o b drmind. Propri of Invr plc rnform For ch propry on plc rnform, hr i corrponding propry on invr plc rnform, which rdily follow from h dfiniion. ) inriy Propry - {F)} = f) nd - {G)} = g) nd nd b b ny wo conn. Thn ) Shifing Propry - [ F) b G)] = - {F)} b - { G)} If - {F)}=f) hn - [F-)]= - {F)} ) Invr rnform of driviv If - {F)}=f) hn - {F n )}= ) n n { F )}

13 ) Diviion by If - {F)}=f) hn F) f ) d Tbl of Invr plc Trnform of om ndrd funcion F) f ) F ),,, Co Sin,,, Sin h Co h, n n =,,,,..., n n > - n n! n n Exmpl i). Find h invr plc rnform of h following: b ii) 9 iii) 9

14 Soluion: ) i b b b ii in co ) ) iii h h in co in co Exrci: Find h invr plc rnform of h following 6 ) i ii) 6 ) iii) 8 iv) 8 Evluion of - F ) W hv, if { f)} = F), hn [ f)] = F ), nd o - F ) = f) = - F) Exmpl Evlu:. - - Givn Uing h formul g w nd n king nd n n n,!

15 Givn - Evlu: in co )Evlu : - h h in co Exrci Find h invr plc rnform of h following i) 6 ii) 9 7 iii) ) iv) ) ) INVERSE APACE TRANSFORM OF - F)

16 Evluion of - [ - F)] W hv, if {f)} = F), hn [f-) H-) = - F), nd o - [ - F)] = f-) H-) Exmpl ) Evlu : Hr, F ) Thrfor f ) F ) 6 Thu f ) H ) H 6 ) Evlu : Givn f H f H Hr f ) Now rlion ) rd Givn in f ) H co H co H in co co H ) Exrci: Find h invr plc rnform of h following i) coh ii)

17 iii) iv) INVERSE APACE TRANSFORM BY PARTIA FRACTION AND OGARITHMIC FUNCTION Exmpl ) ) ) F)= ) ) By pplying pril frcion w g ) ) = ) ) ) ) ) ) B A B A = ) ) B A pu = B B pu =- A A Thrfor F)= ) ) F)= ) ) Tking invr lplc rnform, w g )} { F ) ) = Evlu:. hv w C B A

18 Thn +- = A+) -) + B -) + C +) For =, w g A =, for =, w g C = nd for = -, w g B = -. Uing h vlu in ), w g Evlu:. Conidr C B A Thn + = A + ) + B + ) + ) + C + ) For = -, w g A =, for = -, w g C = - Compring h cofficin of, w g B + C =, o h B =. Uing h vlu in ), w g Hnc Evlu:. ) D C B A Hnc = A + ) + ) + B -) + )+C + D) )

19 For =, w g A = ¼; for = -, w g B = ¼; compring h conn rm, w g D = A-B) = ; compring h cofficin of, w g = A + B + C nd o C = ½. Uing h vlu in ), w g Tking invr rnform, w g co h co co Evlu:. Conidr in in in in h

20 Trnform of logrihmic nd invr funcion W hv, if { f)} d d d d F),hn f F Hnc. F f ) Exmpl ) Evlu : log b F ) log log b d Thn F d b So h Thu or f f d d F b b log b b b ) Evlu n F ) n Thn or f or d d f F d d in F in in o h Invr rnformof Sinc f F F d w hv F f d

21 Exmpl: : ) Evlu co in in ) d F Thn F f o h F dno u w g Uing hi, pr. ingrion by on, : ) - d d Hnc hv w Evlu CONVOUTION THEOREM AND.T. OF CONVOUTION INTEGRA

22 Th convoluion of wo funcion f) nd g) dnod by f) g) i dfind f) g) = f u) g u) du Propry: f) g) = g) f) Proof :- By dfiniion, w hv f) g) = f u) g u) du Sing -u = x, w g f) g) = f x) g x) dx) = g x) f x) dx g ) f ) Thi i h dird propry. No h h oprion i commuiv. CONVOUTION THEOREM: [f) g)] = {f)}.{g)} Proof: u dno f) g) = ) = f u) g u) du Conidr [ )] [ f u) g u)] d = f u) g u) du ) W no h h rgion for hi doubl ingrl i h nir r lying bwn h lin u = nd u =. On chnging h ordr of ingrion, w find h vri from u o nd u vri from o.

23 u u= =u = u= Hnc ) bcom [)] = u u u = g u) f u) g u) ddu u) f u) d du u u = g u) v f v) dv du, whr v = -u u = g u) du v f v) dv = g). f) Thu f). g) = [f) g)] Thi i dird propry. Exmpl:. Vrify Convoluion horm for h funcion f) nd g) in h following c : i) f) =, g) = in i) Hr, ii) f) =, g) = f g = f u) g u) du = u in u) du Employing ingrion by pr, w g o h f g = in

24 [f g] = ) ) Nx conidr f). g) = ) ) From ) nd ), w find h [f g] = f). g) Thu convoluion horm i vrifid. ii) Hr f g = u u du Employing ingrion by pr, w g o h f g = [f g] = ) ) Nx f). g) = ) ) From ) nd ) w find h [f g] = f). g) Thu convoluion horm i vrifid.. By uing h Convoluion horm, prov h f ) d f ) u dfin g) =, o h g-u) = Thn f ) d f ) g u) d [ f g]

25 = f). g) = f). Thu f ) d f ) Thi i h rul dird.. Uing Convoluion horm, prov h u in u) du ) ) u dno, f) = - g) = in, hn u u) du f u) g in u) du = f). g) = ) ) = ) ) Thi i h rul dird.

26 ) Employ plc Trnform mhod oolv hingrl quion. uin u f) l f du Tking plc rnform of h givn quion, w g f) f u in u du By uing convoluion horm, hr, w g f) f ) in f ) Thu f ) or f ) Thi i h oluion of h givn ingrl quion. Exrci: Solv h following problm. Vrify convoluion horm for h following pir of funcion: i) f) = co, g) = cob ii) f) =, g) = - iii) f) = g) = in. Uing h convoluion horm, prov h following: u i) u) co udu ) ) u ii) u) u du )

27 ) f ) f u u du ) f ' ) f u co u du, f ) Invr rnform of F) by uingconvoluion horm W hv, if ) F) nd g) G), hn f) g) f ) g ) F ) G ) nd o F ) G ) f ) g ) f ugu Thi xprion i clld du h convoluion horm for invr plc rnform Exmpl Employ convoluion horm o vlu h following : ) b u dno F), G ) b Tking hinvr, w g f) -, g) -b Thrfor, by convoluion horm, - b u bu b du u du b b b b

28 ) u dno F), G ) Thn f) in, g) co Hnc by convoluion horm, ) - Hr in uco u du in in u du, co u u in by uing compound ngl in formul F), G ) Thrfor f), g) in By convoluion horm, w hv - u in u du u in u co u in co in co By mploying convoluion horm, vlu h following:

29 ) ) ) b ) ) 6), b Applicion of plc rnform plc rnform i vry uful for olving linr diffrnil quion wih conn cofficin nd wih givn iniil condiion. W k h plc rnform of h diffrnil quion nd hn mk u of h iniil condiion, which rnform h diffrnil quion o n lgbric quion. Solv for plc rnform from hi lgbric quion nd h rquird oluion i obind by king h invr of hi rnform. plc rnform of driviv: f ' f f ). ''. f f f f ') ''' '. Problm: f f f f f '') nd o on.. Solv y '' y co givn ' y, y whn. Soluion: Tking plc rnform, On uing h iniil condiion, ' Y y y Y Y Tking invr,

30 y in. Solv '' ' ', givn y y y y 6y Soluion: Tking plc rnform, On uing h iniil condiion, ' Y y y Y y 6 Y Y Rolving ino pril frcion, Y Tking h invr plc rnform, y ) y Exrci :- Solv h following: '' ' '. y y y y y,. y ''' y '' y ' y y y ' y '' Elcricl circui:, Conidr impl circui comprid of n inducnc of mgniud hnry ), rinc of mgniud R ohm), nd cpcinc of mgniud C frd) conncd in ri. If E i h mf vol) pplid o n RC circui, hn h currn i mpr) in h circui im i govrnd by h diffrnil quion, di q Ri E d C

31 dq Hr q i h chrgcoulomb) i rld o i hrough h rlion i. If q) hn h d bov quion cn b rwrin, di Ri i d E dx C Exmpl:. A R circui crri n mf of volg E E in, whr E nd r conn. Find h currn i in h circui if iniilly hr i no currn in h circui. Soluion: Th diffrnil quion govrning h currn i i, di Ri E in d or, di E R i in d Tking plc rnform on boh id, E I i) I, whr R Applying h iniil condiion, i), w g, I E By rolving ino pril frcion, E I Tking invr plc rnform, E i in co. A rinc R in ri wih n inducnc i conncd wih mf E ). Th currn i di i givn by, Ri E). Th wich i conncd im nd diconncd d

32 im Find h currn i in rm of, givn h h mf i conn whn h wich i on. Soluion: E E ) Hr conidr E conn. E ) E H ) H ), Th govrning quion bcom, di R E i H ) H ) d Tking plc rnform nd pplying h iniil condiion, i), E I I, whr E E I ) R Tking invr plc rnform, ) R E i H ) R E i R E R Exrci:. A volg E i pplid o circui of inducnc nd rinc R. Show E R h currn im i R.. A impl lcricl circui coni of rinc R nd inducnc in ri wih conn mf E. If h wich i clod whn, find h currn ny im. M pring ym

33 Conidr pring of lngh x, id on nd o uppor nd h ohr nd i id o fixd m m which i fr. If F i h forc cing on h objc, hn from Nwon cond lw of moion, d x m kx d Suppo h mdium hrough h up i workd i riing wih vlociy of x' ) w hv, d x m kx cx ' d mx '' ) cx" ) kx ) Th uxiliry quion i givn by, md cd k Th roo of h qudric quion r, c c mk D m Th vlu of c mk drmin h niiviy of h mdium.... c c c mk impli moion i undr-dmpd. mk impli h moion i criiclly dmpd. mk impli h moion i ovr-dmpd. Hr k i h iffn of h pring nd cn b givn by h wigh of h objc pr uni ol w lngh of h pring, k, whr b i h lngh of h pring nirly nd w mg b. A pring cn xnd cm whn.kg of m i chd o i. I i upndd vriclly from uppor nd ino vibrion by pulling i down cm nd impring vlociy of cm / vriclly upwrd. Find h diplcmn from i quilibrium. Soluion: x ) b h diplcmn from i quilibrium. Hr b cm, m gm, x) cm, x') cm / W cn hu clcul h vlu of k, i.. k dy / cm Th quion of moion i, x'' ) x ) x'' ) 9 x ) Tking plc rnform,

34 X x) x') 9X X 9 9 Tking h invr plc rnform, x ) co7 in A pring of iffn k h m m chd o on nd. I i cd upon by xrnl forc Ain. Dicu i moion in gnrl. Soluion: W know from h Nwon lw of moion, x) x, x') v k x'' ) x ) Ain m Tking plc rnform, k A X x) x') X m m By pplying h iniil condiion, k m A X x v m k m Tking h invr plc rnform, k m d x m kx in, d k in Ain k ) co m A x x v m k m k k m m Exrci:. A pring i rchd 6 inch by pound wigh. h wigh b chd o h pring nd pulld down inch blow h quilibrium poin. If h wigh id rd wih n upwrd vlociy of f pr cond, dcrib h moion. No dmping or imprd forc i prn.

35 . A pring i uch h lb wigh rch i 6 inch. An imprd forc co8 i cing on h pring. If h pound wigh i rd from h quilibrium poin wih n upwrd vlociy of f pr cond, dcrib h moion.

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

The Laplace Transform

The Laplace Transform Th Lplc Trnform Dfiniion nd propri of Lplc Trnform, picwi coninuou funcion, h Lplc Trnform mhod of olving iniil vlu problm Th mhod of Lplc rnform i ym h rli on lgbr rhr hn clculu-bd mhod o olv linr diffrnil

More information

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/ Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr

More information

LAPLACE TRANSFORMS AND THEIR APPLICATIONS

LAPLACE TRANSFORMS AND THEIR APPLICATIONS APACE TRANSFORMS AND THEIR APPICATIONS. INTRODUCTION Thi ubjc w nuncid fir by Englih Enginr Olivr Hviid (85 95) from oprionl mhod whil udying om lcricl nginring problm. Howvr, Hviid` rmn w no vry ymic

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

3.4 Repeated Roots; Reduction of Order

3.4 Repeated Roots; Reduction of Order 3.4 Rpd Roos; Rducion of Ordr Rcll our nd ordr linr homognous ODE b c 0 whr, b nd c r consns. Assuming n xponnil soluion lds o chrcrisic quion: r r br c 0 Qudric formul or fcoring ilds wo soluions, r &

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013 Lcur #5 Conrol Sy Modlling Phyicl Sy Gr DC Moor Aoc.Prof. Hluk Görgün 0 Mrch 03 Conrol Sy Aoc. Prof. Hluk Görgün rnfr Funcion for Sy wih Gr Gr provid chnicl dvng o roionl y. Anyon who h riddn 0-pd bicycl

More information

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289. Convrgnc of ourir Trnsform Rding Assignmn Oppnhim Sc 42 pp289 Propris of Coninuous im ourir Trnsform Rviw Rviw or coninuous-im priodic signl x, j x j d Invrs ourir Trnsform 2 j j x d ourir Trnsform Linriy

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

Chapter4 Time Domain Analysis of Control System

Chapter4 Time Domain Analysis of Control System Chpr4 im Domi Alyi of Corol Sym Rouh biliy cririo Sdy rror ri rpo of h fir-ordr ym ri rpo of h cod-ordr ym im domi prformc pcificio h rliohip bw h prformc pcificio d ym prmr ri rpo of highr-ordr ym Dfiiio

More information

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic h Vsick modl h modl roosd by Vsick in 977 is yild-bsd on-fcor quilibrium modl givn by h dynmic dr = b r d + dw his modl ssums h h shor r is norml nd hs so-clld "mn rvring rocss" (undr Q. If w u r = b/,

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

Section 2: The Z-Transform

Section 2: The Z-Transform Scion : h -rnsform Digil Conrol Scion : h -rnsform In linr discr-im conrol sysm linr diffrnc quion chrcriss h dynmics of h sysm. In ordr o drmin h sysm s rspons o givn inpu, such diffrnc quion mus b solvd.

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

Relation between Fourier Series and Transform

Relation between Fourier Series and Transform EE 37-3 8 Ch. II: Inro. o Sinls Lcur 5 Dr. Wih Abu-Al-Su Rlion bwn ourir Sris n Trnsform Th ourir Trnsform T is riv from h finiion of h ourir Sris S. Consir, for xmpl, h prioic complx sinl To wih prio

More information

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t Coninuous im ourir rnsform Rviw. or coninuous-im priodic signl x h ourir sris rprsnion is x x j, j 2 d wih priod, ourir rnsform Wh bou priodic signls? W willl considr n priodic signl s priodic signl wih

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

A Tutorial of The Context Tree Weighting Method: Basic Properties

A Tutorial of The Context Tree Weighting Method: Basic Properties A uoril of h on r Wighing Mhod: Bic ropri Zijun Wu Novmbr 9, 005 Abrc In hi uoril, ry o giv uoril ovrvi of h on r Wighing Mhod. W confin our dicuion o binry boundd mmory r ourc nd dcrib qunil univrl d

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01 CS 1 Algorim nd Progrm Exm Soluion Jonn Turnr 11/8/01 B n nd oni, u ompl. 1. (10 poin). Conidr vrion of or p prolm wi mulipliiv o. In i form of prolm, lng of p i produ of dg lng, rr n um. Explin ow or

More information

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series DSP Firs, Lcur 7C Fourir Sris Empls: Common Priodic Signls READIG ASSIGMES his Lcur: Appndi C, Scion C- Vrious Fourir Sris Puls Wvs ringulr Wv Rcifid Sinusoids lso in Ch. 3, Sc. 3-5 Aug 6 3-6, JH McCllln

More information

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser Mr n FT Lcur 4CT.5 3CT.3-5,7,8 BME 333 Bimdicl Signls nd Sysms - J.Schssr 43 Highr Ordr Diffrniin d y d x, m b Y b X N n M m N M n n n m m n m n d m d n m Y n d f n [ n ] F d M m bm m X N n n n n n m p

More information

Lecture 26: Leapers and Creepers

Lecture 26: Leapers and Creepers Lcur 6: Lapr and Crpr Scrib: Grain Jon (and Marin Z. Bazan) Dparmn of Economic, MIT May, 005 Inroducion Thi lcur conidr h analyi of h non-parabl CTRW in which h diribuion of p iz and im bwn p ar dpndn.

More information

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu Chapr 3: Fourir Rprsnaion of Signals and LTI Sysms Chih-Wi Liu Oulin Inroducion Complx Sinusoids and Frquncy Rspons Fourir Rprsnaions for Four Classs of Signals Discr-im Priodic Signals Fourir Sris Coninuous-im

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Bicomplex Version of Laplace Transform

Bicomplex Version of Laplace Transform Annd Kumr l. / Inrnionl Journl of Enginring nd Tchnology Vol.,, 5- Bicomplx Vrsion of Lplc Trnsform * Mr. Annd Kumr, Mr. Prvindr Kumr *Dprmn of Applid Scinc, Roork Enginring Mngmn Tchnology Insiu, Shmli

More information

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8 STAT W 6 Discussion Fll 7..-.- If h momn-gnring funcion of X is M X ( ), Find h mn, vrinc, nd pmf of X.. Suppos discr rndom vribl X hs h following probbiliy disribuion: f ( ) 8 7, f ( ),,, 6, 8,. ( possibl

More information

Trigonometric Formula

Trigonometric Formula MhScop g of 9 FORMULAE SHEET If h lik blow r o-fucioig ihr Sv hi fil o your hrd driv (o h rm lf of h br bov hi pg for viwig off li or ju coll dow h pg. [] Trigoomry formul. [] Tbl of uful rigoomric vlu.

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique Inrnionl hmil orum no. 667-67 Sud of h Soluions of h o Volrr r rdor Ssm Using rurion Thniqu D.Vnu ol Ro * D. of lid hmis IT Collg of Sin IT Univrsi Vishnm.. Indi Y... Thorni D. of lid hmis IT Collg of

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t AP CALCULUS FINAL UNIT WORKSHEETS ACCELERATION, VELOCTIY AND POSITION In problms -, drmin h posiion funcion, (), from h givn informaion.. v (), () = 5. v ()5, () = b g. a (), v() =, () = -. a (), v() =

More information

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions 4.0 rincipl of Macroconomic Fall 005 Quiz 3 Soluion Shor Quion (30/00 poin la a whhr h following amn ar TRUE or FALSE wih a hor xplanaion (3 or 4 lin. Each quion coun 5/00 poin.. An incra in ax oday alway

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

Introduction to Laplace Transforms October 25, 2017

Introduction to Laplace Transforms October 25, 2017 Iroduco o Lplc Trform Ocobr 5, 7 Iroduco o Lplc Trform Lrr ro Mchcl Egrg 5 Smr Egrg l Ocobr 5, 7 Oul Rvw l cl Wh Lplc rform fo of Lplc rform Gg rform b gro Fdg rform d vr rform from bl d horm pplco o dffrl

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz STAT UIUC Pracic Problms #7 SOLUTIONS Spanov Dalpiaz Th following ar a numbr of pracic problms ha ma b hlpful for compling h homwor, and will lil b vr usful for suding for ams.. Considr wo coninuous random

More information

A modified hyperbolic secant distribution

A modified hyperbolic secant distribution Songklnkrin J Sci Tchnol 39 (1 11-18 Jn - Fb 2017 hp://wwwsjspsuch Originl Aricl A modifid hyprbolic scn disribuion Pnu Thongchn nd Wini Bodhisuwn * Dprmn of Sisics Fculy of Scinc Kssr Univrsiy Chuchk

More information

Chap.3 Laplace Transform

Chap.3 Laplace Transform Chap. aplac Tranorm Tranorm: An opraion ha ranorm a uncion ino anohr uncion i Dirniaion ranorm: ii x: d dx x x Ingraion ranorm: x: x dx x c Now, conidr a dind ingral k, d,ha ranorm ino a uncion o variabl

More information

can be viewed as a generalized product, and one for which the product of f and g. That is, does

can be viewed as a generalized product, and one for which the product of f and g. That is, does Boyce/DiPrim 9 h e, Ch 6.6: The Convoluion Inegrl Elemenry Differenil Equion n Bounry Vlue Problem, 9 h eiion, by Willim E. Boyce n Richr C. DiPrim, 9 by John Wiley & Son, Inc. Someime i i poible o wrie

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

Engineering Differential Equations Practice Final Exam Solutions Fall 2011

Engineering Differential Equations Practice Final Exam Solutions Fall 2011 9.6 Enginring Diffrntial Equation Practic Final Exam Solution Fall 0 Problm. (0 pt.) Solv th following initial valu problm: x y = xy, y() = 4. Thi i a linar d.. bcau y and y appar only to th firt powr.

More information

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall Siic 504 0. Aing Normliy Gry W. Ohlr School of Siic 33B For Hll 6-65-557 gry@.umn.u Mny procur um normliy. Som procur fll pr if h rn norml, whr ohr cn k lo of bu n kp going. In ihr c, i nic o know how

More information

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES Digil Signl Procssing Digil Signl Procssing Prof. Nizmin AYDIN nydin@yildiz.du.r hp:www.yildiz.du.r~nydin Lcur Fourir rnsform Propris Licns Info for SPFirs Slids READING ASSIGNMENS his work rlsd undr Criv

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012 AE7/AC/A7 SIGNALS AND SYSEMS DECEMBER Q. Drmi powr d rgy of h followig igl j i ii =A co iii = Solio: i E P I I l jw l I d jw d d Powr i fii, i i powr igl ii =A cow E P I co w d / co l I I l d wd d Powr

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

Charging of capacitor through inductor and resistor

Charging of capacitor through inductor and resistor cur 4&: R circui harging of capacior hrough inducor and rsisor us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R, an inducor of inducanc and a y K in sris.

More information

UNSTEADY HEAT TRANSFER

UNSTEADY HEAT TRANSFER UNSADY HA RANSFR Mny h rnsfr problms rquir h undrsnding of h ompl im hisory of h mprur vriion. For mpl, in mllurgy, h h ring pross n b onrolld o dirly ff h hrrisis of h prossd mrils. Annling (slo ool)

More information

SE1CY15 Differentiation and Integration Part B

SE1CY15 Differentiation and Integration Part B SECY5 Diffrniion nd Ingrion Pr B Diffrniion nd Ingrion 6 Prof Richrd Michll Tody w will sr o look mor ypicl signls including ponnils, logrihms nd hyprbolics Som of his cn b found in h rcommndd books Crof

More information

Process Modeling of Short-Circuiting GMA Welding and Its Application to Arc Sensor Control

Process Modeling of Short-Circuiting GMA Welding and Its Application to Arc Sensor Control UDC 621. 791. 75 : 681. 3 Proc Modling of Shor-Circuiing GMA Wlding nd I Applicion o Arc Snor Conrol Shinji KODAMA* 1 Yuomo ICHIYAMA* 1 Yuyuki IKUNO* 2 Norimiu BABA* 2 Abrc Th mhmicl modl of g ml rc (GMA)

More information

Lecture 21 : Graphene Bandstructure

Lecture 21 : Graphene Bandstructure Fundmnls of Nnolcronics Prof. Suprio D C 45 Purdu Univrsi Lcur : Grpn Bndsrucur Rf. Cpr 6. Nwor for Compuionl Nnocnolog Rviw of Rciprocl Lic :5 In ls clss w lrnd ow o consruc rciprocl lic. For D w v: Rl-Spc:

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics 6.5, Rok ropulsion rof. nul rinz-snhz Lur 3: Idl Nozzl luid hnis Idl Nozzl low wih No Sprion (-D) - Qusi -D (slndr) pproximion - Idl gs ssumd ( ) mu + Opimum xpnsion: - or lss, >, ould driv mor forwrd

More information

ELECTRIC VELOCITY SERVO REGULATION

ELECTRIC VELOCITY SERVO REGULATION ELECIC VELOCIY SEVO EGULAION Gorg W. Younkin, P.E. Lif FELLOW IEEE Indusril Conrols Consuling, Di. Bulls Ey Mrking, Inc. Fond du Lc, Wisconsin h prformnc of n lcricl lociy sro is msur of how wll h sro

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation INTERQUARTILE RANGE I cn clcul vribiliyinrquril Rng nd Mn Absolu Dviion 1. Wh is h grs common fcor of 27 nd 36?. b. c. d. 9 3 6 4. b. c. d.! 3. Us h grs common fcor o simplify h frcion!".!". b. c. d.

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS MASTER CLASS PROGRAM UNIT SPECIALIST MATHEMATICS SEMESTER TWO WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES QUESTION () Lt p ( z) z z z If z i z ( is

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) QUESTION BANK 6 SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddhrh Ngr, Nrynvnm Rod 5758 QUESTION BANK (DESCRIPTIVE) Subjec wih Code :Engineering Mhemic-I (6HS6) Coure & Brnch: B.Tech Com o ll Yer & Sem:

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DEFNTE NTEGRATON EXERCSE - CHECK YOUR GRASP. ( ) d [ ] d [ ] d d ƒ( ) ƒ '( ) [ ] [ ] 8 5. ( cos )( c)d 8 ( cos )( c)d + 8 ( cos )( c) d 8 ( cos )( c) d sic + cos 8 is lwys posiiv f() d ( > ) ms f() is

More information

Discussion 06 Solutions

Discussion 06 Solutions STAT Discussion Soluions Spring 8. Th wigh of fish in La Paradis follows a normal disribuion wih man of 8. lbs and sandard dviaion of. lbs. a) Wha proporion of fish ar bwn 9 lbs and lbs? æ 9-8. - 8. P

More information

Chapter 4 Circular and Curvilinear Motions

Chapter 4 Circular and Curvilinear Motions Chp 4 Cicul n Cuilin Moions H w consi picls moing no long sigh lin h cuilin moion. W fis su h cicul moion, spcil cs of cuilin moion. Anoh mpl w h l sui li is h pojcil..1 Cicul Moion Unifom Cicul Moion

More information

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9 Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

More information

UNIT VIII INVERSE LAPLACE TRANSFORMS. is called as the inverse Laplace transform of f and is written as ). Here

UNIT VIII INVERSE LAPLACE TRANSFORMS. is called as the inverse Laplace transform of f and is written as ). Here UNIT VIII INVERSE APACE TRANSFORMS Sppo } { h i clld h ivr plc rorm o d i wri } {. Hr do h ivr plc rorm. Th ivr plc rorm giv blow ollow oc rom h rl o plc rorm, did rlir. i co 6 ih 7 coh 8...,,! 9! b b

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas Third In-Class Exam Soluions Mah 6, Profssor David Lvrmor Tusday, 5 April 07 [0] Th vrical displacmn of an unforcd mass on a spring is givn by h 5 3 cos 3 sin a [] Is his sysm undampd, undr dampd, criically

More information

Chapter 3. The Fourier Series

Chapter 3. The Fourier Series Chpr 3 h Fourir Sris Signls in h im nd Frquny Domin INC Signls nd Sysms Chpr 3 h Fourir Sris Eponnil Funion r j ros jsin ) INC Signls nd Sysms Chpr 3 h Fourir Sris Odd nd Evn Evn funion : Odd funion :

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

READING ASSIGNMENTS. Signal Processing First. Fourier Transform LECTURE OBJECTIVES. This Lecture: Lecture 23 Fourier Transform Properties

READING ASSIGNMENTS. Signal Processing First. Fourier Transform LECTURE OBJECTIVES. This Lecture: Lecture 23 Fourier Transform Properties Signl Procssing Firs Lcur 3 Fourir rnsform Propris READING ASSIGNMENS his Lcur: Chpr, Scs. -5 o -9 ls in Scion -9 Ohr Rding: Rciion: Chpr, Scs. - o -9 N Lcurs: Chpr Applicions 3/7/4 3, JH McCllln & RW

More information

H is equal to the surface current J S

H is equal to the surface current J S Chapr 6 Rflcion and Transmission of Wavs 6.1 Boundary Condiions A h boundary of wo diffrn mdium, lcromagnic fild hav o saisfy physical condiion, which is drmind by Maxwll s quaion. This is h boundary condiion

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

Lecture 2: Current in RC circuit D.K.Pandey

Lecture 2: Current in RC circuit D.K.Pandey Lcur 2: urrn in circui harging of apacior hrough Rsisr L us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R and a ky K in sris. Whn h ky K is swichd on, h charging

More information

Physics 160 Lecture 3. R. Johnson April 6, 2015

Physics 160 Lecture 3. R. Johnson April 6, 2015 Physics 6 Lcur 3 R. Johnson April 6, 5 RC Circui (Low-Pass Filr This is h sam RC circui w lookd a arlir h im doma, bu hr w ar rsd h frquncy rspons. So w pu a s wav sad of a sp funcion. whr R C RC Complx

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information