SYMMETRIZED CURVE-STRAIGHTENING

Size: px
Start display at page:

Download "SYMMETRIZED CURVE-STRAIGHTENING"

Transcription

1 SYMMETRIZED CURVE-STRIGTENING NDERS LINNÉR STRCT. The rdiionl curve-righening low i ed on one o he ndrd Soolev inner produc nd i i known o rek cerin ymmerie o relecion. The purpoe o hi pper i o how h here re lernive Riemnnin rucure on he pce o curve h yield low h preerve ymmerie. Thi eure come price. In one ymmerizing meric he grdien vecor ield re coniderly more demnding o compue. In noher ymmerizing meric moohne i lo. Thi inveigion will lo explin he phenomen o pinning oerved in everl exmple in he rdiionl low. Three cle o lernive Riemnnin rucure re exmined. The ir cl include he rdiionl meric pecil ce nd i hown o never preerve oh roion ymmerie nd ymmerie o relecion. The econd cl coni o ingle meric correponding o one o he ndrd Soolev meric, nd i hown o preerve oh ype o ymmerie. The hird cl lo include he rdiionl meric u i i hown h here i unique dieren meric in hi cl, which preerve oh ype o ymmerie. Thi priculr meric generlly yield mooh vecor ield, which when evlued mooh uncion do no give mooh elemen o he correponding ngen pce. The hird cl i neverhele preerred ince i h he diincion h i repec he projecion induced y he derivive operor ono he ngen undle o he pce o derivive. The pper conclude wih numer o grphicl illurion h how preerved ymmery nd removl o pinning.. INTRODUCTION. ckground. Conider Riemnnin mniold X wih meric,, nd uncionl F : X. The direcionl derivive DF( x) : Tx X i reled o he grdien Fx ( ) TX x y Fx ( ), v = DFxv ( ). The curve-righening low wih ν i he x negive grdien low ocied wih he modiied ol qured curvure uncionl γ + ν. γ k d lhough here i cerin moun o reedom in he choice o X nd i Riemnnin rucure, pper deling wih he curve-righening low proper hve o r conienly ued he me pce X nd meric. Speciiclly, X i he lrge poile Soolev pce on which he modiied

2 NDERS LINNÉR ol qured curvure uncionl i deined wih he imple ndrd meric. Thi choice o cilie he compuion o he grdien nd i projecion ono ngen pce in he ce o conrin. I lo impliie everl o he nlyicl rgumen required when veriying he Pli-Smle condiion.. Purpoe. The purpoe o hi pper i o nwer queion concerning he ilure o he rdiionl curve-righening low o preerve cerin ymmerie o relecion. There re mny exmple h illure hi ehvior; ee []. Roer L. ryn nd Joel Lnger hve on epre occion ked he uhor why he ymmery i roken. The hor, u no priculrly iying nwer, i h he meric vw, v() w() vwd ( ) ( ) = + i no ymmeric on he prmeer inervl [, ]. In he ce o cloed curve mo o he eec o hi ymmeric choice re mked y he periodiciy.. Prolem. Recll h oluion o he equion F( x) = re clled criicl poin. The choice o meric ec he orm o he equion F( x) =. criicl poin iie DF ( x ) v = or ll v. I ollow h he choice o meric i no imporn when he min concern i o ind ll oluion o Fx ( ) =. The lck o ymmery in he meric, ecome n iue when he concern i he ymmery o x τ in he low dxτ F( xτ ) dτ =. reled queion, poed y Dvid. Singer, concern n exmple given in []. The exmple how he curve-righening low o n iniil curve, which i lmo doule covered Euler igure eigh. The low h limi he ingle covered Euler igure eigh. The purpoe o he exmple i o how complee negive grdien rjecory, which r cloe o he unle doule covered Euler igure eigh nd end he le ingle covered Euler igure eigh. The iniil curve h n xi o ymmery nd uequen curve long he rjecory lo hve n xi o ymmery. The peculir ehvior i h he xi o ymmery roe during he low nd Dvid queion i why hi i he ce. The reul in [] concerning preerved ymmery do no pply o hi ce ince he roion numer in he exmple i oppoed o. The roo cue o he ehvior i he exr degree o reedom due o he poiiliy o pinning cloed curve. In Secion.4 he echnicl mniold heoreic reon ehind pinning i expoed..4 Orgnizion. In Secion ligh exenion o he concep o odd nd even uncion i inroduced. Thi led o he noion o prmeric ymmerie. In he conex o curve in he plne hi exenion eicienly ideniie non-cloed curve wih n xi o ymmery or 8 degree roionl ymmery. In he ce o cloed curve he prmeric ymmerie re only preen in ome o he prmeerizion o he choice o iniil poin i in hi ce imporn. The pce

3 SYMMETRIZED CURVE-STRIGTENING o prmericlly ymmeric curve re nlyzed ue in he pce o ll curve. In [] exernlly ymmeric cloed curve o roion numer re hown o e cloed umniold uing echnique y Pli. The exernlly ymmeric curve re no o e conued wih he prmericlly ymmeric curve conidered here. In Secion he generl ormul derived in [4] re reclled nd pecilized o he conex o he curve-righening low. Unconrined well conrined curve re conidered. The min reul i he proo o he exience o curverighening low h preerve ymmerie. To keep he preen pper el-conined n ppendix i included wih direc proo o he generl ormul derived in [4].. PRMETRIC SYMMETRIES. Generlized even nd odd. The concep o even nd odd re ued here in lighly more generl eing. Given n inervl [, ], le m = ( + )/ e he midpoin. uncion : [, ] i generlized even wih repec o he midpoin i ( x) = ( + x) or ll x [, ]. The uncion i generlized odd wih repec o he midpoin i ( x) + ( + x) = ( m). Noe h only he conn uncion hve oh ymmerie.. Prmeric ymmery ou poin. Suppoe regulr (i.e., dierenile nd nonzero peed) curve γ : [,] o lengh L in he complex plne i reled o coninuou uncion : [,] y i ( ) γ ( ) = Le. The curve γ i id o hve prmeric roionl ymmery wih repec o he poin γ ( /) i he ngen ngle i generlized even wih repec o /. The curve γ i id o hve prmeric relecion ymmery wih repec o he norml line hrough γ ( /) i i generlized odd wih repec o /. Exmple: Conider prmeerized curve, which r (, ) nd end (, ). The ir curve ollow he rel xi o he origin, coninue long circle in he upper hl-plne, nd inihe y ollowing he rel xi o (, ). The ngen ngle uncion i given y < / ( ) = 6π( /) / < /. π / The curve h prmeric relecion ymmery wih repec o he imginry xi. The curve doe no hve prmeric roionl ymmery. The econd curve coni o wo righ egmen nd wo circle nd

4 4 NDERS LINNÉR ( ) < /4 8π( /4) /4 < / =. 8π ( /4 ) / < /4 /4 Thi curve h prmeric roionl ymmery. Thi curve doe no hve prmeric relecion ymmery. Noe h when he curve i hough o e o poin i h exernl relecion ymmery cro he imginry xi.. Ueul mp. To e in poiion o employ mniold heoreicl ool he ollowing c re elihed. Suppoe he endpoin γ () nd γ () re ixed, hen he ngen ngle i ujec o nonliner conrin o he orm i() = γ() γ(). L e d The direcionl derivive o i() e d, in he direcion v, h he orm () () i. i v e d The pce o ngen ngle pproprie in he conex o ol qured curvure i given y he vecor pce = : [, ] i oluely coninuou, L [, ]. In he nex wo { } reul here i no need o ume hi much moohne in, u no hrm i done. Propoiion. Le W { w w( ) w( ) } conn uncion. The liner mp = = nd uppoe W i given uch h i no () Γ ( w) = w( ) e i d, Γ : W deined y i ono. Proo. Inegre y pr nd ge i() i() Γ ( w) w() e d w( ) = e d d. Given ny [,/ ] deine w W y w ( ) = ( + ( ) ) wih < w =, < nd w () =. Deine curve σ : [,/] y σ ( ) = Γ ( w ). The curve i wice dierenile wih

5 SYMMETRIZED CURVE-STRIGTENING σ i() () = e d, nd ince W ( ) σ () = e i. I ollow h σ i no conn. ume σ( ) or [,/]. I here i uncion :[,/] uch h σ() = ()( σ ) or ll [,/ ], hen i mooh σ nd i( ) e = σ ( ) = ( ) σ( ). Since i coninuou hi implie h i conn. Thi i ruled ou y umpion nd hence here re wo linerly independen vecor o he orm σ ( ) = Γ ( w ) nd σ ( ) = Γ ( w ). Propoiion. Le V { v v( ) v( ) v(/) } = + = nd uppoe V i given uch h i no conn uncion. The liner mp i ono i () Λ () v = v() e i d, i() e d, Λ : V deined y i (/) nd h -dimenionl imge pnned y ie oherwie. ic Proo. Since Λ c = e Λ or ny rel numer c, i i cceple o ume h () + ( ) =. y pliing he inervl o inegrion in hl nd uing uiuion i i een h o / i() e d = co ( ) d, Im. i() e d = Fir conider he ce Le v i() e d. V e given y v () =. Deine v < v =, < V y nd v () =. Deine curve σ : [,/] y σ ( ) = Λ ( v ). The curve i wice dierenile wih i() i(), nd σ () = e d + e d

6 6 NDERS LINNÉR i( ) i( ) i( ) i( ) = = =. σ () e e e e in i () Suppoe here i uncion : [,/ ] uch h σ () = () Λ () v or ll [,/ ], hen i mooh σ nd i() in i () = σ () = () Λ () v = () e d. Thi implie i () Re e d =. I ollow h i () e d =, conrdicion. ence here re wo linerly independen vecor o he orm Λ ( v ) nd σ ( ) = Λ ( v ). Nex conider he ce For ll v Since i () e d =. V i i rue h / i() i( u) i() v() e d = v( u) e du = ( (/) v v() ) e d, nd / / / / i() i() i() i() ve () d= v ()( e e ) d+ (/) v e d. / i() = e d = co ( ) d i ollow h () Re i ve ( ) d =. To inih he proo i uice o ind le one v V uch h i() ve () d. To hi end, noe h he curve σ, which i deined in he ir pr o he proo, move wy rom he origin unle ( ) = n π or ome ineger n. In hi ce he coninuiy o implie h i conn uncion. Thi conrdic he umpion on. I ollow h ny uch h σ( ) yield uncion v v i () () e d. V wih he propery

7 SYMMETRIZED CURVE-STRIGTENING 7.4 Sumniold o prmericlly ymmeric curve. The pce o ll geomeric curve wih + + iniil poin he origin i repreened y where denoe he poiive rel numer. + Given n elemen (,L), he correponding curve i given y i() γ () = L e d. Le Φ : e given y Φ ( )() = () ( ). Pu m = / nd le Ψ : e given y ψ( )() = () + ( ) ( m). Suppoe g i ixed complex numer nd, L > re ixed rel numer. Conider he ollowing ue: ro + i() Ω g = (, L) L e d g, ( ) = Φ =, ro i() Ω = L e d g, ( ) gl, = Φ =, rel + i() Ω = (, L) L e d g, ( m), ( ) g, = = Ψ =, nd rel i() Ω = L e d g, ( m), ( ) g,, L = = Ψ =. ll he inner produc ued in hi pper hve he propery h convergence in norm implie poin-wie convergence. Moreover, oh Φ nd Ψ re coninuou mp. Theorem : Suppoe he vecor pce i equipped wih norm uch h convergence in norm implie poin-wie convergence, nd i complee pce. Furhermore, ume h oh Φ nd Ψ re coninuou, hen he ollowing hold: ro rel + () Ωg nd Ω re cloed umniold o, nd g, ro rel () Ω nd Ω re cloed umniold o. gl, g,, L Proo: Since Φ nd Ψ re coninuou liner mp, he pce { () } cloed liner upce o. I lo ollow h { m } Φ = Φ = i, = ( ) =, Ψ ( ) = i cloed Ψ liner upce in nd =,, + i cloed liner umniold o Ψ Ψ. To del wih he ce o unconrined lengh ce () deine + φ : Φ Φ, nd φ : + y Noe h Ψ, Ψ, Ψ, i() φ (, L) = φ (, L) = L e d. Φ rel φ g, Ψ, ro Ω = () g nd Ω = () g. Recll h g φ Φ i() γ () = L e d o h γ () = g. The direcionl derivive in he direcion v = ( v v ) re given y, L

8 8 NDERS LINNÉR DφΦ(, L) v = DφΨ(, L) v = v e d + il v e d = g + i v () g v ()() γ d The ngen pce re given y T i() i() vl L L. Φ = nd T =,. ccording o he ndrd Φ Ψ, Ψ mniold heory ([] p. 97, he Sumerion Theorem) i i enough o how h he direcionl derivive i ono o prove h ro Ω = () g nd Ω rel = () g re cloed umniold. To g φ Φ φ g, Ψ, hi end, ume ir h g. I v i conn uncion o h v ( ) = R, hen + v T nd v T. For ny Φ Ψ v L TR = R he direcionl derivive i given y (, ) (, ) (, ) (, v Dφ ), ( L Φ L vl = Dφ L vl = + i) g. Ψ L Given ny c, chooe v = LRe ( c/ g) nd = Im ( c/ g). To inih uppoe h g =. The derivive impliy Ψ, L D φ (, L) v = D φ (, L) v = i v ()() γ d. Φ In he ce o Dφ Φ i uice o mimic he ep in he proo o Propoiion o how h he mp i ono, nd in he ce o D φ Ψ, ue Propoiion. The dierence in he ler ce i h he mp i ono one-dimenionl upce o, which only depend on. To inih he proo he me reoning i pplied in he ce (). Divide y L eore pplying he wo Propoiion.. SYMMETRIZING RIEMNNIN STRUCTURES +. Riemnnin rucure. The Riemnnin rucure deined on T( ) = h he ollowing orm ( v, vl),( w, wl) = v, w + v LwL. Following [4], le α, β (no oh zero) nd p [,] e given nd conider he ollowing hree dieren poiiliie or, vw, I = αv() w() + βv() w() + vwd ( ) ( ), vw, = vwd ( ) ( ) + vwd ( ) ( ), nd II vw, vpwp ( ) ( ) vwd ( ) ( ). III = +. The modiied ol qured curvure. Given rel numer ν, he generl curverighening uncionl J ν : + i given y. J ν (, L) = () d + νl L The grdien o J ν + i pir o he orm ( Fv ) T T =, where, L

9 SYMMETRIZED CURVE-STRIGTENING 9 vl = () d + ν L, nd () F( ) = d. L In [4] he generl ce wih F( x) = ( x, ( ), x ( )) d i developed. The quniie Ex( ) = x ( x, ( ), x ( )) x ( x, ( ), x ( )) d, nd W = (, x( ), x ( ) ) d x x re inroduced. Thi generl ce pecilize o he preen conex wih ( ) (), ( ), ( ) =. L In erm o he igned curvure k hi yield E = = / L = k, nd W =.. The unconrined ce nd he meric I. I i hown in [4] (nd in he ppendix) h ( ) ()( ) α + I Fx = Ex() d+ Wx β Ex() d αβ( ) + α + β. Thi pecilize o β α + ( ) IF () = ( () () ) ( () () ) L L αβ + α + β. Theorem 4. In meric I, I F preerve roion ymmerie i α =, nd relecion ymmerie i α = β. I ollow h oh ymmerie cnno e preerved imulneouly. Proo. Suppoe ( ) = ( ), hen β α( ) + ( ) IF ( ) = ( ( ) () ) ( () () ) L L αβ + α + β. I F( ) () = F( ) ( ), hen α( ) = α nd α =. Suppoe ( ) = ( ), hen () β α( ) + ( ) IF ( ) = ( ( ) () ) + L L αβ + α + β. I F( ) () = F( ) ( ), hen αβ + β = αβ + α + β. I ollow h α = β, nd hence oh ymmerie cnno e preerved ince hi implie α = β =. Remrk. ecue he meric I il o preerve oh ype o ymmerie i i excluded rom urher coniderion in hi pper.

10 NDERS LINNÉR.4 The unconrined ce nd he meric II nd III. To impliy he noion wrie h( ) = inh( ) nd ch( ) = coh( ). The generl ce o [4] re given y ch( ) ( )( ) IIFx = Ex( )ch( d ) + Wx Ex( )h( d ) h( ), nd Ex() d + Wx, p p ( )( ) IIIFx =. Ex() d + Wx ( p + ) p p They pecilize o ch( ) ()( ) IIF = k()ch( ) d k()h( ) d, nd h() ( ) III F () = ( () () p ). L Theorem. In meric II, II F preerve oh roion nd relecion ymmerie. Proo. ume h ( ) = ( ). I ollow h () = ( ) o h k ( ) = k ( ). Now ch() ( ) IIF () = k() ch( ) d k() h( ) d, nd h () ch( ) ( ) IIF ( ) = k( ) ch( ) d k( ) h( ) d h() ch( ) = kch () ( d ) kh () ( d ). h() I ollow h i he ollowing i n ideniy ch() ch( ) kch () ( d ) = kh () ( d ) h(), hen ( ) IIF ( ) IIF () = ( ) hold. Wih he help o hyperolic ideniie hi led o ch() k() ch() d h() k() h() d = ch() ch( ) h() k( ) ch( ) d ch() k( ) h( ) d. h() Collec erm nd ge h() ch( ) k() ch() d = ( h() h( ) ch() ch( ) + ch() ch( ) ) k( ) h( ) d. One more pplicion o hyperolic ideniy produce, h() k( ) ch( ) d = ( ch() ) k( ) h( ) d

11 SYMMETRIZED CURVE-STRIGTENING which conver o k () h () d = ch () k () h () d h () k () ch () d = k () h ( ) d. uiuion how h hi i indeed n ideniy when k ( ) = k( ) hold. The ce () = ( ) i imilr nd he proo i omied here or he ke o reviy. Theorem 6. In meric III, III F preerve oh roion ymmerie nd ymmerie o relecion i nd only i p = /. In meric III, III F lwy preerve roion ymmerie. Proo. Since ( ) III F () = ( () ( p )), L i ollow h ( ) = ( ) implie ( )() ( ) IIIF = IIIF ( ). I ( ) = ( ), hen (/ ) =, nd ( )() ( ) IIIF + IIIF ( ) = ( p)/ L. ence ( )() ( ) IIIF = IIIF ( ) or ll uch h ( ) = ( ) i nd only i p = /.. Funcionl in he conrined ce. In he unconrined ce nohing i umed ou he endpoin. Suppoe ined (, ) i given nd i() (, ) = γ() = γ() γ() = L e d. I i ueul o inroduce wo rel-vlued uncionl G, : G + given y G (, L) = L co ( ) d, G ( ), L = L in ( ) d. Thi ime (, ( ), ( ) ) = Lco ( ), (, ( ), ( ) ) = Lin ( ), nd ( ) = Lin, ( ) co = L, ( ) ( ) = =. I ollow h E () = L in () d y() =, W =, nd E () = L co () d = x(), W =..6 The meric II nd he uncionl in he conrined ce. Theorem 7. In meric II, II G preerve roionl ymmerie well ymmerie o relecion, nd IIG preerve roionl ymmerie. Proo. The wo ce re imilr o IIG i le o he reder. The componen i given y

12 NDERS LINNÉR ch() G ( )() () ( ) () ( ) = y ch d y h d + h () Suppoe ( ) = ( ) o h y( ) = L in ( ) d = L in ( ) d = y( ).. I ollow h G ( ) () G ( ) ( ) = ch() ch( ). ych ( ) ( d ) ch ( d ) yh ( ) ( d ) + h() uiuion nd ome lger how h. + yh () ( d ) = ch() yhd () () Fir collec he erm conining nd evlue he remining inegrl ch { () ch ( ) ( ( ) ( ))} { () h + ch ch = ch( ) h() h() }. The re o he erm impliy ollow ch() ch( ) ych () ( d ) + yhd () () = h() ch() ch() ch() + h() h() ch() y() ch() d h() y() h() d + y() h() d = h() ch() y() { h() ch() ch() h() } d + ch() y() h() d h() = ch() ( ch() ) y (){ h () h( ) } d ch () h() + = h() inl conolidion o he erm prove h G ( ) () ( )( ) = G. Nex, uppoe h ( ) = ( ) o h / in ( d ) = in ( udu ) = in ( d ), / / nd hence =. Conclude h. y( ) = L in ( ) d = L in ( ) d = y( ) = y( ) I ollow h G ( ) () + G ( ) ( ) = pir o uiuion yield ch() + ch( ) y() ch( ) d + y() ch( ) d y() h( ) d h()

13 SYMMETRIZED CURVE-STRIGTENING ch() + ch( ) G ( ) () + G ( ) ( ) = ych () ( d ) yhd () () h() Sndrd hyperolic ideniie nd uiuion how h G ( ) () ( )( ) + G =. ch() + ch() ch() h() h() ch() y() ch() d h() y() h() d y() h() d = h() ch() ch() y (){ h() ch () ch() h ()} d yh () ( d ) h() = h() G () ( ) G I ollow h ( ) = ( )..7 The meric II nd ymmerized curve-righening. The uncionl J ν i deined on ll curve wih iniil poin he origin. The grdien vecor ield J ν i ecion o he ngen undle o he pce o ll curve. There i projecion o hi grdien vecor ield ono he vriou ngen undle ocied wih endpoin conrin nd poile lengh conrin. The low induced y he projeced vecor ield i reerred o curve-righening low. i hown in [4], he projeced vecor ield in he ngen undle o conrined curve i no in generl ngen o he pce o ymmeric curve. Moreover, he pce o ymmeric curve hve norml undle wih ininie dimenionl ier nd correponding non-rivil projecion ono he ngen undle o ymmeric curve. Thee diiculie re circumvened y he ollowing reul. Theorem 8. The curve-righening low in meric II preerve oh roion ymmerie nd ymmerie o relecion. ν + Proo. Wrie J = ( F, v L ) T T =. Denoe he projecion o F ono he pce o curve wih conrined endpoin y π F. There re wo rel clr ield λ nd λ uch h F π = F + λ G + λ G. The ngency condiion re given y DG ( π F ) = nd DG ( ) π F =. Since ll he vecor ield eore he projecion preerve roionl ymmerie, roionl ymmerie re lo preerved er he projecion. In he ce o ymmerie o relecion hing re more compliced. The roule i creed y he ilure o G o preerve ymmerie o relecion. Conider he ollowing liner yem DG ( ) G ( ) DG ( ) G ( ) ( ) ( ) λ DG F DG ( ) ( ) ( ) ( ) ( ) ( ) G DG G λ =. DG F I ollow h λ ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = DG G DG F DG G DG F )/de. Since ( ) = ( ) i ollow h ch() F( )() = k() ch( ) d k() h( ) d. h () Recll h = o h

14 4 NDERS LINNÉR ch() G ( )() () ( ) () ( ) = y ch d y h d. h () lo noe h hving = elimine he erm in DG correponding o vriion o he lengh. Now DG ( ) ( ) F = co ( ) ( ) d where ch() () = kch () ( d ) kh () ( d ). h () Suiuion nd hyperolic ideniie yield ch() + ch( ) () + ( ) = kch () ( d ) kh () ( d ) h() ch() + ch() ch() h() h() = ch() k() ch() d h() k() h() d k() h( ) d h(). = ch() k() ch() d ch() ch() ch() h() k() ch() d ch() k( hd ) ( ) + () h ch() ch() = khd () () kh () ( d ) = h() I ollow h DG ( ) ( ) F = co ( ) ( ) d =. Uing he me exc reoning i ollow h DG ( ) ( ) G = co ( ) ( ) g d =, where ch() g () = ych () ( d ) yh () ( d ), h () nd y ( ) h he me ymmery properie k ( ). Wih hee wo reul i ollow h λ =..8 The meric III nd he uncionl in he conrined ce. Theorem 9. I p = / in he meric III, hen IIIG preerve roionl ymmerie well ymmerie o relecion nd III G preerve roionl ymmerie u no ymmerie o relecion. Proo. The componen re given y

15 SYMMETRIZED CURVE-STRIGTENING yd () / / G ( )() =, yd () ( + /) / / xd () + / / G ( ) () =. xd () + ( + /) / / Suppoe ( ) = ( ) o h y( ) = L in ( ) d = L in ( ) d = y( ) I ollow h nd, x( ) = L co ( ) d = L co ( ) d = x( ), y() d = y( u) du = ( / ) + y() d, nd / / / x() d = x( u) du = ( / ) + x() d. / / / yd () ( + /) / / G ( )( ) =, yd ( ) ( /) ( / ) / / xd () + ( + /) / / G ( ) ( ) =. xd ( ) + ( /) + ( / ) / / One more impliicion prove h G ( ) () ( )( ) = G nd G ( )() ( ) = G ( ). Nex, uppoe h ( ) = ( ). in he proo o Theorem 7 conclude h = nd h y( ) = y( ). Wih y() d = y( u) du = ( / ) y() d = y() d / / / / G () ( ) = G. Similrly ( ) / G ( ) ( ) i ollow h ( ) ( ) xd () + / + / =, xd ( ) + ( /) + ( / ) / / nd hence G ( ) () = G ( ) ( ).

16 6 NDERS LINNÉR.9 The meric III nd ymmerized curve-righening. The reoning i in hi ce imilr o he ce o he meric II. Theorem. The curve-righening low wih p = / in meric III preerve oh roion ymmerie nd ymmerie o relecion. Proo. Ue he me noion in he proo o Theorem 8. Since ll he vecor ield eore he projecion preerve roionl ymmerie, roionl ymmerie re lo preerved er he projecion. In he ce o ymmerie o relecion hing re more compliced. The roule i gin creed y he ilure o G o preerve ymmerie o relecion. Recll h = nd λ ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = DG G DG F DG G DG F )/de. Since ( ) = ( ) implie (/ ) = i mu e h F( )() = ()/ L. I i lo rue h G ( )() = y() d. / Now DG ( ) ( ) F = ()co () d = ecue / ()co () d = ()co () d. / I i lo rue h DG ( ) ( ) G co ( ) ( ) L y d = d = / ecue uiuion how h / L co ( ) y( ) d d L co ( ) y( ) d = d. / / / Wih hee wo reul i ollow h λ =.. Exmple. In ll exmple he lengh i unconrined nd ν = o here i no lengh penly. The igure depic lowime evoluion y providing npho long he negive grdien rjecory. The imeinervl eween conecuive curve i no conn or even monoone. In ll ce he iniil curve h very high elic energy. Thi produce rpid chnge long he low. To cpure hi iny inervl i ued he r o he low. In Figure nd 6 he imeinervl i lo horened coniderly ler he curve gin exhii igniicn chnge. In he ir hree igure he iniil curve coni o righ egmen ollowed y clockwie circle nd inihing righ egmen. The Figure illure how he rdiionl curve righening low rek ymmerie. Thi igure milirize he reder wih hreedimenionl repreenion o he evoluion in ime. In Figure meric III i ued wih p =, in

17 SYMMETRIZED CURVE-STRIGTENING 7 Figure meric III i ued wih p = /, nd in Figure meric II i ued. In oh o he l wo ce he ymmery i preerved. Figure 4 ue dieren iniil curve o illure more clerly he geomeric dierence eween meric III wih p = / nd meric II. The iniil curve i in oh ce he me iny pirl wih no ymmerie. Figure illure pinning in he rdiionl curve righening low. The iniil curve i given y hree loop o circulr igure eigh. oh meric II nd meric III wih p = / void pinning. The low in meric III i hown in Figure 6. ll he exmple conidered converge o one loop o he Euler igure eigh. curren opic o inveigion i o deermine excly which o he criicl poin ininiy re limi o negive grdien rjecorie. The doule covered igure eigh h emerged igniicn e ce ince i expoe lck o longerm iliy in curren numericl implemenion. 4. PPENDIX promied, hi ppendix upplie he proo o he generl grdien ormul derived in [4]. Given ny coninuouly dierenile uncionl F : R, he direcionl derivive DF( x) : R nd he grdien Fx ( ) iy Fx ( ), v = DFxv ( ). ere, i he inner produc in. Theorem. Le : R R e coninuouly dierenile. Denoe he pril derivive wih repec o he econd nd hird rgumen y x, nd x. Conider only uncion x ( x, (), x () ), ( x, (), x () ), ( x, (), x ()) L [, ]. Pu x x Ex( ) = x ( x, ( ), x ( )) x ( x, ( ), x ( )) d, nd Wx = x (, x( ), x ( ) ) d. The ollowing i rue or Fx ( ) = ( x, ( ), x ( )) d (I) The grdien wih repec o wv, I = αwv ()() + βwv ()() + wvd ()() i given y α( ) + IFx ( ) = Ex( d ) + Wx β Ex( d ) αβ( ) α β + + (II) The grdien wih repec o i given y. wv, = wvd ()() + wvd ()() II uch h

18 8 NDERS LINNÉR ch( ) IIFx ( ) = Ex( )ch( d ) + Wx Ex( )h( d ) h( ) (III) The grdien wih repec o i given y. wv, wpvp ( )( ) wvd ()() III = + Ex() d + Wx, p p IIIFx ( ) =. Ex() d + Wx ( p + ) p p Proo. I uice o veriy he relion Fx ( ), v = DFxv ( ) in he hree ce. Fir, ndrd compuion uing inegrion y pr how h DFxv ( ) = ( ( x, ( ), x ( )) v ( ) + ( x, ( ), x ( )) v ( )) d= v ( ) ( x, ( ), x ( )) d+ x x x x ( x, ( ), x ( )) x ( x, ( ), x ( )) d vd ( ) = Wx v ( ) + Ex( vd ) ( ). I he meric i, I, hen α I Fx ( ), v = Wx β Ex( d ) v ( ) + I αβ( ) + α + β α( ) + β Ex( ) d Wx β Ex( ) d + v( ) + αβ( ) + α + β α Ex() Wx β Ex() d + v() d. αβ( ) + α + β The l inegrl impliie o α Ex()() v d Wx β Ex() d + ( v() v( ) ). αβ( ) + α + β The erm wih he cor v ( ) dipper. Collec he erm wih he cor v ( ) nd rerrnge o ee h v ( ) i muliplied y I ollow h αβ ( ) + β αβ β Ex () d + αβ( ) + α + β αβ( ) + α + β αβ( ) β α + + Wx = Wx. αβ( ) + α + β αβ( ) + α + β IFx ( ), v = Wv x ( ) + Ex( vd ) ( ) = DFxv ( ) I. When he meric i, II, he ir min erm o he econd inegrl i rewrien wih he help o

19 SYMMETRIZED CURVE-STRIGTENING 9 Leiniz rule ch( ) IIF( x), v = Ex( )ch( ) d Wx Ex( )h( ) d v( ) d II + + h( ) Ex( ) Ex( )h( ) d h( ) + + Wx Ex( )h( ) d vd (). h( ) Inegre he econd min erm o he econd inegrl y pr h( ) Wx Ex()h( ) d dv() = h( ) ch( ) Wx Ex()h( ) d v() Wx Ex()h( ) d v() d. h( ) lo inegre he ir min erm o he ir inegrl y pr gin uing Leiniz rule Ex()ch( ) d v() d = v() d Ex()h( ) d = v( ) Ex( )h( ) d Ex( )h( ) d v( ) d Once oh o hee compuion re comined, i ollow h Finlly, IIFx ( ), v = Wx v ( ) + Ex( vd ) ( ) = DFxv ( ) II. ( ) F(), x v = W v( p) + E ()() v d + E () + W v () d III III = W v() + E ()() v d p x x x x p x x

20 NDERS LINNÉR REFERENCES [] Linnér,., Some properie o he curve righening low in he plne, Trn. mer. Mh. Soc. 4 (989), 6-67 [] Linnér,., Seepe decen ued ool o ind criicl poin o k deined on curve in he plne wih rirry oundry condiion, Geomeric nlyi nd Compuer Grphic, MSRI Pulicion, Vol. 7, Springer-Verlg, 99, 7-8 [] Linnér,., Curve-righening nd he Pli-Smle condiion, Trn. mer. Mh. Soc. (998), [4] Linnér,., Grdien, preerred meric nd ymmerie, Preprin () [] rhm R., Mrden J. E. nd Riu T., Mniold, Tenor nlyi, nd pplicion, nd Ed. 988 Springer-Verlg

21 Symmerized.n Figure. Unconrined lengh uing no lengh penly in Meric III wih p

22 Symmerized.n Figure. Unconrined lengh uing no lengh penly in Meric III wih p

23 Symmerized.n Figure. Unconrined lengh uing no lengh penly in Meric II Figure 4. Compre meric III wih p nd meric II

24 Symmerized.n

25 Symmerized.n Figure. Meric III wih p illuring pinning

26 Symmerized.n 6 Figure 6. Meric III wih p illuring removl o pinning

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors Trnformion Ordered e of number:,,,4 Emple:,,z coordine of p in pce. Vecor If, n i i, K, n, i uni ecor Vecor ddiion +w, +, +, + V+w w Sclr roduc,, Inner do roduc α w. w +,.,. The inner produc i SCLR!. w,.,

More information

( ) ( ) ( ) ( ) ( ) ( y )

( ) ( ) ( ) ( ) ( ) ( y ) 8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

Solutions to Problems from Chapter 2

Solutions to Problems from Chapter 2 Soluions o Problems rom Chper Problem. The signls u() :5sgn(), u () :5sgn(), nd u h () :5sgn() re ploed respecively in Figures.,b,c. Noe h u h () :5sgn() :5; 8 including, bu u () :5sgn() is undeined..5

More information

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V ME 352 VETS 2. VETS Vecor algebra form he mahemaical foundaion for kinemaic and dnamic. Geomer of moion i a he hear of boh he kinemaic and dnamic of mechanical em. Vecor anali i he imehonored ool for decribing

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

3. Renewal Limit Theorems

3. Renewal Limit Theorems Virul Lborories > 14. Renewl Processes > 1 2 3 3. Renewl Limi Theorems In he inroducion o renewl processes, we noed h he rrivl ime process nd he couning process re inverses, in sens The rrivl ime process

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) QUESTION BANK 6 SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddhrh Ngr, Nrynvnm Rod 5758 QUESTION BANK (DESCRIPTIVE) Subjec wih Code :Engineering Mhemic-I (6HS6) Coure & Brnch: B.Tech Com o ll Yer & Sem:

More information

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION Avilble online hp://scik.org Eng. Mh. Le. 15, 15:4 ISSN: 49-9337 CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION PANDEY, C. P. 1, RAKESH MOHAN AND BHAIRAW NATH TRIPATHI 3 1 Deprmen o Mhemics, Ajy

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

1.0 Electrical Systems

1.0 Electrical Systems . Elecricl Sysems The ypes of dynmicl sysems we will e sudying cn e modeled in erms of lgeric equions, differenil equions, or inegrl equions. We will egin y looking fmilir mhemicl models of idel resisors,

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Sph3u Practice Unit Test: Kinematics (Solutions) LoRusso

Sph3u Practice Unit Test: Kinematics (Solutions) LoRusso Sph3u Prcice Uni Te: Kinemic (Soluion) LoRuo Nme: Tuey, Ocober 3, 07 Ku: /45 pp: /0 T&I: / Com: Thi i copy of uni e from 008. Thi will be imilr o he uni e you will be wriing nex Mony. you cn ee here re

More information

September 20 Homework Solutions

September 20 Homework Solutions College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Applications of Prüfer Transformations in the Theory of Ordinary Differential Equations

Applications of Prüfer Transformations in the Theory of Ordinary Differential Equations Irih Mh. Soc. Bullein 63 (2009), 11 31 11 Applicion of Prüfer Trnformion in he Theory of Ordinry Differenil Equion GEORGE CHAILOS Abrc. Thi ricle i review ricle on he ue of Prüfer Trnformion echnique in

More information

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445 CS 445 Flow Nework lon Efr Slide corey of Chrle Leieron wih mll chnge by Crol Wenk Flow nework Definiion. flow nework i direced grph G = (V, E) wih wo diingihed erice: orce nd ink. Ech edge (, ) E h nonnegie

More information

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review Secion P Noe Pge Secion P Preclculu nd Trigonomer Review ALGEBRA AND PRECALCULUS Eponen Lw: Emple: 8 Emple: Emple: Emple: b b Emple: 9 EXAMPLE: Simplif: nd wrie wi poiive eponen Fir I will flip e frcion

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

PARABOLA. moves such that PM. = e (constant > 0) (eccentricity) then locus of P is called a conic. or conic section.

PARABOLA. moves such that PM. = e (constant > 0) (eccentricity) then locus of P is called a conic. or conic section. wwwskshieducioncom PARABOLA Le S be given fixed poin (focus) nd le l be given fixed line (Direcrix) Le SP nd PM be he disnce of vrible poin P o he focus nd direcrix respecively nd P SP moves such h PM

More information

5.2 GRAPHICAL VELOCITY ANALYSIS Polygon Method

5.2 GRAPHICAL VELOCITY ANALYSIS Polygon Method ME 352 GRHICL VELCITY NLYSIS 52 GRHICL VELCITY NLYSIS olygon Mehod Velociy analyi form he hear of kinemaic and dynamic of mechanical yem Velociy analyi i uually performed following a poiion analyi; ie,

More information

can be viewed as a generalized product, and one for which the product of f and g. That is, does

can be viewed as a generalized product, and one for which the product of f and g. That is, does Boyce/DiPrim 9 h e, Ch 6.6: The Convoluion Inegrl Elemenry Differenil Equion n Bounry Vlue Problem, 9 h eiion, by Willim E. Boyce n Richr C. DiPrim, 9 by John Wiley & Son, Inc. Someime i i poible o wrie

More information

MTH 146 Class 11 Notes

MTH 146 Class 11 Notes 8.- Are of Surfce of Revoluion MTH 6 Clss Noes Suppose we wish o revolve curve C round n is nd find he surfce re of he resuling solid. Suppose f( ) is nonnegive funcion wih coninuous firs derivive on he

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM Elecronic Journl of Differenil Equions, Vol. 208 (208), No. 50, pp. 6. ISSN: 072-669. URL: hp://ejde.mh.xse.edu or hp://ejde.mh.un.edu EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v - vo = Δv Δ ccelerion = = v - vo chnge of velociy elpsed ime Accelerion is vecor, lhough in one-dimensionl

More information

CHAPTER 7: SECOND-ORDER CIRCUITS

CHAPTER 7: SECOND-ORDER CIRCUITS EEE5: CI RCUI T THEORY CHAPTER 7: SECOND-ORDER CIRCUITS 7. Inroducion Thi chaper conider circui wih wo orage elemen. Known a econd-order circui becaue heir repone are decribed by differenial equaion ha

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

CSC 373: Algorithm Design and Analysis Lecture 9

CSC 373: Algorithm Design and Analysis Lecture 9 CSC 373: Algorihm Deign n Anlyi Leure 9 Alln Boroin Jnury 28, 2013 1 / 16 Leure 9: Announemen n Ouline Announemen Prolem e 1 ue hi Friy. Term Te 1 will e hel nex Mony, Fe in he uoril. Two nnounemen o follow

More information

f t f a f x dx By Lin McMullin f x dx= f b f a. 2

f t f a f x dx By Lin McMullin f x dx= f b f a. 2 Accumulion: Thoughs On () By Lin McMullin f f f d = + The gols of he AP* Clculus progrm include he semen, Sudens should undersnd he definie inegrl s he ne ccumulion of chnge. 1 The Topicl Ouline includes

More information

Math Week 12 continue ; also cover parts of , EP 7.6 Mon Nov 14

Math Week 12 continue ; also cover parts of , EP 7.6 Mon Nov 14 Mh 225-4 Week 2 coninue.-.3; lo cover pr of.4-.5, EP 7.6 Mon Nov 4.-.3 Lplce rnform, nd pplicion o DE IVP, epecilly hoe in Chper 5. Tody we'll coninue (from l Wednedy) o fill in he Lplce rnform ble (on

More information

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x)

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x) Properies of Logrihms Solving Eponenil nd Logrihmic Equions Properies of Logrihms Produc Rule ( ) log mn = log m + log n ( ) log = log + log Properies of Logrihms Quoien Rule log m = logm logn n log7 =

More information

FM Applications of Integration 1.Centroid of Area

FM Applications of Integration 1.Centroid of Area FM Applicions of Inegrion.Cenroid of Are The cenroid of ody is is geomeric cenre. For n ojec mde of uniform meril, he cenroid coincides wih he poin which he ody cn e suppored in perfecly lnced se ie, is

More information

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR j IAN KNOWLES 1. Inroducion Consider he forml differenil operor T defined by el, (1) where he funcion q{) is rel-vlued nd loclly

More information

GRADIENTS, PREFERRED METRICS AND ASYMMETRIES

GRADIENTS, PREFERRED METRICS AND ASYMMETRIES GRADENTS, PREFERRED METRCS AND ASYMMETRES ANDERS LNNÉR ABSTRACT Assume he curves low ccording o / = Φ ( ) Evoluions h only use locl d, such s curve shorening, yield ril dierenil equions n he resen er glol

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

GEOMETRIC EFFECTS CONTRIBUTING TO ANTICIPATION OF THE BEVEL EDGE IN SPREADING RESISTANCE PROFILING

GEOMETRIC EFFECTS CONTRIBUTING TO ANTICIPATION OF THE BEVEL EDGE IN SPREADING RESISTANCE PROFILING GEOMETRIC EFFECTS CONTRIBUTING TO ANTICIPATION OF THE BEVEL EDGE IN SPREADING RESISTANCE PROFILING D H Dickey nd R M Brennn Solecon Lbororie, Inc Reno, Nevd 89521 When preding reince probing re mde prior

More information

Solutions to assignment 3

Solutions to assignment 3 D Sruure n Algorihm FR 6. Informik Sner, Telikeplli WS 03/04 hp://www.mpi-.mpg.e/~ner/oure/lg03/inex.hml Soluion o ignmen 3 Exerie Arirge i he ue of irepnie in urreny exhnge re o rnform one uni of urreny

More information

3D Transformations. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 1/26/07 1

3D Transformations. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 1/26/07 1 D Trnsformions Compuer Grphics COMP 770 (6) Spring 007 Insrucor: Brndon Lloyd /6/07 Geomery Geomeric eniies, such s poins in spce, exis wihou numers. Coordines re nming scheme. The sme poin cn e descried

More information

2/5/2012 9:01 AM. Chapter 11. Kinematics of Particles. Dr. Mohammad Abuhaiba, P.E.

2/5/2012 9:01 AM. Chapter 11. Kinematics of Particles. Dr. Mohammad Abuhaiba, P.E. /5/1 9:1 AM Chper 11 Kinemic of Pricle 1 /5/1 9:1 AM Inroducion Mechnic Mechnic i Th cience which decribe nd predic he condiion of re or moion of bodie under he cion of force I i diided ino hree pr 1.

More information

Optimality of Myopic Policy for a Class of Monotone Affine Restless Multi-Armed Bandit

Optimality of Myopic Policy for a Class of Monotone Affine Restless Multi-Armed Bandit Univeriy of Souhern Cliforni Opimliy of Myopic Policy for Cl of Monoone Affine Rele Muli-Armed Bndi Pri Mnourifrd USC Tr Jvidi UCSD Bhkr Krihnmchri USC Dec 0, 202 Univeriy of Souhern Cliforni Inroducion

More information

Honours Introductory Maths Course 2011 Integration, Differential and Difference Equations

Honours Introductory Maths Course 2011 Integration, Differential and Difference Equations Honours Inroducory Mhs Course 0 Inegrion, Differenil nd Difference Equions Reding: Ching Chper 4 Noe: These noes do no fully cover he meril in Ching, u re men o supplemen your reding in Ching. Thus fr

More information

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008)

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008) MATH 14 AND 15 FINAL EXAM REVIEW PACKET (Revised spring 8) The following quesions cn be used s review for Mh 14/ 15 These quesions re no cul smples of quesions h will pper on he finl em, bu hey will provide

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 10, No. 2, 2017, 335-347 ISSN 1307-5543 www.ejpm.com Published by New York Business Globl Convergence of Singulr Inegrl Operors in Weighed Lebesgue

More information

Theory of! Partial Differential Equations-I!

Theory of! Partial Differential Equations-I! hp://users.wpi.edu/~grear/me61.hml! Ouline! Theory o! Parial Dierenial Equaions-I! Gréar Tryggvason! Spring 010! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

Theory of! Partial Differential Equations!

Theory of! Partial Differential Equations! hp://www.nd.edu/~gryggva/cfd-course/! Ouline! Theory o! Parial Dierenial Equaions! Gréar Tryggvason! Spring 011! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals Sud. Univ. Beş-Bolyi Mh. 6(5, No. 3, 355 366 Hermie-Hdmrd-Fejér ype inequliies for convex funcions vi frcionl inegrls İmd İşcn Asrc. In his pper, firsly we hve eslished Hermie Hdmrd-Fejér inequliy for

More information

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017 Uer ID (NOT he 9 igi numer): gurell4 CS351 Deign & Anlyi of Algorihm Fll 17 Seion A Te 3 Soluion Inruor: Rihr Peng In l, Weney, Nov 15, 17 Do no open hi quiz ookle unil you re iree o o o. Re ll he inruion

More information

Lecture #6: Continuous-Time Signals

Lecture #6: Continuous-Time Signals EEL5: Discree-Time Signals and Sysems Lecure #6: Coninuous-Time Signals Lecure #6: Coninuous-Time Signals. Inroducion In his lecure, we discussed he ollowing opics:. Mahemaical represenaion and ransormaions

More information

Weighted Inequalities for Riemann-Stieltjes Integrals

Weighted Inequalities for Riemann-Stieltjes Integrals Aville hp://pvm.e/m Appl. Appl. Mh. ISSN: 93-9466 ol. Ie Decemer 06 pp. 856-874 Applicion n Applie Mhemic: An Inernionl Jornl AAM Weighe Ineqliie or Riemnn-Sielje Inegrl Hüeyin Bk n Mehme Zeki Sriky Deprmen

More information

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER John Riley 6 December 200 NWER TO ODD NUMBERED EXERCIE IN CHPTER 7 ecion 7 Exercie 7-: m m uppoe ˆ, m=,, M (a For M = 2, i i eay o how ha I implie I From I, for any probabiliy vecor ( p, p 2, 2 2 ˆ ( p,

More information

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,

More information

Some basic notation and terminology. Deterministic Finite Automata. COMP218: Decision, Computation and Language Note 1

Some basic notation and terminology. Deterministic Finite Automata. COMP218: Decision, Computation and Language Note 1 COMP28: Decision, Compuion nd Lnguge Noe These noes re inended minly s supplemen o he lecures nd exooks; hey will e useful for reminders ou noion nd erminology. Some sic noion nd erminology An lphe is

More information

Chapter Introduction. 2. Linear Combinations [4.1]

Chapter Introduction. 2. Linear Combinations [4.1] Chper 4 Inrouion Thi hper i ou generlizing he onep you lerne in hper o pe oher n hn R Mny opi in hi hper re heoreil n MATLAB will no e le o help you ou You will ee where MATLAB i ueful in hper 4 n how

More information

CHAPTER 11 PARAMETRIC EQUATIONS AND POLAR COORDINATES

CHAPTER 11 PARAMETRIC EQUATIONS AND POLAR COORDINATES CHAPTER PARAMETRIC EQUATIONS AND POLAR COORDINATES. PARAMETRIZATIONS OF PLANE CURVES., 9, _ _ Ê.,, Ê or, Ÿ. 5, 7, _ _.,, Ÿ Ÿ Ê Ê 5 Ê ( 5) Ê ˆ Ê 6 Ê ( 5) 7 Ê Ê, Ÿ Ÿ $ 5. cos, sin, Ÿ Ÿ 6. cos ( ), sin (

More information

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix.

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix. Mh 7 Exm - Prcice Prolem Solions. Find sis for he row spce of ech of he following mrices. Yor sis shold consis of rows of he originl mrix. 4 () 7 7 8 () Since we wn sis for he row spce consising of rows

More information

when t = 2 s. Sketch the path for the first 2 seconds of motion and show the velocity and acceleration vectors for t = 2 s.(2/63)

when t = 2 s. Sketch the path for the first 2 seconds of motion and show the velocity and acceleration vectors for t = 2 s.(2/63) . The -coordine of pricle in curiliner oion i gien b where i in eer nd i in econd. The -coponen of ccelerion in eer per econd ured i gien b =. If he pricle h -coponen = nd when = find he gniude of he eloci

More information

Math 221: Mathematical Notation

Math 221: Mathematical Notation Mah 221: Mahemaical Noaion Purpose: One goal in any course is o properly use he language o ha subjec. These noaions summarize some o he major conceps and more diicul opics o he uni. Typing hem helps you

More information

5. Network flow. Network flow. Maximum flow problem. Ford-Fulkerson algorithm. Min-cost flow. Network flow 5-1

5. Network flow. Network flow. Maximum flow problem. Ford-Fulkerson algorithm. Min-cost flow. Network flow 5-1 Nework flow -. Nework flow Nework flow Mximum flow prolem Ford-Fulkeron lgorihm Min-co flow Nework flow Nework N i e of direced grph G = (V ; E) ource 2 V which h only ougoing edge ink (or deinion) 2 V

More information

Physics 2A HW #3 Solutions

Physics 2A HW #3 Solutions Chper 3 Focus on Conceps: 3, 4, 6, 9 Problems: 9, 9, 3, 41, 66, 7, 75, 77 Phsics A HW #3 Soluions Focus On Conceps 3-3 (c) The ccelerion due o grvi is he sme for boh blls, despie he fc h he hve differen

More information

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it CSC 36S Noe Univeriy of Torono, Spring, 2003 Flow Algorihm The nework we will conider are direced graph, where each edge ha aociaed wih i a nonnegaive capaciy. The inuiion i ha if edge (u; v) ha capaciy

More information

A Kalman filtering simulation

A Kalman filtering simulation A Klmn filering simulion The performnce of Klmn filering hs been esed on he bsis of wo differen dynmicl models, ssuming eiher moion wih consn elociy or wih consn ccelerion. The former is epeced o beer

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains Green s Funcions nd Comprison Theorems for Differenil Equions on Mesure Chins Lynn Erbe nd Alln Peerson Deprmen of Mhemics nd Sisics, Universiy of Nebrsk-Lincoln Lincoln,NE 68588-0323 lerbe@@mh.unl.edu

More information

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment Mgneosics Br Mgne As fr bck s 4500 yers go, he Chinese discovered h cerin ypes of iron ore could rc ech oher nd cerin mels. Iron filings "mp" of br mgne s field Crefully suspended slivers of his mel were

More information

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh.

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh. How o Prove he Riemnn Hohesis Auhor: Fez Fok Al Adeh. Presiden of he Srin Cosmologicl Socie P.O.Bo,387,Dmscus,Sri Tels:963--77679,735 Emil:hf@scs-ne.org Commens: 3 ges Subj-Clss: Funcionl nlsis, comle

More information

EE Control Systems LECTURE 2

EE Control Systems LECTURE 2 Copyrigh F.L. Lewi 999 All righ reerved EE 434 - Conrol Syem LECTURE REVIEW OF LAPLACE TRANSFORM LAPLACE TRANSFORM The Laplace ranform i very ueful in analyi and deign for yem ha are linear and ime-invarian

More information

Hermite-Hadamard and Simpson Type Inequalities for Differentiable Quasi-Geometrically Convex Functions

Hermite-Hadamard and Simpson Type Inequalities for Differentiable Quasi-Geometrically Convex Functions Trkish Jornl o Anlysis nd Nmer Theory, 4, Vol, No, 4-46 Aville online h://ssciecom/jn/// Science nd Edcion Plishing DOI:69/jn--- Hermie-Hdmrd nd Simson Tye Ineliies or Dierenile Qsi-Geomericlly Convex

More information

Price Discrimination

Price Discrimination My 0 Price Dicriminion. Direc rice dicriminion. Direc Price Dicriminion uing wo r ricing 3. Indirec Price Dicriminion wih wo r ricing 4. Oiml indirec rice dicriminion 5. Key Inigh ge . Direc Price Dicriminion

More information

The Hermite-Hadamard's inequality for some convex functions via fractional integrals and related results

The Hermite-Hadamard's inequality for some convex functions via fractional integrals and related results AMSI 4 No 69 The Herie-Hdrd' ineliy or oe conve ncion vi rcionl inegrl nd reled rel E SET M Z SARIKAYA M E ÖZDEMIR AND H YILDIRIM Arc In hi pper we elih Herie-Hdrd ype ineliie or conve ncion in he econd

More information

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives In J Nonliner Anl Appl 9 8 No, 69-8 ISSN: 8-68 elecronic hp://dxdoiorg/75/ijn8745 On Hdmrd nd Fejér-Hdmrd inequliies for Cpuo -frcionl derivives Ghulm Frid, Anum Jved Deprmen of Mhemics, COMSATS Universiy

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

LAPLACE TRANSFORM OVERCOMING PRINCIPLE DRAWBACKS IN APPLICATION OF THE VARIATIONAL ITERATION METHOD TO FRACTIONAL HEAT EQUATIONS

LAPLACE TRANSFORM OVERCOMING PRINCIPLE DRAWBACKS IN APPLICATION OF THE VARIATIONAL ITERATION METHOD TO FRACTIONAL HEAT EQUATIONS Wu, G.-.: Lplce Trnsform Overcoming Principle Drwbcks in Applicion... THERMAL SIENE: Yer 22, Vol. 6, No. 4, pp. 257-26 257 Open forum LAPLAE TRANSFORM OVEROMING PRINIPLE DRAWBAKS IN APPLIATION OF THE VARIATIONAL

More information

Exponential Decay for Nonlinear Damped Equation of Suspended String

Exponential Decay for Nonlinear Damped Equation of Suspended String 9 Inernionl Symoium on Comuing, Communicion, nd Conrol (ISCCC 9) Proc of CSIT vol () () IACSIT Pre, Singore Eonenil Decy for Nonliner Dmed Equion of Suended Sring Jiong Kemuwn Dermen of Mhemic, Fculy of

More information

Main Reference: Sections in CLRS.

Main Reference: Sections in CLRS. Maximum Flow Reied 09/09/200 Main Reference: Secion 26.-26. in CLRS. Inroducion Definiion Muli-Source Muli-Sink The Ford-Fulkeron Mehod Reidual Nework Augmening Pah The Max-Flow Min-Cu Theorem The Edmond-Karp

More information

Some New Dynamic Inequalities for First Order Linear Dynamic Equations on Time Scales

Some New Dynamic Inequalities for First Order Linear Dynamic Equations on Time Scales Applied Memicl Science, Vol. 1, 2007, no. 2, 69-76 Some New Dynmic Inequliie for Fir Order Liner Dynmic Equion on Time Scle B. İ. Yşr, A. Tun, M. T. Djerdi nd S. Küükçü Deprmen of Memic, Fculy of Science

More information

MAT 266 Calculus for Engineers II Notes on Chapter 6 Professor: John Quigg Semester: spring 2017

MAT 266 Calculus for Engineers II Notes on Chapter 6 Professor: John Quigg Semester: spring 2017 MAT 66 Clculus for Engineers II Noes on Chper 6 Professor: John Quigg Semeser: spring 7 Secion 6.: Inegrion by prs The Produc Rule is d d f()g() = f()g () + f ()g() Tking indefinie inegrls gives [f()g

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX.

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. MEHMET ZEKI SARIKAYA?, ERHAN. SET, AND M. EMIN OZDEMIR Asrc. In his noe, we oin new some ineuliies

More information

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

PHYSICS 1210 Exam 1 University of Wyoming 14 February points PHYSICS 1210 Em 1 Uniersiy of Wyoming 14 Februry 2013 150 poins This es is open-noe nd closed-book. Clculors re permied bu compuers re no. No collborion, consulion, or communicion wih oher people (oher

More information

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems Sample Final Exam Covering Chaper 9 (final04) Sample Final Exam (final03) Covering Chaper 9 of Fundamenal of Signal & Syem Problem (0 mar) Conider he caual opamp circui iniially a re depiced below. I LI

More information

ON THE STABILITY OF DELAY POPULATION DYNAMICS RELATED WITH ALLEE EFFECTS. O. A. Gumus and H. Kose

ON THE STABILITY OF DELAY POPULATION DYNAMICS RELATED WITH ALLEE EFFECTS. O. A. Gumus and H. Kose Mhemicl nd Compuionl Applicions Vol. 7 o. pp. 56-67 O THE STABILITY O DELAY POPULATIO DYAMICS RELATED WITH ALLEE EECTS O. A. Gumus nd H. Kose Deprmen o Mhemics Selcu Universiy 47 Kony Turey ozlem@selcu.edu.r

More information

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples.

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples. Improper Inegrls To his poin we hve only considered inegrls f(x) wih he is of inegrion nd b finie nd he inegrnd f(x) bounded (nd in fc coninuous excep possibly for finiely mny jump disconinuiies) An inegrl

More information

PART V. Wavelets & Multiresolution Analysis

PART V. Wavelets & Multiresolution Analysis Wveles 65 PART V Wveles & Muliresoluion Anlysis ADDITIONAL REFERENCES: A. Cohen, Numericl Anlysis o Wvele Mehods, Norh-Hollnd, (003) S. Mll, A Wvele Tour o Signl Processing, Acdemic Press, (999) I. Dubechies,

More information

Solutions for Nonlinear Partial Differential Equations By Tan-Cot Method

Solutions for Nonlinear Partial Differential Equations By Tan-Cot Method IOSR Journl of Mhemics (IOSR-JM) e-issn: 78-578. Volume 5, Issue 3 (Jn. - Feb. 13), PP 6-11 Soluions for Nonliner Pril Differenil Equions By Tn-Co Mehod Mhmood Jwd Abdul Rsool Abu Al-Sheer Al -Rfidin Universiy

More information

TREATMENT OF HETEROGENEOUS REACTOR SYSTEMS

TREATMENT OF HETEROGENEOUS REACTOR SYSTEMS TEATMENT OF HETEOGENEOUS EACTO SYSTEMS M. gheb 7/9/4 NTODUCTON Mo recor yem nowdy re o he heerogeneou ype, where he uel nd moderor/cooln re lumped nd do no orm homogeneou mixure. The criicliy prmeer o

More information