Some New Dynamic Inequalities for First Order Linear Dynamic Equations on Time Scales

Size: px
Start display at page:

Download "Some New Dynamic Inequalities for First Order Linear Dynamic Equations on Time Scales"

Transcription

1 Applied Memicl Science, Vol. 1, 2007, no. 2, Some New Dynmic Inequliie for Fir Order Liner Dynmic Equion on Time Scle B. İ. Yşr, A. Tun, M. T. Djerdi nd S. Küükçü Deprmen of Memic, Fculy of Science nd Ar Univeriy of Gzi, Beşevler, 06500, Ankr, Turkey Abrc. We udy ome new dynmic inequliie for fir order liner dynmic equion on ime cle. Memic Subjec Clificion: 39A11, 26D10 Keyword: Time cle, Dynmic inequliy, Liner dynmic equion 1. Inroducion Hilger nd Aulbc [2, 5] generlized e definiion of derivive nd of n inegrl o ime cle in order o unify reul from e clculu of rel number wi reul from e difference clculu. So fer ime cle clculu creed. In i wy mny pper ime cle were wrien by Agrwl, Boner, Hilcer, Peeron nd join profeor. A ime cle i n rbirry nonempy cloed ube of e rel number. Te clculu of ime cle w iniied by B. Aulbc nd S. Hilger [2, 5] in order o cree eory cn unify dicree nd coninuou nlyi. For remen of e ingle vrible clculu of ime cle ee [3, 4, 8] nd e reference given erein. Afer mny eorie in rel number nd ineger number re exended o ime cle. In i pper, we udy ome new dynmic inequliie for fir order liner dynmic equion on ime cle. We conider nonomogeneou liner dynmicl equion of fir order (1.1) y ()+g()y σ ()+e g (σ(),)() 0, y() x We ume T [, b] i n rbirry inervl. We moreover g : T R, : T R, nd ϕ : T [0, ) re funcion uc for rbirry c

2 70 B. İ. Yşr e l T, g() nd e g (σ(),)() re inegrble on [, c], fuer uc ϕ()e g (, ) i inegrble on T, nd g() i regreive (i.e.,g R). We prove in Teorem.1 if rd-coninuouly differenible funcion y : T R ifie e differenil inequliy y ()+g()y σ ()+e g (σ(),)() (1.2) ϕ() for ll T k, en exi unique oluion y 0 () of e dynmicl equion (1.1) uc y() y 0 () e g (, ) ϕ(υ)e g (υ,) υ for ny T. Here, fir we menion everl foundionl definiion wiou proof nd reul from e clculu on ime cle in n excellen inroducory ex by Boner nd Peeron [3, 4]. 2. Generl Definiion Definiion 1. A ime cle T i nonempy cloed ube of R. We ume rougou T e opology i ineried from e ndrd opology on R. I lo umed rougou in T e inervl [, b] men e e { T : <} for e poin < b in T. Since ime cle my no be conneced, we need e following concep of jump operor. Definiion 2. Te mpping σ, ρ : T T defined by σ() inf { T : >} nd ρ() up { T : <} re clled e jump operor. Te jump operor σ nd ρ llow e clificion of poin in T in e following wy: Definiion 3. A nonmximl elemen T i id o be rig-dene if σ(), rig-cered if σ() >, lef-dene if ρ(),lef-cered if ρ() <. In e ce T R, we ve σ(), nd if T Z, >0, en σ() +. Definiion 4. Te mpping μ : T R + defined by μ() σ() i clled e grinine funcion. If T R, en μ() 0, nd wen T Z, we ve μ() 1. Definiion 5. Le f : T R. fi clled differenible T k, wi (del) derivive f () R if given ε>0 ere exi neigborood U of uc, for ll U, f σ () f() f ()[σ() ] ε σ(), were f σ f σ. If T R, en f df () (),nd if T Z, en f () d f( +1) f(). Some bic properie of del derivive re e following [3].

3 New dynmic inequliie on ime cle 71 Teorem 1. Aume f : T R nd le T k. (i) If f i differenible, en f i coninuou. (ii) If f i differenible nd i rig-cered, en f i differenible wi f () f σ () f(). σ() (iii) If f i differenible nd i rig-dene, en f f() f() () lim. (iv) If f i differenible, en f σ () f()+μ()f () Teorem 2. Aume f,g : T R re differenible T k. en: (i) Te um f + g : T R i differenible wi (f + g) () f ()+g (). (ii) For ny conn α, αf : T R i differenible wi (αf) () αf (). (iii) Te produc fg : T R i differenible wi (fg) () f ()g()+f(σ())g () f()g ()+f ()g(σ(). (iv) If f()f(σ()) 0, en 1 i differenible wi f ( ) 1 f f (). f()f (σ()) (v) If g()g(σ()) 0, en f i differenible nd g ( f g ) f ()g() f ()g () f()f (σ()). Definiion 6. Te funcion f : T R i id o be rd-coninuou (denoed by f C rd (T,R)) if, ll T, (i) f i coninuou every rig-dene poin T, (ii) lim f() exi nd i finie every lef-dene poin T. Definiion 7. Le f C rd (T,R). Ten g : T R i clled e niderivive of f on T if i i differenible on T nd ifie g () f() for ny T k. In i ce, we define f() g() g(), T.

4 72 B. İ. Yşr e l 2.1. Te Hilger complex plne. For >0, define e Hilger complex number, e Hilger rel xi, e Hilger lerning xi, nd e Hilger imginry circle by C { z C : z } 1, R { } z R : z> 1 A { } z R : z< 1, I { z C : } z repecively. For 0, le C 0 : C, R 0 : R, A 0 :, nd I 0 : ir. Le >0nd z C. Te Hilger rel pr of z i defined by Re (z) : z+1, nd e Hilger imginry pr of z i defined by Im (z) : Arg(x+1), were Arg(z) denoe e principle rgumen of z (i.e., π < Argz π). For >0, define e rip Z : { z C : π <Argz π }, nd for 0, e Z 0 : C. Ten we cn define e cylinder rnformion ξ C Z by ξ (z) 1 Log(1 + z), > 0 were Log i e principle logrim funcion. Wen 0, we define ξ 0 (z) z, for ll z C. I en follow e invere cylinder rnformion : Z C i given by ξ 1 ξ 1 (z) 1 ez. Since e grinine my no be conn for given ime cle, we will inercngebly ubcrip vriou quniie (uc ξ nd ξ 1 ) wi μ μ() ined of o reflec i Generlized exponenil Funcion. Te funcion p : T R i regreive if 1 + μ()p() 0 for ll T k, nd i concep moive e definiion of e following e: R { p : T R : p C rd (T) nd 1 + μ()p() 0 T k}, R + { p R:1+μ()p() > 0 for ll T k}. Te funcion p : T R i uniformly regreive on T ere exi poiive conn δ uc 0 <δ 1 1+μ()p(), T k. If p R, en we define e generlized ime cle exponenil funcion by e p (, ) exp ξ μ(τ ) (p(τ)) τ for ll, T Te following eorem i compilion of properie of e p (, ) (ome of wic re counerinuiive) we need in e min body of e pper. Teorem 3. Te funcion e p (, ) e following properie: (i) If p R, en e p (, r)e p (r, ) e p (, ) for ll r,, T. (ii) e p (σ(),) (1 + μ()p())e p (, ). (iii) If p R +, en e p (, 0 ) > 0 for ll T. (iv) If 1+μ()p() < 0 for ome T k, en e p (, 0 )e p (σ(), 0 ) < 0.

5 New dynmic inequliie on ime cle 73 R p(τ )dτ (v) If T R, en e p (, ) e. Morever, If p i conn, en ep (, ) e p( ). (vi) If T Z, en e p (, ) Π 1 τ (1 + p(τ)). Morever, If T Z, wi >0 nd p i conn, en e p (, ) (1 + p) ( ) Definiion 8. If p Rnd f : T R i rd-coninuou, en e dynmic equion. (2.1) i clled regreive. y () p()y()+f() Teorem 4. If p, q R, en (i) e 0 (, ) 1 nd e p (, ) 1; (ii) e p (σ(),) (1 + μ()p())e p (, ); 1 (iii) e p(, e p(,) ); (iv) e p (, ) 1 e p(, e p(,) ); (v) e p (, )e p (, τ) e p (, τ); (vi) e p (, )e q (, ) e p q (, ); (vii) ep(,) e e q(,) p q(, ); Teorem 5. (Vriion of conn). Le 0 T nd y( 0 )y 0 R.Ten e regreive IVP (2.1) unique oluion y : T R given by y() y 0 e p (, 0 )+ 0 e p (, σ(τ))f(τ) τ. Teorem 6. (Vriion of conn). Suppoe (2.1) i regreive. Le 0 T nd x( 0 )x 0 R. Te unique oluion of e iniil vlue problem i given by x () p()x σ + f(), x( 0 )x 0 x() e p (, 0 )x Min Reul 0 e p (, τ)f(τ) τ. Teorem 7. Le T [, b] i n rbirry inervl, were, b R {± } re rbirrily given wi <b.aume g : T R wi g() R, : T R, re rd-coninuou funcion uc g() nd e g (σ(),)() re inegrble [, c] for ec c T. Moreover, uppoe ϕ : T [0, ) i funcion uc ϕ()e g (, ) i inegrble on T. If rd-coninuouly differenible funcion

6 74 B. İ. Yşr e l y : T R ifie e differenil inequliy (1.2) for ll T, en ere exi unique x R uc y() e g(, (3.1) )(x e g (σ(υ),)(υ) υ) e g (, ) ϕ(υ)e g (υ,) υ for every T. Proof. For impliciy, we ue e following noion: z() :e g (, )y()+ e g (σ(υ),)(υ) υ for ec T. By mking ue of i noion nd by (1.2), we ge z() z() e g(, )y() e g (, )y()+ e g (σ(υ),)(υ) υ [e g (v, )y(v)] υ + e g (σ(υ),)(υ) υ ( ) [e g (v, )y(v)] + e g (σ(υ),)(υ) υ [ eg (v, )y (v)+g(v)e g (v, )y σ (v)+e g (σ(υ),)(υ) ] υ e g (v, ) [ y (v)+g(v)y σ (v)+e g (σ(υ),υ)(υ) ] υ (3.2) ϕ(υ)e g (v, ) υ for ny, T. Finlly, i follow from (3.2) nd e bove rgumen for ny T, y() e g(, )(x e g (σ(υ),)(υ) υ) e g (, )(z() x) e g (, )(z() z()) + e g (, )(z() x)

7 New dynmic inequliie on ime cle 75 e g (, ) z() z() + e g (, ) z() x e g (, ) ϕ(υ)e g (υ,) υ + e g(, ) z() x e g (, ) ϕ(υ)e g (υ,) υ b, ince z() x b. I now remin o prove e uniquen of x R. Aume x 1 R lo ifie e inequliy (3.1) in plce of x. Ten, we ve e g (, )(x 1 x) 2e g (, ) ϕ(υ)e g (υ,) υ for ny T. I follow from e iegrbiliy ypoee x 1 x 2 ϕ(υ)e g (υ,) υ 0 b. Ti implie e uniquene of x R. Remrk 1. we my now remrk y() e g (, )(x e g (σ(υ),)(υ) υ) i e generl oluion of e differenil equion (1.1), were x R i n rbirry elemen Exmple. In i ecion, we will inroduce ome exmple for liner differenil equion of fir order wenever T R follow. Exmple 1. If we ke T [, b] R i n rbirry inervl in R, nd we e () 0, ϕ() ε in Teorem.1, we obin e following reul: Le T [, b] i n rbirry inervl in R, were, b R {± } re rbirrily given wi <b.i i cler wen T R, en σ(), y σ () y() nd μ 0. Alo, wen T R, en from (1.1) equion we ge y ()+g()y()+() 0,...y() x for ll T, nd (1.2) inequliy y ()+g()y()+() ϕ() for ny T. Aume g : T R i { coninuou nd inegrble } funcion on [, c] for ec c T uc exp g(u)du i inegrble on T. If coninuouly differenible funcion y : T R ifie e differenil inequliy y ()+g()y() ε for ll T, en ere } exi unique x R uc g(u)du x y() exp { ε exp for ec T. { g(u)du } b { v } exp g(u)du υ

8 76 B. İ. Yşr e l Exmple 2. Le g < 0 nd be fixed rel number, le T [, ) be n inervl wi R, nd ϕ : T R ifie e differenil inequliy y ()+g()y()+() ϕ() for ll T. We cn eily verify e coice of g,, ϕ nd T re conien wi e ypoee of Teorm.1. Hence, ere exi unique c 0 R uc y() c 0 e g + (1 g e g( ) ) e g ϕ(υ)e gυ dυ for ny T. Furer, we know y 0 () c 0 e g g (1 e g( ) ) i (priculr) oluion of e differenil equion y ()+g()y()+() 0. If we e ϕ() ε nd T [, ) wi 0 in e bove emen, en ere exi unique oluion y 0 () of e differenil equion y ()+g()y()+ () 0uc y() y 0 () ε g for ll T. (We my compre i wi [1] or [10].) Exmple 3. If we ke T [, b] in rel inervl in R, i i cler we cn ve e me Teorem 1. in ([7]). Reference [1] C. Alin nd R. Ger, On ome inequliie nd biliy reul reled o e exponenil funcion, J. Inequl. Appl., 2 (1998) [2] B. Aulbc, S. Hilger, Liner dynmic proce wi inomogeneou ime cle, in: Nonliner Dynmic nd Qunum Dynmicl yem, Pperfrom e In. Seminr ISAM-90, Guig, 1990, G.A. Leonov, V. Reimnn, W. Timmermnn (Ed), Memicl Reerc, Vol. 59, Akdemie Verlg, Berlin, 1990, pp [3] M. Boner, A. Peeron, Dynmic equion on ime cle, An Inroducion wi Applicion, Birkuer, Boon, [4] M. Boner, A. Peeron, Advnce in Dynmic Equion on Time Scle, Birkäuer, Boon, [5] S. Hilger, Anlyi on meure cin- unified pproc o coninuou nd dicree clculu, Reul M. 18 (1990) [6] S.M. Jung., Hyer-Ulm biliy of liner differenil equion of fir order, Applied Memic Leer, 17 (2004) [7] S.M. Jung., Hyer-Ulm biliy of liner differenil equion of fir order II, Applied Memic Leer, inpre. [8] B. Kymkçln, V. Lkmiknm. nd S. Sivundrm, Dynmic Syyem on Meure Cin, Volume 370 of Memic nd i Applicion. Kluwer Acdemic Publier Group, Dordrec, [9] T.Miur, S. E. Tki nd H. Cod, On e Hyer-Ulm biliy of rel coninuou funcion vlued differenible mp, Tokyo J. M., 24 (2001) [10] S. E. Tki, T. Miur, S. Miyjim. On e Hyer-Ulm biliy of e Bnc pce-vlued differenil equion y λy, Bull. Koren M. Soc. 39 (2002) Received: July 1, 2006

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains Green s Funcions nd Comprison Theorems for Differenil Equions on Mesure Chins Lynn Erbe nd Alln Peerson Deprmen of Mhemics nd Sisics, Universiy of Nebrsk-Lincoln Lincoln,NE 68588-0323 lerbe@@mh.unl.edu

More information

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review Secion P Noe Pge Secion P Preclculu nd Trigonomer Review ALGEBRA AND PRECALCULUS Eponen Lw: Emple: 8 Emple: Emple: Emple: b b Emple: 9 EXAMPLE: Simplif: nd wrie wi poiive eponen Fir I will flip e frcion

More information

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals Sud. Univ. Beş-Bolyi Mh. 6(5, No. 3, 355 366 Hermie-Hdmrd-Fejér ype inequliies for convex funcions vi frcionl inegrls İmd İşcn Asrc. In his pper, firsly we hve eslished Hermie Hdmrd-Fejér inequliy for

More information

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 10, No. 2, 2017, 335-347 ISSN 1307-5543 www.ejpm.com Published by New York Business Globl Convergence of Singulr Inegrl Operors in Weighed Lebesgue

More information

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q). INTEGRALS JOHN QUIGG Eercise. Le f : [, b] R be bounded, nd le P nd Q be priions of [, b]. Prove h if P Q hen U(P ) U(Q) nd L(P ) L(Q). Soluion: Le P = {,..., n }. Since Q is obined from P by dding finiely

More information

Asymptotic relationship between trajectories of nominal and uncertain nonlinear systems on time scales

Asymptotic relationship between trajectories of nominal and uncertain nonlinear systems on time scales Asympoic relionship beween rjecories of nominl nd uncerin nonliner sysems on ime scles Fim Zohr Tousser 1,2, Michel Defoor 1, Boudekhil Chfi 2 nd Mohmed Djemï 1 Absrc This pper sudies he relionship beween

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

can be viewed as a generalized product, and one for which the product of f and g. That is, does

can be viewed as a generalized product, and one for which the product of f and g. That is, does Boyce/DiPrim 9 h e, Ch 6.6: The Convoluion Inegrl Elemenry Differenil Equion n Bounry Vlue Problem, 9 h eiion, by Willim E. Boyce n Richr C. DiPrim, 9 by John Wiley & Son, Inc. Someime i i poible o wrie

More information

Citation Abstract and Applied Analysis, 2013, v. 2013, article no

Citation Abstract and Applied Analysis, 2013, v. 2013, article no Tile An Opil-Type Inequliy in Time Scle Auhor() Cheung, WS; Li, Q Ciion Arc nd Applied Anlyi, 13, v. 13, ricle no. 53483 Iued De 13 URL hp://hdl.hndle.ne/17/181673 Righ Thi work i licened under Creive

More information

On the Exponential Operator Functions on Time Scales

On the Exponential Operator Functions on Time Scales dvance in Dynamical Syem pplicaion ISSN 973-5321, Volume 7, Number 1, pp. 57 8 (212) hp://campu.m.edu/ada On he Exponenial Operaor Funcion on Time Scale laa E. Hamza Cairo Univeriy Deparmen of Mahemaic

More information

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses Hindwi Advnce in Mhemicl Phyic Volume 207, Aricle ID 309473, pge hp://doi.org/0.55/207/309473 Reerch Aricle The Generl Soluion of Differenil Equion wih Cpuo-Hdmrd Frcionl Derivive nd Noninnneou Impule

More information

New Inequalities in Fractional Integrals

New Inequalities in Fractional Integrals ISSN 1749-3889 (prin), 1749-3897 (online) Inernionl Journl of Nonliner Science Vol.9(21) No.4,pp.493-497 New Inequliies in Frcionl Inegrls Zoubir Dhmni Zoubir DAHMANI Lborory of Pure nd Applied Mhemics,

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

Applications of Prüfer Transformations in the Theory of Ordinary Differential Equations

Applications of Prüfer Transformations in the Theory of Ordinary Differential Equations Irih Mh. Soc. Bullein 63 (2009), 11 31 11 Applicion of Prüfer Trnformion in he Theory of Ordinry Differenil Equion GEORGE CHAILOS Abrc. Thi ricle i review ricle on he ue of Prüfer Trnformion echnique in

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS Hceepe Journl of Mhemics nd Sisics Volume 45) 0), 65 655 ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS M Emin Özdemir, Ahme Ock Akdemir nd Erhn Se Received 6:06:0 : Acceped

More information

REAL ANALYSIS I HOMEWORK 3. Chapter 1

REAL ANALYSIS I HOMEWORK 3. Chapter 1 REAL ANALYSIS I HOMEWORK 3 CİHAN BAHRAN The quesions re from Sein nd Shkrchi s e. Chper 1 18. Prove he following sserion: Every mesurble funcion is he limi.e. of sequence of coninuous funcions. We firs

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform Inegrl Trnsform Definiions Funcion Spce funcion spce A funcion spce is liner spce of funcions defined on he sme domins & rnges. Liner Mpping liner mpping Le VF, WF e liner spces over he field F. A mpping

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX Journl of Applied Mhemics, Sisics nd Informics JAMSI), 9 ), No. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX MEHMET ZEKI SARIKAYA, ERHAN. SET

More information

1. Introduction. 1 b b

1. Introduction. 1 b b Journl of Mhemicl Inequliies Volume, Number 3 (007), 45 436 SOME IMPROVEMENTS OF GRÜSS TYPE INEQUALITY N. ELEZOVIĆ, LJ. MARANGUNIĆ AND J. PEČARIĆ (communiced b A. Čižmešij) Absrc. In his pper some inequliies

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

Note on Matuzsewska-Orlich indices and Zygmund inequalities

Note on Matuzsewska-Orlich indices and Zygmund inequalities ARMENIAN JOURNAL OF MATHEMATICS Volume 3, Number 1, 21, 22 31 Noe on Mauzewka-Orlic indice and Zygmund inequaliie N. G. Samko Univeridade do Algarve, Campu de Gambela, Faro,85 139, Porugal namko@gmail.com

More information

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,

More information

Exponential Decay for Nonlinear Damped Equation of Suspended String

Exponential Decay for Nonlinear Damped Equation of Suspended String 9 Inernionl Symoium on Comuing, Communicion, nd Conrol (ISCCC 9) Proc of CSIT vol () () IACSIT Pre, Singore Eonenil Decy for Nonliner Dmed Equion of Suended Sring Jiong Kemuwn Dermen of Mhemic, Fculy of

More information

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS - TAMKANG JOURNAL OF MATHEMATICS Volume 5, Number, 7-5, June doi:5556/jkjm555 Avilble online hp://journlsmhkueduw/ - - - GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS MARCELA

More information

15/03/1439. Lecture 4: Linear Time Invariant (LTI) systems

15/03/1439. Lecture 4: Linear Time Invariant (LTI) systems Lecre 4: Liner Time Invrin LTI sysems 2. Liner sysems, Convolion 3 lecres: Implse response, inp signls s coninm of implses. Convolion, discree-ime nd coninos-ime. LTI sysems nd convolion Specific objecives

More information

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic Journl of Applied Mhemics & Bioinformics, vol.2, no.2, 2012, 1-10 ISSN: 1792-6602 prin, 1792-6939 online Scienpress Ld, 2012 Applicion on Inner Produc Spce wih Fixed Poin Theorem in Probbilisic Rjesh Shrivsv

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

( ) ( ) ( ) ( ) ( ) ( y )

( ) ( ) ( ) ( ) ( ) ( y ) 8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll

More information

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR j IAN KNOWLES 1. Inroducion Consider he forml differenil operor T defined by el, (1) where he funcion q{) is rel-vlued nd loclly

More information

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM Elecronic Journl of Differenil Equions, Vol. 208 (208), No. 50, pp. 6. ISSN: 072-669. URL: hp://ejde.mh.xse.edu or hp://ejde.mh.un.edu EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE

More information

ON DIFFERENTIATION OF A LEBESGUE INTEGRAL WITH RESPECT TO A PARAMETER

ON DIFFERENTIATION OF A LEBESGUE INTEGRAL WITH RESPECT TO A PARAMETER Mh. Appl. 1 (2012, 91 116 ON DIFFERENTIATION OF A LEBESGUE INTEGRAL WITH RESPECT TO A PARAMETER JIŘÍ ŠREMR Abr. The im of hi pper i o diu he bolue oninuiy of erin ompoie funion nd differeniion of Lebegue

More information

Laplace Examples, Inverse, Rational Form

Laplace Examples, Inverse, Rational Form Lecure 3 Ouline: Lplce Exple, Invere, Rionl For Announceen: Rein: 6: Lplce Trnfor pp. 3-33, 55.5-56.5, 7 HW 8 poe, ue nex We. Free -y exenion OcenOne Roo Tour will e fer cl y 7 (:3-:) Lunch provie ferwr.

More information

ON DIFFERENTIABILITY OF ABSOLUTELY MONOTONE SET-VALUED FUNCTIONS

ON DIFFERENTIABILITY OF ABSOLUTELY MONOTONE SET-VALUED FUNCTIONS Folia Maemaica Vol. 16, No. 1, pp. 25 30 Aca Universiais Lodziensis c 2009 for Universiy of Lódź Press ON DIFFERENTIABILITY OF ABSOLUTELY MONOTONE SET-VALUED FUNCTIONS ANDRZEJ SMAJDOR Absrac. We prove

More information

Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function

Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function Anlyic soluion of liner frcionl differenil equion wih Jumrie derivive in erm of Mig-Leffler funcion Um Ghosh (), Srijn Sengup (2), Susmi Srkr (2b), Shnnu Ds (3) (): Deprmen of Mhemics, Nbdwip Vidysgr College,

More information

FUZZY n-inner PRODUCT SPACE

FUZZY n-inner PRODUCT SPACE Bull. Korean Mah. Soc. 43 (2007), No. 3, pp. 447 459 FUZZY n-inner PRODUCT SPACE Srinivaan Vijayabalaji and Naean Thillaigovindan Reprined from he Bullein of he Korean Mahemaical Sociey Vol. 43, No. 3,

More information

Probability, Estimators, and Stationarity

Probability, Estimators, and Stationarity Chper Probbiliy, Esimors, nd Sionriy Consider signl genered by dynmicl process, R, R. Considering s funcion of ime, we re opering in he ime domin. A fundmenl wy o chrcerize he dynmics using he ime domin

More information

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors Trnformion Ordered e of number:,,,4 Emple:,,z coordine of p in pce. Vecor If, n i i, K, n, i uni ecor Vecor ddiion +w, +, +, + V+w w Sclr roduc,, Inner do roduc α w. w +,.,. The inner produc i SCLR!. w,.,

More information

Existence and Global Attractivity of Positive Periodic Solutions in Shifts δ ± for a Nonlinear Dynamic Equation with Feedback Control on Time Scales

Existence and Global Attractivity of Positive Periodic Solutions in Shifts δ ± for a Nonlinear Dynamic Equation with Feedback Control on Time Scales Exience and Global Araciviy of Poiive Periodic Soluion in Shif δ ± for a Nonlinear Dynamic Equaion wih Feedback Conrol on Time Scale MENG HU Anyang Normal Univeriy School of mahemaic and aiic Xian ge Avenue

More information

Optimality of Myopic Policy for a Class of Monotone Affine Restless Multi-Armed Bandit

Optimality of Myopic Policy for a Class of Monotone Affine Restless Multi-Armed Bandit Univeriy of Souhern Cliforni Opimliy of Myopic Policy for Cl of Monoone Affine Rele Muli-Armed Bndi Pri Mnourifrd USC Tr Jvidi UCSD Bhkr Krihnmchri USC Dec 0, 202 Univeriy of Souhern Cliforni Inroducion

More information

Fractional Calculus. Connor Wiegand. 6 th June 2017

Fractional Calculus. Connor Wiegand. 6 th June 2017 Frcionl Clculus Connor Wiegnd 6 h June 217 Absrc This pper ims o give he reder comforble inroducion o Frcionl Clculus. Frcionl Derivives nd Inegrls re defined in muliple wys nd hen conneced o ech oher

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

Fuzzy Laplace Transforms for Derivatives of Higher Orders

Fuzzy Laplace Transforms for Derivatives of Higher Orders Maemaical Teory and Modeling ISSN -58 (Paper) ISSN 5-5 (Online) Vol, No, 1 wwwiiseorg Fuzzy Laplace Transforms for Derivaives of Higer Orders Absrac Amal K Haydar 1 *and Hawrra F Moammad Ali 1 College

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Research Article New General Integral Inequalities for Lipschitzian Functions via Hadamard Fractional Integrals

Research Article New General Integral Inequalities for Lipschitzian Functions via Hadamard Fractional Integrals Hindwi Pulishing orporion Inernionl Journl of Anlysis, Aricle ID 35394, 8 pges hp://d.doi.org/0.55/04/35394 Reserch Aricle New Generl Inegrl Inequliies for Lipschizin Funcions vi Hdmrd Frcionl Inegrls

More information

APPENDIX 2 LAPLACE TRANSFORMS

APPENDIX 2 LAPLACE TRANSFORMS APPENDIX LAPLACE TRANSFORMS Thi ppendix preent hort introduction to Lplce trnform, the bic tool ued in nlyzing continuou ytem in the frequency domin. The Lplce trnform convert liner ordinry differentil

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) QUESTION BANK 6 SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddhrh Ngr, Nrynvnm Rod 5758 QUESTION BANK (DESCRIPTIVE) Subjec wih Code :Engineering Mhemic-I (6HS6) Coure & Brnch: B.Tech Com o ll Yer & Sem:

More information

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh.

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh. How o Prove he Riemnn Hohesis Auhor: Fez Fok Al Adeh. Presiden of he Srin Cosmologicl Socie P.O.Bo,387,Dmscus,Sri Tels:963--77679,735 Emil:hf@scs-ne.org Commens: 3 ges Subj-Clss: Funcionl nlsis, comle

More information

ON THE GENERALIZED SUPERSTABILITY OF nth ORDER LINEAR DIFFERENTIAL EQUATIONS WITH INITIAL CONDITIONS

ON THE GENERALIZED SUPERSTABILITY OF nth ORDER LINEAR DIFFERENTIAL EQUATIONS WITH INITIAL CONDITIONS PUBLICATIONS DE L INSTITUT MATHÉMATIQUE Nouvelle série, tome 9811 015, 43 49 DOI: 10.98/PIM15019019H ON THE GENERALIZED SUPERSTABILITY OF nth ORDER LINEAR DIFFERENTIAL EQUATIONS WITH INITIAL CONDITIONS

More information

Explicit form of global solution to stochastic logistic differential equation and related topics

Explicit form of global solution to stochastic logistic differential equation and related topics SAISICS, OPIMIZAION AND INFOMAION COMPUING Sa., Opim. Inf. Compu., Vol. 5, March 17, pp 58 64. Publihed online in Inernaional Academic Pre (www.iapre.org) Explici form of global oluion o ochaic logiic

More information

MATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals.

MATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals. MATH 409 Advnced Clculus I Lecture 19: Riemnn sums. Properties of integrls. Drboux sums Let P = {x 0,x 1,...,x n } be prtition of n intervl [,b], where x 0 = < x 1 < < x n = b. Let f : [,b] R be bounded

More information

CSC 373: Algorithm Design and Analysis Lecture 9

CSC 373: Algorithm Design and Analysis Lecture 9 CSC 373: Algorihm Deign n Anlyi Leure 9 Alln Boroin Jnury 28, 2013 1 / 16 Leure 9: Announemen n Ouline Announemen Prolem e 1 ue hi Friy. Term Te 1 will e hel nex Mony, Fe in he uoril. Two nnounemen o follow

More information

MTH 146 Class 11 Notes

MTH 146 Class 11 Notes 8.- Are of Surfce of Revoluion MTH 6 Clss Noes Suppose we wish o revolve curve C round n is nd find he surfce re of he resuling solid. Suppose f( ) is nonnegive funcion wih coninuous firs derivive on he

More information

f t f a f x dx By Lin McMullin f x dx= f b f a. 2

f t f a f x dx By Lin McMullin f x dx= f b f a. 2 Accumulion: Thoughs On () By Lin McMullin f f f d = + The gols of he AP* Clculus progrm include he semen, Sudens should undersnd he definie inegrl s he ne ccumulion of chnge. 1 The Topicl Ouline includes

More information

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives In J Nonliner Anl Appl 9 8 No, 69-8 ISSN: 8-68 elecronic hp://dxdoiorg/75/ijn8745 On Hdmrd nd Fejér-Hdmrd inequliies for Cpuo -frcionl derivives Ghulm Frid, Anum Jved Deprmen of Mhemics, COMSATS Universiy

More information

3. Renewal Limit Theorems

3. Renewal Limit Theorems Virul Lborories > 14. Renewl Processes > 1 2 3 3. Renewl Limi Theorems In he inroducion o renewl processes, we noed h he rrivl ime process nd he couning process re inverses, in sens The rrivl ime process

More information

Method For Solving Fuzzy Integro-Differential Equation By Using Fuzzy Laplace Transformation

Method For Solving Fuzzy Integro-Differential Equation By Using Fuzzy Laplace Transformation INERNAIONAL JOURNAL OF SCIENIFIC & ECHNOLOGY RESEARCH VOLUME 3 ISSUE 5 May 4 ISSN 77-866 Meod For Solving Fuzzy Inegro-Differenial Equaion By Using Fuzzy Laplace ransformaion Manmoan Das Danji alukdar

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

IX.2 THE FOURIER TRANSFORM

IX.2 THE FOURIER TRANSFORM Chper IX The Inegrl Trnsform Mehods IX. The Fourier Trnsform November, 7 7 IX. THE FOURIER TRANSFORM IX.. The Fourier Trnsform Definiion 7 IX.. Properies 73 IX..3 Emples 74 IX..4 Soluion of ODE 76 IX..5

More information

Non-oscillation of perturbed half-linear differential equations with sums of periodic coefficients

Non-oscillation of perturbed half-linear differential equations with sums of periodic coefficients Hsil nd Veselý Advnces in Difference Equions 2015 2015:190 DOI 10.1186/s13662-015-0533-4 R E S E A R C H Open Access Non-oscillion of perurbed hlf-liner differenil equions wih sums of periodic coefficiens

More information

Fractional Ornstein-Uhlenbeck Bridge

Fractional Ornstein-Uhlenbeck Bridge WDS'1 Proceeding of Conribued Paper, Par I, 21 26, 21. ISBN 978-8-7378-139-2 MATFYZPRESS Fracional Ornein-Uhlenbeck Bridge J. Janák Charle Univeriy, Faculy of Mahemaic and Phyic, Prague, Czech Republic.

More information

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 3, March 28, Page 99 918 S 2-9939(7)989-2 Aricle elecronically publihed on November 3, 27 FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL

More information

Syntactic Complexity of Suffix-Free Languages. Marek Szykuła

Syntactic Complexity of Suffix-Free Languages. Marek Szykuła Inroducion Upper Bound on Synacic Complexiy of Suffix-Free Language Univeriy of Wrocław, Poland Join work wih Januz Brzozowki Univeriy of Waerloo, Canada DCFS, 25.06.2015 Abrac Inroducion Sae and ynacic

More information

PSAT/NMSQT PRACTICE ANSWER SHEET SECTION 3 EXAMPLES OF INCOMPLETE MARKS COMPLETE MARK B C D B C D B C D B C D B C D 13 A B C D B C D 11 A B C D B C D

PSAT/NMSQT PRACTICE ANSWER SHEET SECTION 3 EXAMPLES OF INCOMPLETE MARKS COMPLETE MARK B C D B C D B C D B C D B C D 13 A B C D B C D 11 A B C D B C D PSTNMSQT PRCTICE NSWER SHEET COMPLETE MRK EXMPLES OF INCOMPLETE MRKS I i recommended a you ue a No pencil I i very imporan a you fill in e enire circle darkly and compleely If you cange your repone, erae

More information

Procedia Computer Science

Procedia Computer Science Procedi Compuer Science 00 (0) 000 000 Procedi Compuer Science www.elsevier.com/loce/procedi The Third Informion Sysems Inernionl Conference The Exisence of Polynomil Soluion of he Nonliner Dynmicl Sysems

More information

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445 CS 445 Flow Nework lon Efr Slide corey of Chrle Leieron wih mll chnge by Crol Wenk Flow nework Definiion. flow nework i direced grph G = (V, E) wih wo diingihed erice: orce nd ink. Ech edge (, ) E h nonnegie

More information

2. The Laplace Transform

2. The Laplace Transform . The Lplce Trnform. Review of Lplce Trnform Theory Pierre Simon Mrqui de Lplce (749-87 French tronomer, mthemticin nd politicin, Miniter of Interior for 6 wee under Npoleon, Preident of Acdemie Frncie

More information

Inventory Management Models with Variable Holding Cost and Salvage value

Inventory Management Models with Variable Holding Cost and Salvage value OSR Journl of Business nd Mngemen OSR-JBM e-ssn: -X p-ssn: 9-. Volume ssue Jul. - Aug. PP - www.iosrjournls.org nvenory Mngemen Models wi Vrile Holding os nd Slvge vlue R.Mon R.Venkeswrlu Memics Dep ollege

More information

How to prove the Riemann Hypothesis

How to prove the Riemann Hypothesis Scholrs Journl of Phsics, Mhemics nd Sisics Sch. J. Phs. Mh. S. 5; (B:5-6 Scholrs Acdemic nd Scienific Publishers (SAS Publishers (An Inernionl Publisher for Acdemic nd Scienific Resources *Corresonding

More information

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX.

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. MEHMET ZEKI SARIKAYA?, ERHAN. SET, AND M. EMIN OZDEMIR Asrc. In his noe, we oin new some ineuliies

More information

Advances in Intelligent Systems Research, volume 136 4th International Conference on Sensors, Mechatronics and Automation (ICSMA 2016)

Advances in Intelligent Systems Research, volume 136 4th International Conference on Sensors, Mechatronics and Automation (ICSMA 2016) Advnces in Inelligen Sysems Reserc, volume 36 4 Inernionl Conference on Sensors, Mecronics nd Auomion (ICSMA 6) New Lypunov-Krsovskii sbiliy condiion for uncerin liner sysems wi inervl ime-vrying dely

More information

1 Review: Volumes of Solids (Stewart )

1 Review: Volumes of Solids (Stewart ) Lecture : Some Bic Appliction of Te Integrl (Stewrt 6.,6.,.,.) ul Krin eview: Volume of Solid (Stewrt 6.-6.) ecll: we d provided two metod for determining te volume of olid of revolution. Te rt w by dic

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

Research Article Generalized Hyers-Ulam Stability of the Second-Order Linear Differential Equations

Research Article Generalized Hyers-Ulam Stability of the Second-Order Linear Differential Equations Hindwi Publihing Corportion Journl of Applied Mthemtic Volume 011, Article ID 813137, 10 pge doi:10.1155/011/813137 Reerch Article Generlized Hyer-Ulm Stbility of the Second-Order Liner Differentil Eqution

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms 6- Chaper 6. Laplace Tranform 6.4 Shor Impule. Dirac Dela Funcion. Parial Fracion 6.5 Convoluion. Inegral Equaion 6.6 Differeniaion and Inegraion of Tranform 6.7 Syem of ODE 6.4 Shor Impule. Dirac Dela

More information

Math Week 12 continue ; also cover parts of , EP 7.6 Mon Nov 14

Math Week 12 continue ; also cover parts of , EP 7.6 Mon Nov 14 Mh 225-4 Week 2 coninue.-.3; lo cover pr of.4-.5, EP 7.6 Mon Nov 4.-.3 Lplce rnform, nd pplicion o DE IVP, epecilly hoe in Chper 5. Tody we'll coninue (from l Wednedy) o fill in he Lplce rnform ble (on

More information

FRACTIONAL EULER-LAGRANGE EQUATION OF CALDIROLA-KANAI OSCILLATOR

FRACTIONAL EULER-LAGRANGE EQUATION OF CALDIROLA-KANAI OSCILLATOR Romnin Repors in Physics, Vol. 64, Supplemen, P. 7 77, Dediced o Professor Ion-Ioviz Popescu s 8 h Anniversry FRACTIONAL EULER-LAGRANGE EQUATION OF CALDIROLA-KANAI OSCILLATOR D. BALEANU,,3, J. H. ASAD

More information

Development of a New Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations

Development of a New Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations IOS Journl o Memics IOSJM ISSN: 78-78 Volume Issue July-Aug PP -9 www.iosrjournls.org Developmen o New Sceme or e Soluion o Iniil Vlue Problems in Ordinry Dierenil Equions Ogunrinde. B. dugb S. E. Deprmen

More information

Math 20C Multivariable Calculus Lecture 5 1. Lines and planes. Equations of lines (Vector, parametric, and symmetric eqs.). Equations of lines

Math 20C Multivariable Calculus Lecture 5 1. Lines and planes. Equations of lines (Vector, parametric, and symmetric eqs.). Equations of lines Mt 2C Multivrible Clculus Lecture 5 1 Lines nd plnes Slide 1 Equtions of lines (Vector, prmetric, nd symmetric eqs.). Equtions of plnes. Distnce from point to plne. Equtions of lines Slide 2 Definition

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

12 Basic Integration in R

12 Basic Integration in R 14.102, Mt for Economists Fll 2004 Lecture Notes, 10/14/2004 Tese notes re primrily bsed on tose written by Andrei Bremzen for 14.102 in 2002/3, nd by Mrek Pyci for te MIT Mt Cmp in 2003/4. I ve mde only

More information

SUPERSTABILITY OF DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS

SUPERSTABILITY OF DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS Electronic Journl of Differentil Equtions, Vol. 01 (01), No. 15, pp. 1. ISSN: 107-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu SUPERSTABILITY OF DIFFERENTIAL

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

Absolute values of real numbers. Rational Numbers vs Real Numbers. 1. Definition. Absolute value α of a real

Absolute values of real numbers. Rational Numbers vs Real Numbers. 1. Definition. Absolute value α of a real Rtionl Numbers vs Rel Numbers 1. Wht is? Answer. is rel number such tht ( ) =. R [ ( ) = ].. Prove tht (i) 1; (ii). Proof. (i) For ny rel numbers x, y, we hve x = y. This is necessry condition, but not

More information

û s L u t 0 s a ; i.e., û s 0

û s L u t 0 s a ; i.e., û s 0 Te Hille-Yosida Teorem We ave seen a wen e absrac IVP is uniquely solvable en e soluion operaor defines a semigroup of bounded operaors. We ave no ye discussed e condiions under wic e IVP is uniquely solvable.

More information

LAGRANGIAN AND HAMILTONIAN MECHANICS WITH FRACTIONAL DERIVATIVES

LAGRANGIAN AND HAMILTONIAN MECHANICS WITH FRACTIONAL DERIVATIVES LAGRANGIAN AND HAMILTONIAN MEHANIS WITH FRATIONAL DERIVATIVES EMIL POPESU 2,1 1 Asronomicl Insiue of Romnin Acdemy Sr uiul de Argin 5, 40557 Buchres, Romni 2 Technicl Universiy of ivil Engineering, Bd

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

Analysis of Boundedness for Unknown Functions by a Delay Integral Inequality on Time Scales

Analysis of Boundedness for Unknown Functions by a Delay Integral Inequality on Time Scales Inernaional Conference on Image, Viion and Comuing (ICIVC ) IPCSIT vol. 5 () () IACSIT Pre, Singaore DOI:.7763/IPCSIT..V5.45 Anali of Boundedne for Unknown Funcion b a Dela Inegral Ineuali on Time Scale

More information

WENJUN LIU AND QUÔ C ANH NGÔ

WENJUN LIU AND QUÔ C ANH NGÔ AN OSTROWSKI-GRÜSS TYPE INEQUALITY ON TIME SCALES WENJUN LIU AND QUÔ C ANH NGÔ Astrct. In this pper we derive new inequlity of Ostrowski-Grüss type on time scles nd thus unify corresponding continuous

More information