Non-oscillation of perturbed half-linear differential equations with sums of periodic coefficients

Size: px
Start display at page:

Download "Non-oscillation of perturbed half-linear differential equations with sums of periodic coefficients"

Transcription

1 Hsil nd Veselý Advnces in Difference Equions :190 DOI /s R E S E A R C H Open Access Non-oscillion of perurbed hlf-liner differenil equions wih sums of periodic coefficiens Per Hsil * nd Michl Veselý * Correspondence: hsil@mil.muni.cz Deprmen of Mhemics nd Sisics, Msryk Universiy, Kolářská 2, Brno, , Czech Republic Absrc We invesige perurbed second order Euler ype hlf-liner differenil equions wih periodic coefficiens nd wih he perurbions given by he finie sums of periodic funcions which do no need o hve ny common period. Our min ineres is o sudy he oscillory properies of he equions in he cse when he coefficiens give excly he criicl oscillion consn. We prove h ny of he considered equions is non-oscillory in his cse. MSC: 34C10; 34C15 Keywords: hlf-liner equions; oscillion heory; condiionl oscillion; Prüfer ngle; Ricci equion 1 Inroducion The im of his pper is o conribue o he rpidly developing heory of condiionlly oscillory hlf-liner differenil equions. Our pper is orgnized o hree secions. In his secion, we recll he noion of he so-clled condiionl oscillion nd we give hisoricl bckground of he opic. In he second secion, he reder cn find he considered equions ogeher wih he descripion of he used mehods he Ricci nd Prüfer rnsformions. These mehods led o he equion for he Prüfer ngle which is he min ool in our invesigion. Finlly, in he ls secion, we se lemms, resuls, corollries, nd exmples. Le us begin wih he concep of he condiionl oscillion for hlf-liner differenil equions. We consider he equion r x ] γ c x=0, x= x p 1 sgn x, p > 1, 1.1 where γ is given rel consn, coefficiens r nd c re coninuous funcions, nd r is posiive. We sy h 1.1 iscondiionlly oscillory if here exiss posiive consn Ɣ such h 1.1 isoscilloryforγ > Ɣ nd non-oscillory for γ < Ɣ. SuchconsnƔ is clled he criicl oscillion consn of 1.1. Now we collec he milesones in he heory of he condiionl oscillion wih respec o he opic of our pper. I ppers h pproprie hlf-liner equions for he sudy of 2015 Hsil nd Veselý. This ricle is disribued under he erms of he Creive Commons Aribuion 4.0 Inernionl License hp://creivecommons.org/licenses/by/4.0/, which permis unresriced use, disribuion, nd reproducion in ny medium, provided you give pproprie credi o he originl uhors nd he source, provide link o he Creive Commons license, nd indice if chnges were mde.

2 Hsil nd Veselý Advnces in Difference Equions :190 Pge 2 of 17 he condiionl oscillion re he Euler ype equions, i.e., he equions wrien in he form r x ] γ s x=0. p The condiionl oscillion s well s mny oher res in he oscillion heory of hlf-liner equions origines from he oscillion heory of liner differenil equions. The firs resul bou he condiionl oscillion of he considered differenil equions wsobinedbykneserin1], where he oscillion consn Ɣ = 1/4 ws found for he equion x γ x = More hn 100 yers ler, in 2, 3], he bove resul concerning 1.2wsexendedforhe liner equions rx ] γ s 2 x =0 1.3 wih posiive α-periodic coefficiens r, s, where he criicl consn is α Ɣ = α2 dτ 1 α 1 sτdτ rτ 0 Nex, in 4], i ws proved h 1.3 is non-oscillory in he criicl cse γ = Ɣ. For oher reled resuls, we refer o 5 7]. In he field of hlf-liner equions, he bsic criicl consn p 1 p Ɣ = 1.5 p for he equion x ] γ p x=0 comes from 8]see lso9]. Then, in 10 12], he condiionl oscillion ws proved for more generl equions of he form r x ] γ s p x= Especilly, he criicl consn of 1.6 wih posiive α-periodic funcions r, s ws idenified s cf. 1.4, 1.5 αp 1 p α Ɣ 1 = p 0 1 p α 1 r 1 p 1 τdτ sτdτ in 10]. For he lierure nd n overview of he heory concerning hlf-liner differenil equions, see 13, 14].

3 Hsil nd Veselý Advnces in Difference Equions :190 Pge 3 of 17 Le us urn our enion o he perurbed Euler ype equions. The liner cse of such equions wih periodic coefficiens is sudied in 4, 5]. The hlf-liner cse is reed in 15], where he equions r x ] γ s μd log 2 ] x p =0 1.8 re nlyzed for posiive α-periodic coefficiens r, s,ndd. There i is proved h, in he criicl cse γ = Ɣ 1 see 1.7, 1.8isoscilloryfor μ > Ɣ 2 := αp 2 p 1 p 1 α p 0 1 p α 1 r 1 p 1 τdτ dτdτ 0 nd non-oscillory for μ < Ɣ 2. For furher generlizions, we refer o 16 19] seelso 20]. In his pper, we re ineresed in he cse when he perurbion is lso in he differenil erm nd boh of he perurbions re sums of periodic funcions. In conrs wih he siuion common in he lierure, he funcions in he perurbions do no need o hve ny common period nd cn chnge sign. We prove h ll considered equions re nonoscillory in he criicl cse. According o he bes of our knowledge, his resul is new lso in he liner cse i.e.,forp =2. Concerning he condiionl oscillion of Euler ype liner nd hlf-liner equions, severlresulsreknowninhediscreecseswell.wepoinoulesppers21 23] for difference equions nd 24, 25] for dynmic equions on ime scles. Noe h, in he criicl cse, ny of he discree nd he ime scle counerprs of he bove menioned resuls is no known even for equions wih periodic coefficiens. 2 Preliminries This secion is devoed o he descripion of he considered equions, he corresponding Ricci equions, nd o he modified Prüfer ngle which is he min mehod in our processes. We lso menion bsic definiions nd observions which will be essenilly pplied ler. Throughou he pper, le p > 1 be rbirrily given. We use he sndrd noion R :=, ndhesymbolq denoes he number conjuged wih p i.e., p q = pq. We consider he Euler ype hlf-liner equions expressed s R p q x ] S x p =0, x= x p 1 sgn x, 2.1 where R, S : R e R e snds for he bse of he nurl logrihm log reconinuous funcions such h R is posiive nd bounded nd S is bounded. Noe h he power p/q in he differenil erm does no men ny loss of generliy see lso 17]. Our min objecive is o give non-oscillion crierion for he hlf-liner differenil equions in he form r 0 r p q 1 x ] log 2 s 0 s 1 x log 2 = 0, 2.2 p

4 Hsil nd Veselý Advnces in Difference Equions :190 Pge 4 of 17 where r 0, r 1, s 0, s 1 : R R, e, re coninuous funcions such h r 0 is posiive nd α-periodic, s 0 is α-periodic, nd r 1 = R i, s 1 = S i,, 2.3 for rbirrily given periodic coninuous funcions R i nd S i wih periods α i nd β i,respecively. Of course, we cn ssume h ll considered periods α, α i, β i re posiive nd h some of funcions R i, S i re ideniclly zero. A his plce, we recll he definiion of men vlues for coninuous funcions s ool h helps us o idenify he criicl cse for sudied equions. Le coninuous funcion f : R R be such h he limi 1 Mf := lim b b f sds is finie nd exiss uniformly wih respec o b R.ThenumberMf is clled he men vlue of f.iisseenhfuncionsr 1, s 1 given in 2.3hvemenvlues Mr 1 = MR i, Ms 1 = MS i. 2.4 Concerning he presened resuls, we will ssume h Mr 1, Ms 1 0. In fc, we sudy oscillory properies of he equion r 0 m R i log 2 p q x ] s 0 n S i log 2 x p =0 2.5 wih periodic coefficiens R 1,...,R m, S 1,...,S n on R infiniy i.e.,vlueis lrge enough when m MR i 0, n MS i 0. For simpliciy, we will consider 2.2 onlyinhe criicl cse see he below given Theorem 3.4 nd 12, 16 18] given by i.e., Mr0 ] p q Ms 0 = 1 α p q α r α p 0 τdτ s 0 τdτ = q p, 2.6 Ms 1 Mr 0 ] p q p q Mr 1 Mr p1 0 ] 1 q 1 p = 2, p q lim s p 1 τdτ r 0 τdτ p r 1 τdτ q p1 r 0 τdτ ] = q1 p 2. Then see he below given Theorem 3.5, we formule he generl resul bou he oscillion nd non-oscillion of 2.5. To sudy 2.2, we will consider he equion Mr 0 Mr p 1 log 2 1 q x ] log 4 Ms 0 Ms 1 log 2 1 x log 4 =0 2.8 p

5 Hsil nd Veselý Advnces in Difference Equions :190 Pge 5 of 17 wih consn coefficiens nd we will lso use he noions r 0 := mx{ r 0 ; R }, r 1 := sup { r 1 ; R }, s 0 := mx{ s 0 ; R }, s 1 := sup { s 1 ; R }, 2.9 nd R i := mx { Ri ; R }, S i := mx { Si ; R } 2.10 for ech i. As we hve lredy menioned bove, he min mehod used in his pper is he modified Prüfer ngle. To clrify his mehod, we need some bsic properies of he hlf-liner rigonomeric funcions. We denoe π p := 2π p sin π p 2.11 nd consider he iniil vlue problem x ] p 1 x=0, x0 = 0, x 0 = The odd 2π p -periodic exension of he soluion of 2.12 is clled he hlf-liner sine funcion ndisusullydenoedbysin p.thehlf-liner cosine funcion is defined s he derivive of he hlf-liner sine funcion nd i is denoed by cos p. The needed properies of he hlf-liner rigonomeric funcions for our purpose re he vlidiy of he hlf-liner Pyhgoren ideniy sin p y p cos p y p =1, y R, 2.13 nd he boundedness of hese funcions given by see 2.13 cos p y p 1, cos p y sin p y 1, sin p y p 1, y R. For oher properies, we refer, e.g., o14], Secion To inroduce he noion of he modified hlf-liner Prüfer ngle, we consider he concep of he Ricci equion. Using he rnsformion w=r p q x, 2.14 x where x is non-rivil soluionof 2.1, we direcly obin he so-clled Ricci equion w S p p 1R w q = ssocied o 2.1. Hence, we cn inroduce he modified hlf-liner Prüfer rnsformion s follows: x=ρ sin p ϕ, x = Rρ cos p ϕ. 2.16

6 Hsil nd Veselý Advnces in Difference Equions :190 Pge 6 of 17 Ourim is o obin n equionfor he Prüferngle ϕ. Therefore, we skech is derivion his plce. For more deils, see 15]. Le us consider soluion w of Using 2.14 nd 2.16, we hve v := p 1 cosp ϕ w = sin p ϕ 2.17 which, ogeher wih he fc h sin p is soluion of he iniil vlue problem in 2.12, leds o v =1 p 1 cos p ϕ p] sin p ϕ ϕ Now we derive v using 2.15nd2.17. We obin v = p 1 w ] =p 1 p 2 w p 1 w = p 1 v S p 1 R cos p ϕ p] sin p ϕ Finlly, using 2.17ndcompring2.18nd2.19, we hve 1 p 1 cos p ϕ p] sin p ϕ ϕ = p 1 cosp ϕ sin p ϕ p 1 R cos p ϕ p] sin p ϕ S which gives consider he Pyhgoren ideniy 2.13 herequiredequion ϕ = 1 R cosp ϕ p cos p ϕ sin p ϕs sin p ϕ p ] p ssocied o 2.1. In priculr, he Prüfer ngle ϕ ssocied o 2.2vi2.16 sisfies he equion ϕ = 1 r 0 r 1 log 2 cos p ϕ p cos p ϕ sin p ϕ s 0 s 1 log 2 sinp ϕ p p 1 TheequionforhePrüferngleϕ ssocied o 2.8isseegin2.20 ϕ = 1 Mr 0 Mr 1 log 2 1 log 4 cos p ϕ sin p ϕ cos p ϕ p Ms 0 Ms 1 log 2 1 log 4 ] sinp ϕ p p 1 ] For ny soluion ϕ of 2.20onR,wedefinehefuncionψ : R R by he formul ϕτ ψ:= dτ, τ

7 Hsil nd Veselý Advnces in Difference Equions :190 Pge 7 of 17 This uxiliry funcion ψ will ply n imporn role in he res of our pper. Noe h 2.21nd2.22respecilcsesof2.20. Thus, he bove funcion ψ is inroduced lso for soluions of 2.21nd Resuls Now we complee necessry semens which we will use o prove he min resul. We begin wih wo known lemms. Lemm 3.1 If ϕ is soluion of 2.20 on R, hen he funcion ψ : R R defined by 2.23 sisfies ϕ s ψ C log,, s 0, ], for some C >0. Proof See 26], Lemm 3.2. Lemm 3.2 Le ϕ be soluion of 2.20 on R. Then here exis A, c >0such h he funcion ψ : R R defined in 2.23 sisfies he inequliy ψ 1 cosp ψ p Rτdτ cos p ψ sin p ψ sin p ψ p ] p 1 Sτdτ A 1c for ll >. Proof The lemm comes direcly from 26], Lemm 3.4. Nex, we will need he following resuls. Lemm 3.3 Le ϕ be soluion of 2.22 on R. Then he funcion ψ : R R defined in 2.23 sisfies he inequliy ψ 1 Mr 0 Mr 1 log 2 cos p ψ p cos p ψ sin p ψ Ms 0 Ms 1 sinp ψ p ] 1 log 2 p 1 log 5 for ll sufficienly lrge. 3.1 Proof From Lemm 3.2,wehve ψ 1 cosp ψ p Mr 0 Mr 1 log 2 τ 1 log 4 dτ τ cos p ψ sin p ψ

8 Hsil nd Veselý Advnces in Difference Equions :190 Pge 8 of 17 1 sin p ψ p p 1 cos p ψ p Mr 0 cos p ψ sin p ψ Ms 0 sin p ψ p p 1 Ms 0 Ms 1 log 2 τ 1 log 4 dτ A ] τ c Mr 1 log 2 1 log 4 Ms 1 log 2 1 log 4 for ll >. Vi he men vlue heorem, one cn direcly compue A c ] 0 lim sup log 2 log 2 log 2 ] lim log 2 2 log = Thus, we hve Mr 1 log 2 Mr 1 log 2 Mr 1 log2 log 2 log 4 Ms 1 log 2 Ms 1 log 2 Ms 1 log2 log 2 log 4 for ll lrge.from2.13, i is seen h 1 log 6, 3.3 p 1 log mx { sin p y p, cos p y p} 1 2, y R. Hence, for lrge,wehve cos p y p log 4 sin p y p p 1log 4 > 2 log 5, y R. 3.5 Alogeher, using 3.3, 3.4, nd 3.5, we obin ψ 1 Mr 0 Mr 1 log 2 Ms 0 Ms 1 sinp ψ p log 2 p 1 cosp ψ p cos p ψ sin p ψ 2 log 5 2 log 6 A ] c for lrge,whichgives3.1. Lemm 3.4 Le ϕ be soluion of 2.21 on R. Then here exiss B >0such h he funcion ψ : R R defined by 2.23 sisfies he inequliy ψ 1 Mr 0 Mr 1 log 2 Ms 0 Ms 1 sinp ψ p log 2 p 1 for ll sufficienly lrge. cos p ψ p cos p ψ sin p ψ B ] log 6

9 Hsil nd Veselý Advnces in Difference Equions :190 Pge 9 of 17 Proof From Lemm 3.2, we know h he inequliy ψ 1 cosp ψ p sin p ψ p p 1 r 0 τ r 1τ log 2 τ s 0 τ s 1τ log 2 τ holds for ll >. I mens h i suffices o prove nd 1 1 dτ cos p ψ sin p ψ dτ A c ] r 0 τdτ Mr 0 A 0, 1 s 0 τdτ Ms 0 B 0, 3.6 r 1 τ log 2 τ dτ Mr 1 log 2 A 1 log 6, s 1 τ log 2 τ dτ Ms 1 log 2 B 1 log for some A 0, B 0, A 1, B 1 >0,ndforlllrge. Le f : R R be n rbirry coninuous periodic funcion wih period δ >0.Legiven number be sufficienly lrge nd l N be such h lδ,l 1δ. We hve 1 f τdτ Mf 1 f τdτ 1 lδ f τdτ 1 lδ f τdτ Mf 1 f τdτ 1 lδ f τdτ 1 lδ f τdτ lδ lδ δ mx 0,δ f 1 lδ 1 lδmf δ mx 0,δ f δmf. 3.9 Thus, 3.6isvlidforsee2.9 A 0 = α r 0 Mr 0 ], B 0 = α s 0 Ms 0 ]. Since 3.9 is rue for ny periodic coninuous funcion f,weobinsee2.3, 2.4, r 1 τdτ Mr 1 1 = R i τdτ M R i 1 = R i τdτ MR i

10 Hsil nd Veselý Advnces in Difference Equions :190 Pge 10 of 17 1 R i τdτ MR i α i R i α i MR i Anlogously, 1 s 1 τdτ Ms 1 β i S i β i MS i Using 3.10, we hve 1 r 1 τ log 2 τ dτ Mr 1 log 2 1 r 1 τ log 2 τ dτ 1 r 1 τ log 2 dτ 1 r 1 τ log 2 dτ Mr 1 log 2 r 1 1 log 2 τ 1 log 2 dτ 1 1 log 2 r 1 τdτ Mr 1 log r 1 2 log 2 ] 1 α i R i α i MR i log 4 log for lrge. Considering 3.2, we obin 3.7 from3.12. Anlogously, one cn obin 3.8 pplying Hence, he proof is complee. Lemm 3.5 Equion 2.8 is non-oscillory. Proof The non-oscillion of 2.8 follows from 16], Theorem 4.1 see lso 17] nd he Surmin hlf-liner comprison heorem see, e.g.,14], Theorem More precisely, from 16], Theorem 4.1 i follows h he equion Mr 0 Mr 1 log 2 Ms 0 Ms 1 log 2 p ε q x ] log loglog ] 2 ε log loglog ] 2 x p = is non-oscillory for ny sufficienly smll ε > 0 i is described in 17] nd 3.13 is non-oscillory mjorn of 2.8. Lemm 3.6 For soluion ϕ of 2.22 on R, we hve lim sup ϕ=lim sup ψ<, 3.14 where ψ is inroduced in Proof Lemm 3.5 sys h ny considered soluion ϕ is bounded from bove. Indeed, i suffices o consider 2.16 nd2.22 whensin p ϕ = 0. For deils, we cn refer, e.g., o 14], Secion 1.1.3, 4, 15, 19]. Finlly, he equliy in 3.14follows from Lemm 3.1.

11 Hsil nd Veselý Advnces in Difference Equions :190 Pge 11 of 17 Now we cn prove he nnounced resul. Theorem 3.1 Equion 2.2 wih 2.6 nd 2.7 is non-oscillory. Proof We recll h he non-oscillion of 2.2 is equivlen o he boundedness of soluion ϕ of 2.21 onr see gin ech one of ppers 4, 15] or19]. In ddiion, soluion ϕ of 2.21 onr is bounded if nd only if lim sup ϕ<. Iisseenfrom he righ-hnd side of 2.21whensin p ϕ=0. Le sufficienly lrge T > be given. Le us consider n rbirry soluion ϕ of 2.21on R T nd he corresponding funcion ψ : R T R given by Lemm 3.4 ensures ψ 1 Mr 0 Mr 1 log 2 Ms 0 Ms 1 sinp ψ p log 2 p 1 Thus, we hve ψ < 1 Mr 0 Mr 1 log 2 Ms 0 Ms 1 sinp ψ p log 2 p 1 cosp ψ p cos p ψ sin p ψ B ] log 6, > T. cosp ψ p cos p ψ sin p ψ 1 log 5 ], > T, 3.15 becuse T cnbechosenrbirrily. We consider he soluion ϕ of 2.22 given by he iniil condiion see 2.11 ϕt=mx { ϕt ; 0, T] } π p 3.16 nd he corresponding funcion ψ given by Considering he form of 2.22 nd 3.16, one cn show h ψt< ψt Lemm 3.6 sys h 3.14isvlidfor ϕ nd ψ, i.e.,wehve lim sup ϕ=lim sup ψ< Lemm 3.3 gives ψ 1 Mr 0 Mr 1 log 2 Ms 0 Ms 1 sinp ψ p log 2 p 1 cos p ψ p cos p ψ sin p ψ 1 log 5 Considering 3.15, 3.17, 3.18, nd 3.19, we obin ], > T lim sup ψ lim sup ψ<.

12 Hsil nd Veselý Advnces in Difference Equions :190 Pge 12 of 17 Indeed, i suffices o consider he cse when ψ 0 = ψ 0 for ny 0 > T. Using Lemm 3.1, we know h ϕ is bounded from bove which implies he non-oscillion of 2.2. To illusre our resuls, we menion exmples. We remrk h ll given exmples re no generlly solvble using ny previously known non-oscillion crieri. Exmple 1 Immediely, Theorem 3.1 gives he non-oscillion of severl equions. For exmple, he equions 1 sin p q2 sin 2 2p log 2 1rcnsin3 p q x ] q p πq sin 1 4 log 2 re non-oscillory. p q x ] q p sin5 x =0, p x p =0 Theorem 3.1 implies new resuls in mny specil cses. We obin new resul even for liner equions wih consn nd periodic coefficiens which is formuled s he corollry below. Corollry 3.1 Le f, g be periodic nd coninuous funcions such h Mf, Mg 0 nd Mf Mg=1.The equion 1 f 1 ] log 2 x 1 1 g 4 2 log 2 x = is non-oscillory. Exmple 2 Le 0, 1 nd ϱ, σ > 1 be rbirry. For he liner equions x ] 1 sin ϱ /log 2 11 sin σ / log 2 x =0, 4 2 x ] 1 sin ϱ /log 2 11 cos σ / log 2 x =0, 4 2 x ] 1 cos ϱ /log 2 11 sin σ / log 2 x =0, 4 2 x ] 1 cos ϱ /log 2 11 cos σ / log 2 x =0, 4 2 we cn pply Corollry 3.1. Thus, he bove equions re non-oscillory. Now we menion wo relevn resuls. Theorem 3.2 Le c : R R be coninuous funcion, for which men vlue Mc 1 q exiss nd for which 0< inf R c sup R c<,

13 Hsil nd Veselý Advnces in Difference Equions :190 Pge 13 of 17 nd le d : R R be coninuous funcion hving men vlue Md. Le us consider he equion c x ] d x= p nd denoe := q p M c 1 q] 1 p. The following semens hold. i Equion 3.21 is oscillory if Md>. ii Equion 3.21 is non-oscillory if Md<. Proof See 12], Theorem 9. Theorem 3.3 Le c 1 be posiive α-periodic coninuous funcion, le d 1 be n α-periodic coninuous funcion, nd le c 2, d 2 : R R be rbirry coninuous funcions for which men vlues Mc 2, M c 2, Md 2, M d 2 exis. Le us consider he equion c 1 c p q 2 x ] log 2 d 1 d 2 x log 2 = p nd denoe Ɣ := 2q p 1 Md 2 Mc 1 ] p q 2q 2 pmc 2 Mc 1 ] 1. Le c 1 c 2 log 2 >0,, qp Md 1 Mc 1 ] p q =1. The following semens hold. i Equion 3.22 is oscillory if Ɣ >1. ii Equion 3.22 is non-oscillory if Ɣ <1. Proof See 18], Theorem 5.1, where i suffices o pu n =1. Combining Theorems 3.2 nd 3.3, we obin he following one. Theorem 3.4 The following semens hold. i If Mr 0 ] p q Ms 0 >q p, hen 2.2 is oscillory. ii If Mr 0 ] p q Ms 0 <q p, hen 2.2 is non-oscillory. iii If Mr 0 ] p q Ms 0 =q p nd Ms 1 Mr 0 ] p q p q Mr 1 Mr p1 0 ] 1 q 1 p > 2, hen 2.2 is oscillory.

14 Hsil nd Veselý Advnces in Difference Equions :190 Pge 14 of 17 iv If Mr 0 ] p q Ms 0 =q p nd Ms 1 Mr 0 ] p q p q Mr 1 Mr p1 0 ] 1 q 1 p < 2, hen 2.2 is non-oscillory. Proof The heorem follows immediely from Theorem 3.2 prs i, ii nd Theorem 3.3 prs iii, iv. I suffices o consider he ideniies p 1=p/q, 1 q p/q=1. ApplyingTheorem 3.4, we cn improve Theorem 3.1ndCorollry 3.1 ino he following more convenien forms. We give illusring exmples s well. Theorem 3.5 Equion 2.5 is non-oscillory if nd only if lim α p α 1 p p q α r 0 τdτ s 0 τdτ q p p q p m S i τdτ r 0 τdτ R ] iτdτ q p1 r 0 τdτ q1 p 2. Proof I suffices o consider Theorems 3.1 nd 3.4. Exmple 3 Le, b, c, d >0, 1, 2, 3, b 1 0,p = 3/2. Le us consider he hlf-liner equion 1 ccos1 sin 1 cos 2 sin 3 /log 2 x ] x b d cosb1 sinb 1 log ] 2 x = x Theorem 3.5 gurnees he oscillion of 3.23 ifb 2 > 1/27; nd is non-oscillion if b 2 < 1/27. We pu b 2 = 1/27. Since M cosα sinα = M cosα = M sinα =0, α 0, nd M cosα sinα ] 2 = 1 8, α 0, we obin he oscillion of 3.23 ford 2 > 16/3 nd he non-oscillion in he opposie cse d 2 16/3. Corollry 3.2 Le f, g be periodic nd coninuous funcions such h Mf, Mg 0. Equion 3.20 is oscillory if nd only if Mf Mg>1.

15 Hsil nd Veselý Advnces in Difference Equions :190 Pge 15 of 17 Exmple 4 Using Corollry 3.2 nd Theorem 3.5, we cn generlize Exmple 2. For ny 1, 2, b 1, b 2 >0,ndϱ, σ > 1, he liner equions x ] 1 b 1 sin ϱ /log 2 2 b 2 sin σ / log 2 x =0, 4 2 x ] 1 b 1 sin ϱ /log 2 2 b 2 cos σ / log 2 x =0, 4 2 x ] 1 b 1 cos ϱ /log 2 2 b 2 sin σ / log 2 x =0, 4 2 x ] 1 b 1 cos ϱ /log 2 2 b 2 cos σ / log 2 x =0 4 2 re oscillory for 1 2 > 1 nd non-oscillory for 1 2 < 1. In he limiing cse 1 2 =1, one cn esily rewrie he considered equions in he form of 3.20, where Mf =b 1 / 1 nd Mg= 1 b 2. Therefore, in he cse 1 2 = 1, he bove equions re oscillory if nd only if b 1 > b 2. If we know h n equion is condiionlly oscillory, hen we cn use i s esing equion for mny oher equions. For exmple, using he Surmin comprison heorem see 14], Theorem 1.2.4, we cn proceed for perurbed Euler ype hlf-liner equions s follows. Le us consider nd r p q 0 x ] s0 x p g x= r0 f ] p q x ] s0 x p =0, 3.25 where f, g re rbirry coninuous funcions nd r 0, s 0 re α-periodic coninuous funcions such h r 0, f re posiive nd Mr 0 =1,Ms 0 =q p. Equion 3.24 is non-oscillory if here exis β i -periodic coninuous funcions S i, i {1,...,n},suchh M S i =1, S i >0, R, 3.26 nd lim sup g p log 2 n S i < q1 p Equion 3.24 is oscillory if he funcions S i sisfy 3.26nd lim inf g p log 2 n S i > q1 p

16 Hsil nd Veselý Advnces in Difference Equions :190 Pge 16 of 17 Indeed, from inequliy 3.27, we obin ε > 0 wih he propery h q 1 p n g< 2 ε S i p log 2 for ll sufficienly lrge.thus,isufficesousetheorem3.5 nd he Surmin comprison heorem. Anlogously, we ge he semen concerning inequliy Similrly, 3.25 is non-oscillory if here exis α i -periodic coninuous funcions R i for i {1,...,m} such h m M R i =1, m R i >0, R, 3.29 nd we hve lim sup f log 2 m R i < q2 2p. On he oher hnd, if he funcions R i sisfy 3.29nd lim inf f log 2 m R i > q2 2p, hen 3.25isoscillory. Compeing ineress The uhors declre h hey hve no compeing ineress. Auhors conribuions The uhors declre h he reserch ws relized in collborion wih he sme responsibiliy nd conribuions. All uhors red nd pproved he finl mnuscrip. Acknowledgemens The firs uhor is suppored by Grn P201/10/1032 of he Czech Science Foundion. The second uhor is suppored by he projec Employmen of Bes Young Scieniss for Inernionl Cooperion Empowermen CZ.1.07/2.3.00/ co-finnced from Europen Socil Fund nd he se budge of he Czech Republic. The uhors would like o hnk he referees for heir commens which improved he presenion of he resuls. Received: 25 Februry 2015 Acceped: 8 June 2015 References 1. Kneser, A: Unersuchungen über die reellen Nullsellen der Inegrle linerer Differenilgleichungen. Mh. Ann. 423, doi: /bf Geszesy, F, Ünl, M: Perurbive oscillion crieri nd Hrdy-ype inequliies. Mh. Nchr. 189, doi: /mn Schmid, KM: Oscillion of perurbed Hill equion nd lower specrum of rdilly periodic Schrödinger operors in he plne. Proc. Am. Mh. Soc. 127, doi: /s Schmid, KM: Criicl coupling consn nd eigenvlue sympoics of perurbed periodic Surm-Liouville operors. Commun. Mh. Phys. 211, doi: /s Krüger, H, Teschl, G: Effecive Prüfer ngles nd relive oscillion crieri. J. Differ. Equ , doi: /j.jde Krüger, H, Teschl, G: Relive oscillion heory for Surm-Liouville operors exended. J. Func. Anl. 2546, doi: /j.jf Krüger, H, Teschl, G: Relive oscillion heory, weighed zeros of he Wronskin, nd he specrl shif funcion. Commun. Mh. Phys. 2872, doi: /s Elber, Á: Oscillion nd nonoscillion heorems for some nonliner ordinry differenil equions. In: Ordinry nd Pril Differenil Equions, Dundee, Lecure Noes in Mh., vol. 964, pp Springer, Berlin Elber, Á: Asympoic behviour of uonomous hlf-liner differenil sysems on he plne. Sudi Sci. Mh. Hung ,

17 Hsil nd Veselý Advnces in Difference Equions :190 Pge 17 of Hsil, P: Condiionl oscillion of hlf-liner differenil equions wih periodic coefficiens. Arch. Mh. 442, Hsil, P, Veselý, M: Oscillion of hlf-liner differenil equions wih sympoiclly lmos periodic coefficiens. Adv. Differ. Equ. 2013, Aricle ID doi: / Veselý, M, Hsil, P, Mřík, R: Condiionl oscillion of hlf-liner differenil equions wih coefficiens hving men vlues.absr.appl.anl.2014, Aricle ID doi: /2014/ Agrwl, RP, Grce, SR, O Regn, D: Oscillion Theory for Second Order Liner, Hlf-Liner, Superliner nd Subliner Dynmic Equions. Kluwer Acdemic, Dordrech doi: / Došlý, O, Řehák, P: Hlf-Liner Differenil Equions. Elsevier, Amserdm Došlý, O, Hsil, P: Criicl oscillion consn for hlf-liner differenil equions wih periodic coefficiens. Ann. M. Pur Appl. 1903, doi: /s Došlý, O, Funková, H: Perurbions of hlf-liner Euler differenil equion nd rnsformions of modified Ricci equion. Absr. Appl. Anl. 2012,Aricle ID doi: /2012/ Došlý, O, Funková, H: Euler ype hlf-liner differenil equion wih periodic coefficiens. Absr. Appl. Anl. 2013, Aricle ID doi: /2013/ Došlý, O, Veselý, M: Oscillion nd non-oscillion of Euler ype hlf-liner differenil equions. J. Mh. Anl. Appl. 4291, Veselý, M, Hsil, P: Condiionl oscillion of Riemnn-Weber hlf-liner differenil equions wih sympoiclly lmos periodic coefficiens. Sudi Sci. Mh. Hung. 513, doi: /SScMh Elber, Á, Schneider, A: Perurbions of hlf-liner Euler differenil equion. Resuls Mh , doi: /bf Hsil, P, Veselý, M: Criicl oscillion consn for difference equions wih lmos periodic coefficiens. Absr. Appl. Anl. 2012, Aricle ID doi: /2012/ Nĭmn, PB: The se of isoled poins of increse of he specrl funcion perining o limi-consn Jcobi mrix. Izv.Vysš. Učebn. Zved., M , Veselý, M, Hsil, P: Oscillion nd non-oscillion of sympoiclly lmos periodic hlf-liner difference equions. Absr. Appl. Anl. 2013,Aricle ID doi: /2013/ Hsil, P, Víovec, J: Condiionl oscillion of hlf-liner Euler-ype dynmic equions on ime scles. Elecron. J. Qul. Theory Differ. Equ. 2015, Víovec, J: Criicl oscillion consn for Euler-ype dynmic equions on ime scles. Appl. Mh. Compu. 2437, doi: /j.mc Veselý, M, Hsil, P: Non-oscillion of hlf-liner differenil equions wih periodic coefficiens. Elecron. J. Qul. Theory Differ. Equ. 2015,

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 10, No. 2, 2017, 335-347 ISSN 1307-5543 www.ejpm.com Published by New York Business Globl Convergence of Singulr Inegrl Operors in Weighed Lebesgue

More information

3. Renewal Limit Theorems

3. Renewal Limit Theorems Virul Lborories > 14. Renewl Processes > 1 2 3 3. Renewl Limi Theorems In he inroducion o renewl processes, we noed h he rrivl ime process nd he couning process re inverses, in sens The rrivl ime process

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

OSCILLATION CONSTANT FOR MODIFIED EULER TYPE HALF-LINEAR EQUATIONS

OSCILLATION CONSTANT FOR MODIFIED EULER TYPE HALF-LINEAR EQUATIONS Elecronic Journal of Differenial Equaions, Vol. 205 (205), No. 220, pp. 4. ISSN: 072-669. URL: hp://ejde.mah.xsae.edu or hp://ejde.mah.un.edu fp ejde.mah.xsae.edu OSCILLATION CONSTANT FOR MODIFIED EULER

More information

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains Green s Funcions nd Comprison Theorems for Differenil Equions on Mesure Chins Lynn Erbe nd Alln Peerson Deprmen of Mhemics nd Sisics, Universiy of Nebrsk-Lincoln Lincoln,NE 68588-0323 lerbe@@mh.unl.edu

More information

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR j IAN KNOWLES 1. Inroducion Consider he forml differenil operor T defined by el, (1) where he funcion q{) is rel-vlued nd loclly

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals Sud. Univ. Beş-Bolyi Mh. 6(5, No. 3, 355 366 Hermie-Hdmrd-Fejér ype inequliies for convex funcions vi frcionl inegrls İmd İşcn Asrc. In his pper, firsly we hve eslished Hermie Hdmrd-Fejér inequliy for

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM Elecronic Journl of Differenil Equions, Vol. 208 (208), No. 50, pp. 6. ISSN: 072-669. URL: hp://ejde.mh.xse.edu or hp://ejde.mh.un.edu EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE

More information

September 20 Homework Solutions

September 20 Homework Solutions College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum

More information

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q). INTEGRALS JOHN QUIGG Eercise. Le f : [, b] R be bounded, nd le P nd Q be priions of [, b]. Prove h if P Q hen U(P ) U(Q) nd L(P ) L(Q). Soluion: Le P = {,..., n }. Since Q is obined from P by dding finiely

More information

Journal of Mathematical Analysis and Applications. Two normality criteria and the converse of the Bloch principle

Journal of Mathematical Analysis and Applications. Two normality criteria and the converse of the Bloch principle J. Mh. Anl. Appl. 353 009) 43 48 Conens liss vilble ScienceDirec Journl of Mhemicl Anlysis nd Applicions www.elsevier.com/loce/jm Two normliy crieri nd he converse of he Bloch principle K.S. Chrk, J. Rieppo

More information

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX Journl of Applied Mhemics, Sisics nd Informics JAMSI), 9 ), No. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX MEHMET ZEKI SARIKAYA, ERHAN. SET

More information

REAL ANALYSIS I HOMEWORK 3. Chapter 1

REAL ANALYSIS I HOMEWORK 3. Chapter 1 REAL ANALYSIS I HOMEWORK 3 CİHAN BAHRAN The quesions re from Sein nd Shkrchi s e. Chper 1 18. Prove he following sserion: Every mesurble funcion is he limi.e. of sequence of coninuous funcions. We firs

More information

Asymptotic relationship between trajectories of nominal and uncertain nonlinear systems on time scales

Asymptotic relationship between trajectories of nominal and uncertain nonlinear systems on time scales Asympoic relionship beween rjecories of nominl nd uncerin nonliner sysems on ime scles Fim Zohr Tousser 1,2, Michel Defoor 1, Boudekhil Chfi 2 nd Mohmed Djemï 1 Absrc This pper sudies he relionship beween

More information

New Inequalities in Fractional Integrals

New Inequalities in Fractional Integrals ISSN 1749-3889 (prin), 1749-3897 (online) Inernionl Journl of Nonliner Science Vol.9(21) No.4,pp.493-497 New Inequliies in Frcionl Inegrls Zoubir Dhmni Zoubir DAHMANI Lborory of Pure nd Applied Mhemics,

More information

Research Article New General Integral Inequalities for Lipschitzian Functions via Hadamard Fractional Integrals

Research Article New General Integral Inequalities for Lipschitzian Functions via Hadamard Fractional Integrals Hindwi Pulishing orporion Inernionl Journl of Anlysis, Aricle ID 35394, 8 pges hp://d.doi.org/0.55/04/35394 Reserch Aricle New Generl Inegrl Inequliies for Lipschizin Funcions vi Hdmrd Frcionl Inegrls

More information

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION Avilble online hp://scik.org Eng. Mh. Le. 15, 15:4 ISSN: 49-9337 CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION PANDEY, C. P. 1, RAKESH MOHAN AND BHAIRAW NATH TRIPATHI 3 1 Deprmen o Mhemics, Ajy

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

Procedia Computer Science

Procedia Computer Science Procedi Compuer Science 00 (0) 000 000 Procedi Compuer Science www.elsevier.com/loce/procedi The Third Informion Sysems Inernionl Conference The Exisence of Polynomil Soluion of he Nonliner Dynmicl Sysems

More information

1. Introduction. 1 b b

1. Introduction. 1 b b Journl of Mhemicl Inequliies Volume, Number 3 (007), 45 436 SOME IMPROVEMENTS OF GRÜSS TYPE INEQUALITY N. ELEZOVIĆ, LJ. MARANGUNIĆ AND J. PEČARIĆ (communiced b A. Čižmešij) Absrc. In his pper some inequliies

More information

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX.

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX. MEHMET ZEKI SARIKAYA?, ERHAN. SET, AND M. EMIN OZDEMIR Asrc. In his noe, we oin new some ineuliies

More information

f t f a f x dx By Lin McMullin f x dx= f b f a. 2

f t f a f x dx By Lin McMullin f x dx= f b f a. 2 Accumulion: Thoughs On () By Lin McMullin f f f d = + The gols of he AP* Clculus progrm include he semen, Sudens should undersnd he definie inegrl s he ne ccumulion of chnge. 1 The Topicl Ouline includes

More information

Solutions to Problems from Chapter 2

Solutions to Problems from Chapter 2 Soluions o Problems rom Chper Problem. The signls u() :5sgn(), u () :5sgn(), nd u h () :5sgn() re ploed respecively in Figures.,b,c. Noe h u h () :5sgn() :5; 8 including, bu u () :5sgn() is undeined..5

More information

Fractional operators with exponential kernels and a Lyapunov type inequality

Fractional operators with exponential kernels and a Lyapunov type inequality Abdeljwd Advnces in Difference Equions (2017) 2017:313 DOI 10.1186/s13662-017-1285-0 RESEARCH Open Access Frcionl operors wih exponenil kernels nd Lypunov ype inequliy Thbe Abdeljwd* * Correspondence: bdeljwd@psu.edu.s

More information

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under

More information

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives In J Nonliner Anl Appl 9 8 No, 69-8 ISSN: 8-68 elecronic hp://dxdoiorg/75/ijn8745 On Hdmrd nd Fejér-Hdmrd inequliies for Cpuo -frcionl derivives Ghulm Frid, Anum Jved Deprmen of Mhemics, COMSATS Universiy

More information

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic Journl of Applied Mhemics & Bioinformics, vol.2, no.2, 2012, 1-10 ISSN: 1792-6602 prin, 1792-6939 online Scienpress Ld, 2012 Applicion on Inner Produc Spce wih Fixed Poin Theorem in Probbilisic Rjesh Shrivsv

More information

Some Inequalities variations on a common theme Lecture I, UL 2007

Some Inequalities variations on a common theme Lecture I, UL 2007 Some Inequliies vriions on common heme Lecure I, UL 2007 Finbrr Hollnd, Deprmen of Mhemics, Universiy College Cork, fhollnd@uccie; July 2, 2007 Three Problems Problem Assume i, b i, c i, i =, 2, 3 re rel

More information

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS - TAMKANG JOURNAL OF MATHEMATICS Volume 5, Number, 7-5, June doi:5556/jkjm555 Avilble online hp://journlsmhkueduw/ - - - GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS MARCELA

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

Solutions for Nonlinear Partial Differential Equations By Tan-Cot Method

Solutions for Nonlinear Partial Differential Equations By Tan-Cot Method IOSR Journl of Mhemics (IOSR-JM) e-issn: 78-578. Volume 5, Issue 3 (Jn. - Feb. 13), PP 6-11 Soluions for Nonliner Pril Differenil Equions By Tn-Co Mehod Mhmood Jwd Abdul Rsool Abu Al-Sheer Al -Rfidin Universiy

More information

On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations

On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations Journl of Mhemics nd Sisics 5 ():136-14, 9 ISS 1549-3644 9 Science Publicions On he Pseudo-Specrl Mehod of Solving Liner Ordinry Differenil Equions B.S. Ogundre Deprmen of Pure nd Applied Mhemics, Universiy

More information

Yan Sun * 1 Introduction

Yan Sun * 1 Introduction Sun Boundry Vlue Problems 22, 22:86 hp://www.boundryvlueproblems.com/conen/22//86 R E S E A R C H Open Access Posiive soluions of Surm-Liouville boundry vlue problems for singulr nonliner second-order

More information

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS OF FOURTH-ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH REGULARLY VARYING COEFFICIENTS

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS OF FOURTH-ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH REGULARLY VARYING COEFFICIENTS Elecronic Journl of Differenil Equions, Vol. 06 06), No. 9, pp. 3. ISSN: 07-669. URL: hp://ejde.mh.xse.edu or hp://ejde.mh.un.edu ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS OF FOURTH-ORDER NONLINEAR

More information

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

PHYSICS 1210 Exam 1 University of Wyoming 14 February points PHYSICS 1210 Em 1 Uniersiy of Wyoming 14 Februry 2013 150 poins This es is open-noe nd closed-book. Clculors re permied bu compuers re no. No collborion, consulion, or communicion wih oher people (oher

More information

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform Inegrl Trnsform Definiions Funcion Spce funcion spce A funcion spce is liner spce of funcions defined on he sme domins & rnges. Liner Mpping liner mpping Le VF, WF e liner spces over he field F. A mpping

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

Solutions of half-linear differential equations in the classes Gamma and Pi

Solutions of half-linear differential equations in the classes Gamma and Pi Soluions of hlf-liner differenil equions in he clsses Gmm nd Pi Pvel Řehák Insiue of Mhemics, Acdemy of Sciences CR CZ-6662 Brno, Czech Reublic; Fculy of Educion, Msryk Universiy CZ-60300 Brno, Czech Reublic

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak .65, MHD Theory of Fusion Sysems Prof. Freidberg Lecure 9: The High e Tokmk Summry of he Properies of n Ohmic Tokmk. Advnges:. good euilibrium (smll shif) b. good sbiliy ( ) c. good confinemen ( τ nr )

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

Temperature Rise of the Earth

Temperature Rise of the Earth Avilble online www.sciencedirec.com ScienceDirec Procedi - Socil nd Behviorl Scien ce s 88 ( 2013 ) 220 224 Socil nd Behviorl Sciences Symposium, 4 h Inernionl Science, Socil Science, Engineering nd Energy

More information

Fractional Calculus. Connor Wiegand. 6 th June 2017

Fractional Calculus. Connor Wiegand. 6 th June 2017 Frcionl Clculus Connor Wiegnd 6 h June 217 Absrc This pper ims o give he reder comforble inroducion o Frcionl Clculus. Frcionl Derivives nd Inegrls re defined in muliple wys nd hen conneced o ech oher

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

1.0 Electrical Systems

1.0 Electrical Systems . Elecricl Sysems The ypes of dynmicl sysems we will e sudying cn e modeled in erms of lgeric equions, differenil equions, or inegrl equions. We will egin y looking fmilir mhemicl models of idel resisors,

More information

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS Hceepe Journl of Mhemics nd Sisics Volume 45) 0), 65 655 ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS M Emin Özdemir, Ahme Ock Akdemir nd Erhn Se Received 6:06:0 : Acceped

More information

A Kalman filtering simulation

A Kalman filtering simulation A Klmn filering simulion The performnce of Klmn filering hs been esed on he bsis of wo differen dynmicl models, ssuming eiher moion wih consn elociy or wih consn ccelerion. The former is epeced o beer

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

MAT 266 Calculus for Engineers II Notes on Chapter 6 Professor: John Quigg Semester: spring 2017

MAT 266 Calculus for Engineers II Notes on Chapter 6 Professor: John Quigg Semester: spring 2017 MAT 66 Clculus for Engineers II Noes on Chper 6 Professor: John Quigg Semeser: spring 7 Secion 6.: Inegrion by prs The Produc Rule is d d f()g() = f()g () + f ()g() Tking indefinie inegrls gives [f()g

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

A Simple Method to Solve Quartic Equations. Key words: Polynomials, Quartics, Equations of the Fourth Degree INTRODUCTION

A Simple Method to Solve Quartic Equations. Key words: Polynomials, Quartics, Equations of the Fourth Degree INTRODUCTION Ausrlin Journl of Bsic nd Applied Sciences, 6(6): -6, 0 ISSN 99-878 A Simple Mehod o Solve Quric Equions Amir Fhi, Poo Mobdersn, Rhim Fhi Deprmen of Elecricl Engineering, Urmi brnch, Islmic Ad Universi,

More information

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v - vo = Δv Δ ccelerion = = v - vo chnge of velociy elpsed ime Accelerion is vecor, lhough in one-dimensionl

More information

Research Article Generalized Fractional Integral Inequalities for Continuous Random Variables

Research Article Generalized Fractional Integral Inequalities for Continuous Random Variables Journl of Proiliy nd Sisics Volume 2015, Aricle ID 958980, 7 pges hp://dx.doi.org/10.1155/2015/958980 Reserch Aricle Generlized Frcionl Inegrl Inequliies for Coninuous Rndom Vriles Adullh Akkur, Zeynep

More information

Probability, Estimators, and Stationarity

Probability, Estimators, and Stationarity Chper Probbiliy, Esimors, nd Sionriy Consider signl genered by dynmicl process, R, R. Considering s funcion of ime, we re opering in he ime domin. A fundmenl wy o chrcerize he dynmics using he ime domin

More information

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m)

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m) Univ. Beogrd. Pul. Elekroehn. Fk. Ser. M. 8 (997), 79{83 FUTHE GENEALIZATIONS OF INEQUALITIES FO AN INTEGAL QI Feng Using he Tylor's formul we prove wo inegrl inequliies, h generlize K. S. K. Iyengr's

More information

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 4 7, 00, Wilmingon, NC, USA pp 0 Oscillaion of an Euler Cauchy Dynamic Equaion S Huff, G Olumolode,

More information

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008)

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008) MATH 14 AND 15 FINAL EXAM REVIEW PACKET (Revised spring 8) The following quesions cn be used s review for Mh 14/ 15 These quesions re no cul smples of quesions h will pper on he finl em, bu hey will provide

More information

HUI-HSIUNG KUO, ANUWAT SAE-TANG, AND BENEDYKT SZOZDA

HUI-HSIUNG KUO, ANUWAT SAE-TANG, AND BENEDYKT SZOZDA Communicions on Sochsic Anlysis Vol 6, No 4 2012 603-614 Serils Publicions wwwserilspublicionscom THE ITÔ FORMULA FOR A NEW STOCHASTIC INTEGRAL HUI-HSIUNG KUO, ANUWAT SAE-TANG, AND BENEDYKT SZOZDA Absrc

More information

..,..,.,

..,..,., 57.95. «..» 7, 9,,. 3 DOI:.459/mmph7..,..,., E-mil: yshr_ze@mil.ru -,,. -, -.. -. - - ( ). -., -. ( - ). - - -., - -., - -, -., -. -., - - -, -., -. : ; ; - ;., -,., - -, []., -, [].,, - [3, 4]. -. 3 (

More information

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples.

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples. Improper Inegrls To his poin we hve only considered inegrls f(x) wih he is of inegrion nd b finie nd he inegrnd f(x) bounded (nd in fc coninuous excep possibly for finiely mny jump disconinuiies) An inegrl

More information

( ) ( ) ( ) ( ) ( ) ( y )

( ) ( ) ( ) ( ) ( ) ( y ) 8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll

More information

Average & instantaneous velocity and acceleration Motion with constant acceleration

Average & instantaneous velocity and acceleration Motion with constant acceleration Physics 7: Lecure Reminders Discussion nd Lb secions sr meeing ne week Fill ou Pink dd/drop form if you need o swich o differen secion h is FULL. Do i TODAY. Homework Ch. : 5, 7,, 3,, nd 6 Ch.: 6,, 3 Submission

More information

Copyright by Tianran Geng 2017

Copyright by Tianran Geng 2017 Copyrigh by Tinrn Geng 207 The Disserion Commiee for Tinrn Geng cerifies h his is he pproved version of he following disserion: Essys on forwrd porfolio heory nd finncil ime series modeling Commiee: Thlei

More information

On The Hermite- Hadamard-Fejér Type Integral Inequality for Convex Function

On The Hermite- Hadamard-Fejér Type Integral Inequality for Convex Function Turkish Journl o Anlysis nd Numer Theory, 4, Vol., No. 3, 85-89 Aville online h://us.scieu.com/jn//3/6 Science nd Educion Pulishing DOI:.69/jn--3-6 On The Hermie- Hdmrd-Fejér Tye Inegrl Ineuliy or Convex

More information

Transforms II - Wavelets Preliminary version please report errors, typos, and suggestions for improvements

Transforms II - Wavelets Preliminary version please report errors, typos, and suggestions for improvements EECS 3 Digil Signl Processing Universiy of Cliforni, Berkeley: Fll 007 Gspr November 4, 007 Trnsforms II - Wveles Preliminry version plese repor errors, ypos, nd suggesions for improvemens We follow n

More information

Development of a New Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations

Development of a New Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations IOS Journl o Memics IOSJM ISSN: 78-78 Volume Issue July-Aug PP -9 www.iosrjournls.org Developmen o New Sceme or e Soluion o Iniil Vlue Problems in Ordinry Dierenil Equions Ogunrinde. B. dugb S. E. Deprmen

More information

MTH 146 Class 11 Notes

MTH 146 Class 11 Notes 8.- Are of Surfce of Revoluion MTH 6 Clss Noes Suppose we wish o revolve curve C round n is nd find he surfce re of he resuling solid. Suppose f( ) is nonnegive funcion wih coninuous firs derivive on he

More information

NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model

NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model Angn, A., e l.: New Frcionl Derivives wih Non-Locl nd THERMAL SCIENCE, Yer 216, Vol. 2, No. 2, pp. 763-769 763 NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory nd Applicion o He

More information

Systems Variables and Structural Controllability: An Inverted Pendulum Case

Systems Variables and Structural Controllability: An Inverted Pendulum Case Reserch Journl of Applied Sciences, Engineering nd echnology 6(: 46-4, 3 ISSN: 4-7459; e-issn: 4-7467 Mxwell Scienific Orgniion, 3 Submied: Jnury 5, 3 Acceped: Mrch 7, 3 Published: November, 3 Sysems Vribles

More information

IX.2 THE FOURIER TRANSFORM

IX.2 THE FOURIER TRANSFORM Chper IX The Inegrl Trnsform Mehods IX. The Fourier Trnsform November, 7 7 IX. THE FOURIER TRANSFORM IX.. The Fourier Trnsform Definiion 7 IX.. Properies 73 IX..3 Emples 74 IX..4 Soluion of ODE 76 IX..5

More information

Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function

Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function Anlyic soluion of liner frcionl differenil equion wih Jumrie derivive in erm of Mig-Leffler funcion Um Ghosh (), Srijn Sengup (2), Susmi Srkr (2b), Shnnu Ds (3) (): Deprmen of Mhemics, Nbdwip Vidysgr College,

More information

Approximation and numerical methods for Volterra and Fredholm integral equations for functions with values in L-spaces

Approximation and numerical methods for Volterra and Fredholm integral equations for functions with values in L-spaces Approximion nd numericl mehods for Volerr nd Fredholm inegrl equions for funcions wih vlues in L-spces Vir Bbenko Deprmen of Mhemics, The Universiy of Uh, Sl Lke Ciy, UT, 842, USA Absrc We consider Volerr

More information

Research Article Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations

Research Article Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations Hindawi Publishing Corporaion Boundary Value Problems Volume 11, Aricle ID 19156, 11 pages doi:1.1155/11/19156 Research Aricle Exisence and Uniqueness of Periodic Soluion for Nonlinear Second-Order Ordinary

More information

Chapter Direct Method of Interpolation

Chapter Direct Method of Interpolation Chper 5. Direc Mehod of Inerpolion Afer reding his chper, you should be ble o:. pply he direc mehod of inerpolion,. sole problems using he direc mehod of inerpolion, nd. use he direc mehod inerpolns o

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

ON THE STABILITY OF DELAY POPULATION DYNAMICS RELATED WITH ALLEE EFFECTS. O. A. Gumus and H. Kose

ON THE STABILITY OF DELAY POPULATION DYNAMICS RELATED WITH ALLEE EFFECTS. O. A. Gumus and H. Kose Mhemicl nd Compuionl Applicions Vol. 7 o. pp. 56-67 O THE STABILITY O DELAY POPULATIO DYAMICS RELATED WITH ALLEE EECTS O. A. Gumus nd H. Kose Deprmen o Mhemics Selcu Universiy 47 Kony Turey ozlem@selcu.edu.r

More information

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix.

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix. Mh 7 Exm - Prcice Prolem Solions. Find sis for he row spce of ech of he following mrices. Yor sis shold consis of rows of he originl mrix. 4 () 7 7 8 () Since we wn sis for he row spce consising of rows

More information

A Time Truncated Improved Group Sampling Plans for Rayleigh and Log - Logistic Distributions

A Time Truncated Improved Group Sampling Plans for Rayleigh and Log - Logistic Distributions ISSNOnline : 39-8753 ISSN Prin : 347-67 An ISO 397: 7 Cerified Orgnizion Vol. 5, Issue 5, My 6 A Time Trunced Improved Group Smpling Plns for Ryleigh nd og - ogisic Disribuions P.Kvipriy, A.R. Sudmni Rmswmy

More information

Some New Uniqueness Results of Solutions to Nonlinear Fractional Integro-Differential Equations

Some New Uniqueness Results of Solutions to Nonlinear Fractional Integro-Differential Equations Annals of Pure and Applied Mahemaics Vol. 6, No. 2, 28, 345-352 ISSN: 2279-87X (P), 2279-888(online) Published on 22 February 28 www.researchmahsci.org DOI: hp://dx.doi.org/.22457/apam.v6n2a Annals of

More information

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x)

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x) Properies of Logrihms Solving Eponenil nd Logrihmic Equions Properies of Logrihms Produc Rule ( ) log mn = log m + log n ( ) log = log + log Properies of Logrihms Quoien Rule log m = logm logn n log7 =

More information

LAPLACE TRANSFORM OVERCOMING PRINCIPLE DRAWBACKS IN APPLICATION OF THE VARIATIONAL ITERATION METHOD TO FRACTIONAL HEAT EQUATIONS

LAPLACE TRANSFORM OVERCOMING PRINCIPLE DRAWBACKS IN APPLICATION OF THE VARIATIONAL ITERATION METHOD TO FRACTIONAL HEAT EQUATIONS Wu, G.-.: Lplce Trnsform Overcoming Principle Drwbcks in Applicion... THERMAL SIENE: Yer 22, Vol. 6, No. 4, pp. 257-26 257 Open forum LAPLAE TRANSFORM OVEROMING PRINIPLE DRAWBAKS IN APPLIATION OF THE VARIATIONAL

More information

A new model for solving fuzzy linear fractional programming problem with ranking function

A new model for solving fuzzy linear fractional programming problem with ranking function J. ppl. Res. Ind. Eng. Vol. 4 No. 07 89 96 Journl of pplied Reserch on Indusril Engineering www.journl-prie.com new model for solving fuzzy liner frcionl progrmming prolem wih rning funcion Spn Kumr Ds

More information

Tax Audit and Vertical Externalities

Tax Audit and Vertical Externalities T Audi nd Vericl Eernliies Hidey Ko Misuyoshi Yngihr Ngoy Keizi Universiy Ngoy Universiy 1. Inroducion The vericl fiscl eernliies rise when he differen levels of governmens, such s he federl nd se governmens,

More information

Undetermined coefficients for local fractional differential equations

Undetermined coefficients for local fractional differential equations Available online a www.isr-publicaions.com/jmcs J. Mah. Compuer Sci. 16 (2016), 140 146 Research Aricle Undeermined coefficiens for local fracional differenial equaions Roshdi Khalil a,, Mohammed Al Horani

More information

CONDITIONAL OSCILLATION OF HALF-LINEAR EQUATIONS

CONDITIONAL OSCILLATION OF HALF-LINEAR EQUATIONS CONDITIONAL OSCILLATION OF HALF-LINEAR EQUATIONS Per Hasil Habiliaion Thesis c Per Hasil, Masaryk Universiy, 206 Preface The naure around us can be described in many ways. One of he mos accurae ways is

More information

14. The fundamental theorem of the calculus

14. The fundamental theorem of the calculus 4. The funmenl heorem of he clculus V 20 00 80 60 40 20 0 0 0.2 0.4 0.6 0.8 v 400 200 0 0 0.2 0.5 0.8 200 400 Figure : () Venriculr volume for subjecs wih cpciies C = 24 ml, C = 20 ml, C = 2 ml n (b) he

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

RESPONSE UNDER A GENERAL PERIODIC FORCE. When the external force F(t) is periodic with periodτ = 2π

RESPONSE UNDER A GENERAL PERIODIC FORCE. When the external force F(t) is periodic with periodτ = 2π RESPONSE UNDER A GENERAL PERIODIC FORCE When he exernl force F() is periodic wih periodτ / ω,i cn be expnded in Fourier series F( ) o α ω α b ω () where τ F( ) ω d, τ,,,... () nd b τ F( ) ω d, τ,,... (3)

More information

A Structural Approach to the Enforcement of Language and Disjunctive Constraints

A Structural Approach to the Enforcement of Language and Disjunctive Constraints A Srucurl Aroch o he Enforcemen of Lnguge nd Disjuncive Consrins Mrin V. Iordche School of Engineering nd Eng. Tech. LeTourneu Universiy Longview, TX 7607-700 Pnos J. Ansklis Dermen of Elecricl Engineering

More information

How to prove the Riemann Hypothesis

How to prove the Riemann Hypothesis Scholrs Journl of Phsics, Mhemics nd Sisics Sch. J. Phs. Mh. S. 5; (B:5-6 Scholrs Acdemic nd Scienific Publishers (SAS Publishers (An Inernionl Publisher for Acdemic nd Scienific Resources *Corresonding

More information

Bifurcation Analysis of a Stage-Structured Prey-Predator System with Discrete and Continuous Delays

Bifurcation Analysis of a Stage-Structured Prey-Predator System with Discrete and Continuous Delays Applied Mahemaics 4 59-64 hp://dx.doi.org/.46/am..4744 Published Online July (hp://www.scirp.org/ournal/am) Bifurcaion Analysis of a Sage-Srucured Prey-Predaor Sysem wih Discree and Coninuous Delays Shunyi

More information

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment Mgneosics Br Mgne As fr bck s 4500 yers go, he Chinese discovered h cerin ypes of iron ore could rc ech oher nd cerin mels. Iron filings "mp" of br mgne s field Crefully suspended slivers of his mel were

More information

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh.

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh. How o Prove he Riemnn Hohesis Auhor: Fez Fok Al Adeh. Presiden of he Srin Cosmologicl Socie P.O.Bo,387,Dmscus,Sri Tels:963--77679,735 Emil:hf@scs-ne.org Commens: 3 ges Subj-Clss: Funcionl nlsis, comle

More information

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses Hindwi Advnce in Mhemicl Phyic Volume 207, Aricle ID 309473, pge hp://doi.org/0.55/207/309473 Reerch Aricle The Generl Soluion of Differenil Equion wih Cpuo-Hdmrd Frcionl Derivive nd Noninnneou Impule

More information

A new model for limit order book dynamics

A new model for limit order book dynamics Anewmodelforlimiorderbookdynmics JeffreyR.Russell UniversiyofChicgo,GrdueSchoolofBusiness TejinKim UniversiyofChicgo,DeprmenofSisics Absrc:Thispperproposesnewmodelforlimiorderbookdynmics.Thelimiorderbookconsiss

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

LAGRANGIAN AND HAMILTONIAN MECHANICS WITH FRACTIONAL DERIVATIVES

LAGRANGIAN AND HAMILTONIAN MECHANICS WITH FRACTIONAL DERIVATIVES LAGRANGIAN AND HAMILTONIAN MEHANIS WITH FRATIONAL DERIVATIVES EMIL POPESU 2,1 1 Asronomicl Insiue of Romnin Acdemy Sr uiul de Argin 5, 40557 Buchres, Romni 2 Technicl Universiy of ivil Engineering, Bd

More information