Analysis of Boundedness for Unknown Functions by a Delay Integral Inequality on Time Scales

Size: px
Start display at page:

Download "Analysis of Boundedness for Unknown Functions by a Delay Integral Inequality on Time Scales"

Transcription

1 Inernaional Conference on Image, Viion and Comuing (ICIVC ) IPCSIT vol. 5 () () IACSIT Pre, Singaore DOI:.7763/IPCSIT..V5.45 Anali of Boundedne for Unknown Funcion b a Dela Inegral Ineuali on Time Scale Qinghua Feng School of Science, Shandong Univeri of Technolog, Zhangzhou Road, Zibo, Shandong, China, 5549 Abrac. In hi aer, new exlici bound for unknown funcion i derived b a new Volerra-Fredholm e dela inegral ineuali on ime cale, which can be ued a a hand ool in he inveigaion of ualiaive roerie a well a uaniaive roerie of dela dnamic euaion. Keword: Dela inegral ineuali; Time cale; Dnamic euaion; Bounded. Inroducion Inegral ineualiie la an imoran role in he reearch of ualiaive roerie of oluion of dnamic euaion, and man inegral ineualiie a well a difference ineualiie have been eablihed ince hen, for examle [-], and he reference herein. Our aim in hi aer i o eablih a new Volerra-Fredholm e dela inegral ineuali on ime cale, which rovide new bound for unknown funcion. In he re of he aer, R denoe he e of real number and R = [, ). T denoe an arbirar ime cale and T = [ x, ) T, T = [, ), where x, T. The e T κ i defined o be T if T doe no have a lef-caered maximum, oherwie i i T wihou he lef-caered maximum. On T we define he forward and backward jum oeraor σ ( TT, ) and ρ ( TT, ) uch ha σ () = inf{ T, > }, ρ ( ) = u{ T, < }. Definiion : A oin T wih > inft i aid o be lef-dene if ρ () = and righ-dene if σ () =, lef-caered if ρ () < and righ-caered if σ () >. Definiion : A funcion f ( T, R) i called rd-coninuou if i i coninuou in righ-dene oin and if he lef-ided limi exi in lef-dene oin, while f i called regreive if μ( ) f( ), where μ() = σ (). C denoe he e of rd-coninuou funcion, while R denoe he e of all regreive and rd-coninuou rd funcion, and R = { f f R, μ() f() >, T}. Definiion 3: For ome T κ Δ, and a funcion f ( T, R), he dela derivaive of f i denoed b f (), and aifie f ( σ()) f() f Δ ()( σ() ) ε σ() for ε >, where U, and U i a neighborhood of. The funcion f i called dela differenial on T κ Similarl, for ome T κ, and a funcion f ( T T, R), he arial dela derivaive of f wih reec o i denoed b ( f ( x, )) Δ, and aifie f ( x, σ( )) f( x, ) ( f( x, )) Δ ( σ( ) ) ε σ( ) for ε >, where U, and U i a neighborhood of. Definiion 4: For ome ab, T and a funcion f ( T, R), he Cauch inegral of f i defined b Correonding auhor. addre: fhua@ina.com

2 b a f () Δ = F( b) F( a), where F Δ () = f (), T κ. Similarl, for ome ab, T and a funcion f ( T T, R), he Cauch arial inegral of f wih reec o b i defined b f ( x, ) Δ = F( x, b) F( x, a), where ( F( x, )) Δ = f ( x, ), T κ.. Main Reul a We will give ome lemma for furher ue. Lemma. ([], Gronwall ineuali): Suoe X T i an arbiraril fixed number, and u( X, ), bx (, ) C, rd mx (, ) R wih reec o, mx (, ), hen imlie u( X, ) b( X, ) m( X, ) u( X, ) Δ, T u( X, ) b( X, ) e (, σ ( )) b( X, ) m( X, ) Δ, T m where e (, ) m i he uniue oluion of he following euaion, ( z( X, )) Δ = m( X, ) z( X, ), z( X, ) =. Lemma. []: Aume ha a,, and, hen for an K >, a K a K. Conider he following ineuali x u ( x, ) C L(,, u( τ ( ), τ ( ))) ΔΔ h( ξη, ) u ( τ( ξ), τ ( η)) ΔξΔηΔΔ x Lu (,, ( τ ( ), τ ( ))) ΔΔ h ( ξη, ) u ( τ( ξ), τ ( η)) ΔξΔηΔΔ wih he iniial condiion () ux (, ) = φ(, x), x[ α, x] Tor,, [ β, ], () φτ ( ( x), τ( )) C, τ( x) x, or, τ( ) where uh, i Crd( T T, R ), i=,,,, C m, C are conan, and,, C >, τ( TT, ), τ( x) x, < α= inf{ τ( x), xt} x, τ( T, T), τ( ), < β =, inf{ τ( ), T} φ Crd (([ α, x] [ β, ]), R ), M T, N T are wo fixed number. Theorem.: If for (, x ) ([ x, M] T ([, N] ), ux (, ) aifie (), and K > i an arbirar conan, hen he following ineuali hold C B ux B x B x 6 (, ) {[ ] 3(, ) 4(, )}, B5 (, x ) ([ x, M] T) ([, N] ) (3) rovided ha B 5 <, where

3 C= C[ L(,, K ) (, ) m m h ξη K ΔξΔη ] ΔΔ x B (, x ) = [(,, L K ) (, ) h ξη K ΔξΔη ] ΔΔ x B (, x ) = [ A(,, K ) K x (, ) h ] ξη K ΔξΔη Δ. B (, x ) = e (, σ()) B (,) x Δ 3 B B (, x ) = B(, x ) e (, σ()) B (,) x B(,) x Δ 4 B x 5 3 B = A(,, K ) K B (,) ΔΔ h( ξη, ) K B3( ξη, ) ΔξΔη] ΔΔ. x 6 4 B = A(,, K ) K B (,) ΔΔ h( ξη, ) K B4( ξη, ) ΔξΔη] ΔΔ. Proof : Le he righ ide of () be vx. (, ) Then ux (, ) v ( x, ),( x, ) ([ x, M] T) ([, N] ) (4) From () we have u( τ ( x), τ ( )) v ( x, ),( x, ) ([ x, M] T) ([, N] ) (5) Given a fixed X [ x, M], and x[ x, X] T, [, N], hen vx (, ) vx (, ), x[ x, X] T, [, N] (6) Furhermore, conidering vx (, ) = C Lu (,, ( τ ( ), τ ( ))) ΔΔ h ( ξη, ) u ( τ( ξ), τ ( η)) ΔξΔηΔΔ (7) o we have X vx (, ) = C Lu (,, ( τ ( ), τ ( ))) ΔΔ X h( ξη, ) u ( τ( ξ), τ ( η)) ΔξΔηΔΔ Lu (,, ( τ ( ), τ ( ))) ΔΔ h ( ξη, ) u ( τ( ξ), τ ( η)) ΔξΔηΔΔ X C L(,, v (,)) ΔΔ X (, ) h (, ) ξηv ξηδξδηδδ

4 Lv (,, (,)) ΔΔ h ( ξη, ) u ( τ( ξ), τ ( η)) ΔξΔηΔΔ X = vx (, ) Lv (,, (, )) ΔΔ (, ) h (, ) ξηv ξηδξδηδδ From Lemma., we have X (8) v ( x, ) K v( x, ) K v ( x, ) K v( x, ) K (9) Combining (8), (9) we have X X vx (, ) = vx (, ) L (,,( K v (,) K)) ΔΔ (, )( (, ) h K v K ) X = vx (, ) [ L (,,( K v (,) K )) L (,, K ) L (,, K )] ΔΔ X (, )( (, ) h ) K v K X vx (, ) A (,, K ) K v (, ) ΔΔ X L (,, K ) ΔΔ X [ h( ξη, ) K ΔξΔηΔ] v( X, ) Δ (, ) h ξη K ΔξΔηΔΔ X X vx (, ) [ A (,, K ) K ΔvX ] (, ) Δ X L (,, K ) ΔΔ X [ h( ξη, ) K ΔξΔηΔ] v( X, ) Δ (, ) h ξη K ΔξΔηΔΔ X = vx (, ) B( X, ) B( XvX, ) (, ) Δ B Lemma. we obain vx (, ) vx (, ) B( X, ) e (, σ()) B( X,)(( v x, ) B( X,)) Δ B B σ B = vx (, )[ e (, ( )) B( X, ) Δ ] B( X, ) e (, σ ()) B( X,)(( vx, ) B( X,)) Δ, [, N] () Combining (6), (), i follow vx (, ) vx (, ) BX (, ) e(, σ( BXvx )) (, )( (, ) BX (, )) Δ B

5 = vx (, )[ e (, σ( )) B( X, ) Δ ] B( X, ) B e (, σ ()) B( X,)(( v x, ) B( X,)) Δ B, x [ x, X] T, [, N] () Seing x = X in (), conidering X i eleced from [ x, M] arbiraril, ubiuing X wih x, ield v(, x ) v( x, ) B(, x ) e (, σ()) B(,)(( x v x, ) B(,)) x Δ B = vx (, )[ e (, σ( )) B( x, ) Δ ] B( X, ) B e (, σ ()) B(,)(( x vx, ) B(,)) x Δ B, x [ x, X] T, [, N] () ha i, vx (, ) vx (, ) B(, x) B(, x) x [ x, X] T, [, N] (3) 3 4 On he oher hand, from (5), (7) (9) we have vx (, ) = C Lv (,, (, )) ΔΔ (, ) h (, ) ξηv ξηδξδηδδ C L (,, K v (,) K ) ΔΔ (, )( (, ) h ) K v K C [ L (,, K v (, ) K ) L(,, K ) L(,, K )] ΔΔ (, )( (, ) h ) K v K ξ Δ η Δ Δ C A(,, K ) K v(,) ΔΔ L (,, K ) ΔΔ (, )( (, ) h K v K ) = C A(,, K ) K v(,) ΔΔ (, )( (, ) h K v K ) (4) Then uing (3) in (4) ield 3 4 vx (, ) C A (,, K ) K [ vx (, ) B(, ) B(, )] ΔΔ 3 4 h(,)( ξη K [( v x, ) B(,) ξη B(,)] ξη K ) ΔξΔη ΔΔ x 3 = C v( x, ){ A (,, K ) K B(,) ΔΔ h( ξη, ) K B3( ξη, ) ΔξΔη] ΔΔ}

6 x A(,, K ) K B4 (,) ΔΔ h( ξη, ) K B4( ξη, ) ξ η] Δ Δ Δ Δ = C v( x, ) B B (5) 5 6 which i followed b C B6 vx (, ) B 5 (6) Combining (4), (3) and (6) we can obain he deired ineuali (3). 3. Concluion In hi aer, new exlici bound for unknown funcion i derived b ue of a new Volerra- Fredholm e inegral ineuali on ime cale, which rovide a hand ool in he ualiaive anali of oluion of dnamic euaion on ime cale. 4. Reference [] W.N. Li, Some dela inegral ineualiie on ime cale, Comu. Mah. Al. 59 () [] F.H. Wong, C.C. Yeh, S.L. Yu, C.H. Hong, Young ineuali and relaed reul on ime cale, Al. Mah. Le. 8 (5) [3] F.H. Wong, C.C. Yeh, W.C. Lian, An exenion of Jenen, ineuali on ime cale, Adv. Dnam. S. Al. () (6) 3-. [4] M.Z. Sarikaa, On weighed Iengar e ineualiie on ime cale, Al. Mah. Le. (9) [5] W.J. Liu, C.C. Li, Y.M. Hao, Furher generalizaion of ome double inegral ineualiie and alicaion, Aca. Mah. Univ. Comenian. 77 () (8) [6] X.L. Cheng, Imrovemen of ome Orowki-Gru e ineualiie, Comu. Mah. Al. 4 () 9-4. [7] M. Bohner, T. Mahew, The Gru ineuali on ime cale, Commun. Mah. Anal. 3 () (7) -8. [8] Q.A. Ngo, Some mean value heorem for inegral on ime cale, Al. Mah. Comu. 3 (9) [9] W.j. Liu, Q.A. Ngo, Some Iengar-e ineualiie on ime cale for funcion whoe econd derivaive are bounded, Al. Mah. Comu. 6 () [] W.j. Liu, Q.A. Ngo, A generalizaion of Orowki ineuali on imecale for k oin, Al. Mah. Comu. 3 (8) [] R. Agarwal, M. Bohner, A. Peeron, Ineualiie on ime cale: a urve, Mah. Ineual. Al. 4 (4) () [] F.C. Jiang, F.W. Meng, Exlici bound on ome new nonlinearinegral ineuali wih dela, J. Comu. Al. Mah. 5 (7)

A Class of Delay Integral Inequalities on Time Scales

A Class of Delay Integral Inequalities on Time Scales Intenational Confeence on Iage, Viion and Couting (ICIVC ) IPCSIT vol 5 () () IACSIT Pe, Singaoe DOI: 7763/IPCSITV543 A Cla of Dela Integal Ineualitie on Tie Scale Qinghua Feng + School of Science, Shandong

More information

On the Exponential Operator Functions on Time Scales

On the Exponential Operator Functions on Time Scales dvance in Dynamical Syem pplicaion ISSN 973-5321, Volume 7, Number 1, pp. 57 8 (212) hp://campu.m.edu/ada On he Exponenial Operaor Funcion on Time Scale laa E. Hamza Cairo Univeriy Deparmen of Mahemaic

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

Identification of the Solution of the Burgers. Equation on a Finite Interval via the Solution of an. Appropriate Stochastic Control Problem

Identification of the Solution of the Burgers. Equation on a Finite Interval via the Solution of an. Appropriate Stochastic Control Problem Ad. heor. Al. Mech. Vol. 3 no. 37-44 Idenificaion of he oluion of he Burger Equaion on a Finie Ineral ia he oluion of an Aroriae ochaic Conrol roblem Arjuna I. Ranainghe Dearmen of Mahemaic Alabama A &

More information

Explicit form of global solution to stochastic logistic differential equation and related topics

Explicit form of global solution to stochastic logistic differential equation and related topics SAISICS, OPIMIZAION AND INFOMAION COMPUING Sa., Opim. Inf. Compu., Vol. 5, March 17, pp 58 64. Publihed online in Inernaional Academic Pre (www.iapre.org) Explici form of global oluion o ochaic logiic

More information

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 3, March 28, Page 99 918 S 2-9939(7)989-2 Aricle elecronically publihed on November 3, 27 FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms 6- Chaper 6. Laplace Tranform 6.4 Shor Impule. Dirac Dela Funcion. Parial Fracion 6.5 Convoluion. Inegral Equaion 6.6 Differeniaion and Inegraion of Tranform 6.7 Syem of ODE 6.4 Shor Impule. Dirac Dela

More information

A New Generalized Gronwall-Bellman Type Inequality

A New Generalized Gronwall-Bellman Type Inequality 22 Inernaonal Conference on Image, Vson and Comung (ICIVC 22) IPCSIT vol. 5 (22) (22) IACSIT Press, Sngaore DOI:.7763/IPCSIT.22.V5.46 A New Generalzed Gronwall-Bellman Tye Ineualy Qnghua Feng School of

More information

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations Hindawi Publihing Corporaion Abrac and Applied Analyi Volume 03, Aricle ID 56809, 7 page hp://dx.doi.org/0.55/03/56809 Reearch Aricle Exience and Uniquene of Soluion for a Cla of Nonlinear Sochaic Differenial

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

Existence and Global Attractivity of Positive Periodic Solutions in Shifts δ ± for a Nonlinear Dynamic Equation with Feedback Control on Time Scales

Existence and Global Attractivity of Positive Periodic Solutions in Shifts δ ± for a Nonlinear Dynamic Equation with Feedback Control on Time Scales Exience and Global Araciviy of Poiive Periodic Soluion in Shif δ ± for a Nonlinear Dynamic Equaion wih Feedback Conrol on Time Scale MENG HU Anyang Normal Univeriy School of mahemaic and aiic Xian ge Avenue

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms Chaper 6. Laplace Tranform Kreyzig by YHLee;45; 6- An ODE i reduced o an algebraic problem by operaional calculu. The equaion i olved by algebraic manipulaion. The reul i ranformed back for he oluion of

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Stability in Distribution for Backward Uncertain Differential Equation

Stability in Distribution for Backward Uncertain Differential Equation Sabiliy in Diribuion for Backward Uncerain Differenial Equaion Yuhong Sheng 1, Dan A. Ralecu 2 1. College of Mahemaical and Syem Science, Xinjiang Univeriy, Urumqi 8346, China heng-yh12@mail.inghua.edu.cn

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

FUZZY n-inner PRODUCT SPACE

FUZZY n-inner PRODUCT SPACE Bull. Korean Mah. Soc. 43 (2007), No. 3, pp. 447 459 FUZZY n-inner PRODUCT SPACE Srinivaan Vijayabalaji and Naean Thillaigovindan Reprined from he Bullein of he Korean Mahemaical Sociey Vol. 43, No. 3,

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Generalized Snell envelope and BSDE With Two general Reflecting Barriers

Generalized Snell envelope and BSDE With Two general Reflecting Barriers 1/22 Generalized Snell envelope and BSDE Wih Two general Reflecing Barriers EL HASSAN ESSAKY Cadi ayyad Universiy Poly-disciplinary Faculy Safi Work in progress wih : M. Hassani and Y. Ouknine Iasi, July

More information

Existence of positive solutions for fractional q-difference. equations involving integral boundary conditions with p- Laplacian operator

Existence of positive solutions for fractional q-difference. equations involving integral boundary conditions with p- Laplacian operator Invenion Journal of Researh Tehnology in Engineering & Managemen IJRTEM) ISSN: 455-689 www.ijrem.om Volume Issue 7 ǁ July 8 ǁ PP 5-5 Exisene of osiive soluions for fraional -differene euaions involving

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

Uniform Persistence and Global Attractivity of A Predator-Prey Model with Mutual Interference and Delays

Uniform Persistence and Global Attractivity of A Predator-Prey Model with Mutual Interference and Delays Uniform Persisence and Global Araciviy of A Predaor-Prey Model wih Muual Inerference and Delays KAI WANG Anhui Universiy of Finance and Economics School of Saisics and Alied Mahemaics 96 Caoshan Road,

More information

Solution of Integro-Differential Equations by Using ELzaki Transform

Solution of Integro-Differential Equations by Using ELzaki Transform Global Journal of Mahemaical Sciences: Theory and Pracical. Volume, Number (), pp. - Inernaional Research Publicaion House hp://www.irphouse.com Soluion of Inegro-Differenial Equaions by Using ELzaki Transform

More information

EIGENVALUE PROBLEMS FOR SINGULAR MULTI-POINT DYNAMIC EQUATIONS ON TIME SCALES

EIGENVALUE PROBLEMS FOR SINGULAR MULTI-POINT DYNAMIC EQUATIONS ON TIME SCALES Elecronic Journal of Differenial Equaions, Vol. 27 (27, No. 37, pp. 3. ISSN: 72-669. URL: hp://ejde.mah.xsae.edu or hp://ejde.mah.un.edu EIGENVALUE PROBLEMS FOR SINGULAR MULTI-POINT DYNAMIC EQUATIONS ON

More information

4/12/12. Applications of the Maxflow Problem 7.5 Bipartite Matching. Bipartite Matching. Bipartite Matching. Bipartite matching: the flow network

4/12/12. Applications of the Maxflow Problem 7.5 Bipartite Matching. Bipartite Matching. Bipartite Matching. Bipartite matching: the flow network // Applicaion of he Maxflow Problem. Biparie Maching Biparie Maching Biparie maching. Inpu: undireced, biparie graph = (, E). M E i a maching if each node appear in a mo one edge in M. Max maching: find

More information

Mathematische Annalen

Mathematische Annalen Mah. Ann. 39, 33 339 (997) Mahemaiche Annalen c Springer-Verlag 997 Inegraion by par in loop pace Elon P. Hu Deparmen of Mahemaic, Norhweern Univeriy, Evanon, IL 628, USA (e-mail: elon@@mah.nwu.edu) Received:

More information

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS Elec. Comm. in Probab. 3 (998) 65 74 ELECTRONIC COMMUNICATIONS in PROBABILITY ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS L.A. RINCON Deparmen of Mahemaic Univeriy of Wale Swanea Singleon Par

More information

f(t) dt, x > 0, is the best value and it is the norm of the

f(t) dt, x > 0, is the best value and it is the norm of the MATEMATIQKI VESNIK 66, 1 (214), 19 32 March 214 originalni nauqni rad research aer GENERALIZED HAUSDORFF OPERATORS ON WEIGHTED HERZ SPACES Kuang Jichang Absrac. In his aer, we inroduce new generalized

More information

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition.

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition. CHAPTER 8 Forced Equaion and Syem 8 The aplace Tranform and I Invere Tranform from he Definiion 5 5 = b b {} 5 = 5e d = lim5 e = ( ) b {} = e d = lim e + e d b = (inegraion by par) = = = = b b ( ) ( )

More information

THREE POSITIVE SOLUTIONS OF A THREE-POINT BOUNDARY VALUE PROBLEM FOR THE p-laplacian DYNAMIC EQUATION ON TIME SCALES 1.

THREE POSITIVE SOLUTIONS OF A THREE-POINT BOUNDARY VALUE PROBLEM FOR THE p-laplacian DYNAMIC EQUATION ON TIME SCALES 1. Commun. Oim. Theory 218 (218, Aricle ID 13 hs://doi.org/1.23952/co.218.13 THREE POSITIVE SOLUTIONS OF A THREE-POINT BOUNDARY VALUE PROBLEM FOR THE -LAPLACIAN DYNAMIC EQUATION ON TIME SCALES ABDULKADIR

More information

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 32 (2016), ISSN

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 32 (2016), ISSN Aca Mahemaica Academiae Paedagogicae Nyíregyháziensis 3 6, 79 7 www.emis.de/journals ISSN 76-9 INTEGRAL INEQUALITIES OF HERMITE HADAMARD TYPE FOR FUNCTIONS WHOSE DERIVATIVES ARE STRONGLY α-preinvex YAN

More information

Control Systems. Lecture 9 Frequency Response. Frequency Response

Control Systems. Lecture 9 Frequency Response. Frequency Response Conrol Syem Lecure 9 Frequency eone Frequency eone We now know how o analyze and deign yem via -domain mehod which yield dynamical informaion The reone are decribed by he exonenial mode The mode are deermined

More information

Energy Equality and Uniqueness of Weak Solutions to MHD Equations in L (0,T; L n (Ω))

Energy Equality and Uniqueness of Weak Solutions to MHD Equations in L (0,T; L n (Ω)) Aca Mahemaica Sinica, Englih Serie May, 29, Vol. 25, No. 5, pp. 83 814 Publihed online: April 25, 29 DOI: 1.17/1114-9-7214-8 Hp://www.AcaMah.com Aca Mahemaica Sinica, Englih Serie The Ediorial Office of

More information

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship Laplace Tranform (Lin & DeCarlo: Ch 3) ENSC30 Elecric Circui II The Laplace ranform i an inegral ranformaion. I ranform: f ( ) F( ) ime variable complex variable From Euler > Lagrange > Laplace. Hence,

More information

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function Elecronic Journal of Qualiaive Theory of Differenial Equaions 13, No. 3, 1-11; hp://www.mah.u-szeged.hu/ejqde/ Exisence of posiive soluion for a hird-order hree-poin BVP wih sign-changing Green s funcion

More information

Existence of multiple positive periodic solutions for functional differential equations

Existence of multiple positive periodic solutions for functional differential equations J. Mah. Anal. Appl. 325 (27) 1378 1389 www.elsevier.com/locae/jmaa Exisence of muliple posiive periodic soluions for funcional differenial equaions Zhijun Zeng a,b,,libi a, Meng Fan a a School of Mahemaics

More information

On the Benney Lin and Kawahara Equations

On the Benney Lin and Kawahara Equations JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 11, 13115 1997 ARTICLE NO AY975438 On he BenneyLin and Kawahara Equaion A Biagioni* Deparmen of Mahemaic, UNICAMP, 1381-97, Campina, Brazil and F Linare

More information

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 4 7, 00, Wilmingon, NC, USA pp 0 Oscillaion of an Euler Cauchy Dynamic Equaion S Huff, G Olumolode,

More information

A study on Hermite-Hadamard type inequalities for s-convex functions via conformable fractional

A study on Hermite-Hadamard type inequalities for s-convex functions via conformable fractional Sud. Univ. Babeş-Bolyai Mah. 6(7), No. 3, 39 33 DOI:.493/subbmah.7.3.4 A sudy on Hermie-Hadamard ye inequaliies for s-convex funcions via conformable fracional inegrals Erhan Se and Abdurrahman Gözınar

More information

Research Article On Double Summability of Double Conjugate Fourier Series

Research Article On Double Summability of Double Conjugate Fourier Series Inernaional Journal of Mahemaic and Mahemaical Science Volume 22, Aricle ID 4592, 5 page doi:.55/22/4592 Reearch Aricle On Double Summabiliy of Double Conjugae Fourier Serie H. K. Nigam and Kuum Sharma

More information

GLOBAL ANALYTIC REGULARITY FOR NON-LINEAR SECOND ORDER OPERATORS ON THE TORUS

GLOBAL ANALYTIC REGULARITY FOR NON-LINEAR SECOND ORDER OPERATORS ON THE TORUS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 131, Number 12, Page 3783 3793 S 0002-9939(03)06940-5 Aricle elecronically publihed on February 28, 2003 GLOBAL ANALYTIC REGULARITY FOR NON-LINEAR

More information

On the Existence, Uniqueness and Stability Behavior of a Random Solution to a Non local Perturbed Stochastic Fractional Integro-Differential Equation

On the Existence, Uniqueness and Stability Behavior of a Random Solution to a Non local Perturbed Stochastic Fractional Integro-Differential Equation On he Exisence, Uniqueness and Sabiliy ehavior of a Random Soluion o a Non local Perurbed Sochasic Fracional Inegro-Differenial Equaion Mahmoud M. El-orai,*, M.A.Abdou, Mohamed Ibrahim M. Youssef Dearmen

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

Asymptotic instability of nonlinear differential equations

Asymptotic instability of nonlinear differential equations Elecronic Journal of Differenial Equaions, Vol. 1997(1997), No. 16, pp. 1 7. ISSN: 172-6691. URL: hp://ejde.mah.sw.edu or hp://ejde.mah.un.edu fp (login: fp) 147.26.13.11 or 129.12.3.113 Asympoic insabiliy

More information

Some New Uniqueness Results of Solutions to Nonlinear Fractional Integro-Differential Equations

Some New Uniqueness Results of Solutions to Nonlinear Fractional Integro-Differential Equations Annals of Pure and Applied Mahemaics Vol. 6, No. 2, 28, 345-352 ISSN: 2279-87X (P), 2279-888(online) Published on 22 February 28 www.researchmahsci.org DOI: hp://dx.doi.org/.22457/apam.v6n2a Annals of

More information

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER #A30 INTEGERS 10 (010), 357-363 FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER Nahan Kaplan Deparmen of Mahemaic, Harvard Univeriy, Cambridge, MA nkaplan@mah.harvard.edu Received: 7/15/09, Revied:

More information

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 1, Issue 6 Ver. II (Nov - Dec. 214), PP 48-54 Variaional Ieraion Mehod for Solving Sysem of Fracional Order Ordinary Differenial

More information

New Ostrowski Type Inequalities for Harmonically Quasi-Convex Functions

New Ostrowski Type Inequalities for Harmonically Quasi-Convex Functions X h Inernaional Saisics Days Conference (ISDC 206), Giresun, Turkey New Osrowski Tye Ineualiies for Harmonically Quasi-Convex Funcions Tuncay Köroğlu,*, İmda İşcan 2, Mehme Kun 3,3 Karadeniz Technical

More information

Let. x y. denote a bivariate time series with zero mean.

Let. x y. denote a bivariate time series with zero mean. Linear Filer Le x y : T denoe a bivariae ime erie wih zero mean. Suppoe ha he ime erie {y : T} i conruced a follow: y a x The ime erie {y : T} i aid o be conruced from {x : T} by mean of a Linear Filer.

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Characterization of interpolation between Grand, small or classical Lebesgue spaces

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Characterization of interpolation between Grand, small or classical Lebesgue spaces INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES Characerizaion of inerolaion beween Grand, mall or claical Lebegue ace Albero Fiorenza Maria Roaria Formica Amiran Gogaihvili Tengiz Koaliani Jean

More information

arxiv: v1 [math.ca] 15 Nov 2016

arxiv: v1 [math.ca] 15 Nov 2016 arxiv:6.599v [mah.ca] 5 Nov 26 Counerexamples on Jumarie s hree basic fracional calculus formulae for non-differeniable coninuous funcions Cheng-shi Liu Deparmen of Mahemaics Norheas Peroleum Universiy

More information

CHAPTER 7: SECOND-ORDER CIRCUITS

CHAPTER 7: SECOND-ORDER CIRCUITS EEE5: CI RCUI T THEORY CHAPTER 7: SECOND-ORDER CIRCUITS 7. Inroducion Thi chaper conider circui wih wo orage elemen. Known a econd-order circui becaue heir repone are decribed by differenial equaion ha

More information

The generalized deniion allow u for inance o deal wih parial averaging of yem wih diurbance (for ome claical reul on parial averaging ee [3, pp

The generalized deniion allow u for inance o deal wih parial averaging of yem wih diurbance (for ome claical reul on parial averaging ee [3, pp Averaging wih repec o arbirary cloed e: cloene of oluion for yem wih diurbance A.R.Teel 1, Dep. of Elec. and Comp. Eng., Univeriy of California, Sana Barbara, CA, 93106-9560 D.Neic Dep. of Elec. and Elecronic

More information

CONTROL SYSTEMS. Chapter 3 Mathematical Modelling of Physical Systems-Laplace Transforms. Prof.Dr. Fatih Mehmet Botsalı

CONTROL SYSTEMS. Chapter 3 Mathematical Modelling of Physical Systems-Laplace Transforms. Prof.Dr. Fatih Mehmet Botsalı CONTROL SYSTEMS Chaper Mahemaical Modelling of Phyical Syem-Laplace Tranform Prof.Dr. Faih Mehme Boalı Definiion Tranform -- a mahemaical converion from one way of hinking o anoher o make a problem eaier

More information

arxiv: v1 [math.fa] 9 Dec 2018

arxiv: v1 [math.fa] 9 Dec 2018 AN INVERSE FUNCTION THEOREM CONVERSE arxiv:1812.03561v1 [mah.fa] 9 Dec 2018 JIMMIE LAWSON Absrac. We esablish he following converse of he well-known inverse funcion heorem. Le g : U V and f : V U be inverse

More information

Positive continuous solution of a quadratic integral equation of fractional orders

Positive continuous solution of a quadratic integral equation of fractional orders Mah. Sci. Le., No., 9-7 (3) 9 Mahemaical Sciences Leers An Inernaional Journal @ 3 NSP Naural Sciences Publishing Cor. Posiive coninuous soluion of a quadraic inegral equaion of fracional orders A. M.

More information

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant).

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant). THE WAVE EQUATION 43. (S) Le u(x, ) be a soluion of he wave equaion u u xx = 0. Show ha Q43(a) (c) is a. Any ranslaion v(x, ) = u(x + x 0, + 0 ) of u(x, ) is also a soluion (where x 0, 0 are consans).

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

FRACTIONAL HERMITE-HADAMARD INEQUALITIES FOR SOME CLASSES OF DIFFERENTIABLE PREINVEX FUNCTIONS

FRACTIONAL HERMITE-HADAMARD INEQUALITIES FOR SOME CLASSES OF DIFFERENTIABLE PREINVEX FUNCTIONS U.P.B. Sci. Bull., Serie A, Vol. 78, I. 3, 6 ISSN 3-77 FRACTIONAL HERMITE-HADAMARD INEQUALITIES FOR SOME CLASSES OF DIFFERENTIABLE PREINVEX FUNCTIONS Muhammad Alam NOOR, Khalida Inaya NOOR, Marcela V.

More information

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions Generalized Orlicz Space and Waerein Diance for Convex-Concave Scale Funcion Karl-Theodor Surm Abrac Given a ricly increaing, coninuou funcion ϑ : R + R +, baed on he co funcional ϑ (d(x, y dq(x, y, we

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

Network Flows: Introduction & Maximum Flow

Network Flows: Introduction & Maximum Flow CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch

More information

Engineering Letter, 16:4, EL_16_4_03

Engineering Letter, 16:4, EL_16_4_03 3 Exisence In his secion we reduce he problem (5)-(8) o an equivalen problem of solving a linear inegral equaion of Volerra ype for C(s). For his purpose we firs consider following free boundary problem:

More information

Sobolev-type Inequality for Spaces L p(x) (R N )

Sobolev-type Inequality for Spaces L p(x) (R N ) In. J. Conemp. Mah. Sciences, Vol. 2, 27, no. 9, 423-429 Sobolev-ype Inequaliy for Spaces L p(x ( R. Mashiyev and B. Çekiç Universiy of Dicle, Faculy of Sciences and Ars Deparmen of Mahemaics, 228-Diyarbakir,

More information

EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS

EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS Elecronic Journal of Differenial Equaions, Vol. 206 (206, No. 39, pp.. ISSN: 072-669. URL: hp://ejde.mah.xsae.edu or hp://ejde.mah.un.edu fp ejde.mah.xsae.edu EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO

More information

Solvability for a fractional p-laplacian multipoint boundary value problem at resonance on infinite interval

Solvability for a fractional p-laplacian multipoint boundary value problem at resonance on infinite interval Zhang e al. Advance in ifference Equaion 26) 26:83 OI.86/3662-6-878-3 R E S E A R C H Open Acce Solvabiliy for a fracional p-laplacian mulipoin boundary value problem a reonance on infinie inerval Wei

More information

MISCELLANEOUS DYNAMIC EQUATIONS. Elvan Akın Bohner and Martin Bohner. 1. Introduction

MISCELLANEOUS DYNAMIC EQUATIONS. Elvan Akın Bohner and Martin Bohner. 1. Introduction MISCELLANEOUS DYNAMIC EQUATIONS Elvan Akın Bohner and Marin Bohner We consider several dynamic equaions and resen mehods on how o solve hese equaions. Among hem are linear equaions of higher order, Euler

More information

L p -Solutions for Reflected Backward Stochastic Differential Equations

L p -Solutions for Reflected Backward Stochastic Differential Equations L -Soluion for Refleced Backward Sochaic Differenial Equaion Saïd Hamadène and Alexandre Poier Laboraoire de aiique e roceu Univerié du Maine Avenue Olivier Meiaen F-7285 Le Man Cedex 9 France March 27,

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Boundedness and Stability of Solutions of Some Nonlinear Differential Equations of the Third-Order.

Boundedness and Stability of Solutions of Some Nonlinear Differential Equations of the Third-Order. Boundedness Sabili of Soluions of Some Nonlinear Differenial Equaions of he Third-Order. A.T. Ademola, M.Sc. * P.O. Arawomo, Ph.D. Deparmen of Mahemaics Saisics, Bowen Universi, Iwo, Nigeria. Deparmen

More information

Network Flow. Data Structures and Algorithms Andrei Bulatov

Network Flow. Data Structures and Algorithms Andrei Bulatov Nework Flow Daa Srucure and Algorihm Andrei Bulao Algorihm Nework Flow 24-2 Flow Nework Think of a graph a yem of pipe We ue hi yem o pump waer from he ource o ink Eery pipe/edge ha limied capaciy Flow

More information

Lower and Upper Approximation of Fuzzy Ideals in a Semiring

Lower and Upper Approximation of Fuzzy Ideals in a Semiring nernaional Journal of Scienific & Engineering eearch, Volume 3, ue, January-0 SSN 9-558 Lower and Upper Approximaion of Fuzzy deal in a Semiring G Senhil Kumar, V Selvan Abrac n hi paper, we inroduce he

More information

Example on p. 157

Example on p. 157 Example 2.5.3. Le where BV [, 1] = Example 2.5.3. on p. 157 { g : [, 1] C g() =, g() = g( + ) [, 1), var (g) = sup g( j+1 ) g( j ) he supremum is aken over all he pariions of [, 1] (1) : = < 1 < < n =

More information

INTRODUCTION TO INERTIAL CONFINEMENT FUSION

INTRODUCTION TO INERTIAL CONFINEMENT FUSION INTODUCTION TO INETIAL CONFINEMENT FUSION. Bei Lecure 7 Soluion of he imple dynamic igniion model ecap from previou lecure: imple dynamic model ecap: 1D model dynamic model ρ P() T enhalpy flux ino ho

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

Existence of positive solutions for second order m-point boundary value problems

Existence of positive solutions for second order m-point boundary value problems ANNALES POLONICI MATHEMATICI LXXIX.3 (22 Exisence of posiive soluions for second order m-poin boundary value problems by Ruyun Ma (Lanzhou Absrac. Le α, β, γ, δ and ϱ := γβ + αγ + αδ >. Le ψ( = β + α,

More information

Global Synchronization of Directed Networks with Fast Switching Topologies

Global Synchronization of Directed Networks with Fast Switching Topologies Commun. Theor. Phys. (Beijing, China) 52 (2009) pp. 1019 1924 c Chinese Physical Sociey and IOP Publishing Ld Vol. 52, No. 6, December 15, 2009 Global Synchronizaion of Direced Neworks wih Fas Swiching

More information

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type In. J. Conemp. Mah. Sci., Vol. 2, 27, no. 2, 89-2 Monoonic Soluions of a Class of Quadraic Singular Inegral Equaions of Volerra ype Mahmoud M. El Borai Deparmen of Mahemaics, Faculy of Science, Alexandria

More information

TOPOLOGY OPTIMIZATION OF COMPLIANT MECHANISM DESIGN WITH STA- TIONARY FLUID-STRUCTURE INTERACTION

TOPOLOGY OPTIMIZATION OF COMPLIANT MECHANISM DESIGN WITH STA- TIONARY FLUID-STRUCTURE INTERACTION Blucher Mechanical Engineering Proceeding May 2014, vol. 1, num. 1 www.roceeding.blucher.com.br/eveno/10wccm TOPOLOGY OPTIMIZATION OF COMPLIANT MECHANISM DESIGN WITH STA- TIONARY FLUID-STRUCTURE INTERACTION

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

Chapter 7: Inverse-Response Systems

Chapter 7: Inverse-Response Systems Chaper 7: Invere-Repone Syem Normal Syem Invere-Repone Syem Baic Sar ou in he wrong direcion End up in he original eady-ae gain value Two or more yem wih differen magniude and cale in parallel Main yem

More information

On some Properties of Conjugate Fourier-Stieltjes Series

On some Properties of Conjugate Fourier-Stieltjes Series Bullein of TICMI ol. 8, No., 24, 22 29 On some Properies of Conjugae Fourier-Sieljes Series Shalva Zviadadze I. Javakhishvili Tbilisi Sae Universiy, 3 Universiy S., 86, Tbilisi, Georgia (Received January

More information

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality Marix Versions of Some Refinemens of he Arihmeic-Geomeric Mean Inequaliy Bao Qi Feng and Andrew Tonge Absrac. We esablish marix versions of refinemens due o Alzer ], Carwrigh and Field 4], and Mercer 5]

More information

arxiv:math/ v2 [math.fa] 30 Jul 2006

arxiv:math/ v2 [math.fa] 30 Jul 2006 ON GÂTEAUX DIFFERENTIABILITY OF POINTWISE LIPSCHITZ MAPPINGS arxiv:mah/0511565v2 [mah.fa] 30 Jul 2006 JAKUB DUDA Abrac. We prove ha for every funcion f : X Y, where X i a eparable Banach pace and Y i a

More information

TAYLOR POLYNOMIALS FOR NABLA DYNAMIC EQUATIONS ON TIME SCALES

TAYLOR POLYNOMIALS FOR NABLA DYNAMIC EQUATIONS ON TIME SCALES TAYLOR POLYNOMIALS FOR NABLA DYNAMIC EQUATIONS ON TIME SCALES DOUGLAS R. ANDERSON Abtract. We are concerned with the repreentation of polynomial for nabla dynamic equation on time cale. Once etablihed,

More information

When analyzing an object s motion there are two factors to consider when attempting to bring it to rest. 1. The object s mass 2. The object s velocity

When analyzing an object s motion there are two factors to consider when attempting to bring it to rest. 1. The object s mass 2. The object s velocity SPH4U Momenum LoRuo Momenum i an exenion of Newon nd law. When analyzing an ojec moion here are wo facor o conider when aeming o ring i o re.. The ojec ma. The ojec velociy The greaer an ojec ma, he more

More information

A Sharp Existence and Uniqueness Theorem for Linear Fuchsian Partial Differential Equations

A Sharp Existence and Uniqueness Theorem for Linear Fuchsian Partial Differential Equations A Sharp Exisence and Uniqueness Theorem for Linear Fuchsian Parial Differenial Equaions Jose Ernie C. LOPE Absrac This paper considers he equaion Pu = f, where P is he linear Fuchsian parial differenial

More information

A note to the convergence rates in precise asymptotics

A note to the convergence rates in precise asymptotics He Journal of Inequaliies and Alicaions 203, 203:378 h://www.journalofinequaliiesandalicaions.com/conen/203//378 R E S E A R C H Oen Access A noe o he convergence raes in recise asymoics Jianjun He * *

More information

EE Control Systems LECTURE 2

EE Control Systems LECTURE 2 Copyrigh F.L. Lewi 999 All righ reerved EE 434 - Conrol Syem LECTURE REVIEW OF LAPLACE TRANSFORM LAPLACE TRANSFORM The Laplace ranform i very ueful in analyi and deign for yem ha are linear and ime-invarian

More information

CHAPTER 7. Definition and Properties. of Laplace Transforms

CHAPTER 7. Definition and Properties. of Laplace Transforms SERIES OF CLSS NOTES FOR 5-6 TO INTRODUCE LINER ND NONLINER PROBLEMS TO ENGINEERS, SCIENTISTS, ND PPLIED MTHEMTICINS DE CLSS NOTES COLLECTION OF HNDOUTS ON SCLR LINER ORDINRY DIFFERENTIL EQUTIONS (ODE")

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se #2 Wha are Coninuous-Time Signals??? Reading Assignmen: Secion. of Kamen and Heck /22 Course Flow Diagram The arrows here show concepual flow beween ideas.

More information

First-Order Recurrence Relations on Isolated Time Scales

First-Order Recurrence Relations on Isolated Time Scales Firs-Order Recurrence Relaions on Isolaed Time Scales Evan Merrell Truman Sae Universiy d2476@ruman.edu Rachel Ruger Linfield College rruger@linfield.edu Jannae Severs Creighon Universiy jsevers@creighon.edu.

More information

Fractional Method of Characteristics for Fractional Partial Differential Equations

Fractional Method of Characteristics for Fractional Partial Differential Equations Fracional Mehod of Characerisics for Fracional Parial Differenial Equaions Guo-cheng Wu* Modern Teile Insiue, Donghua Universiy, 188 Yan-an ilu Road, Shanghai 51, PR China Absrac The mehod of characerisics

More information

Math 527 Lecture 6: Hamilton-Jacobi Equation: Explicit Formulas

Math 527 Lecture 6: Hamilton-Jacobi Equation: Explicit Formulas Mah 527 Lecure 6: Hamilon-Jacobi Equaion: Explici Formulas Sep. 23, 2 Mehod of characerisics. We r o appl he mehod of characerisics o he Hamilon-Jacobi equaion: u +Hx, Du = in R n, u = g on R n =. 2 To

More information

Rise-Time Distortion of Signal without Carrying Signal

Rise-Time Distortion of Signal without Carrying Signal Journal of Physics: Conference Series PAPER OPEN ACCESS Rise-Time Disorion of Signal wihou Carrying Signal To cie his aricle: N S Bukhman 6 J. Phys.: Conf. Ser. 738 8 View he aricle online for udaes and

More information

Generalized Chebyshev polynomials

Generalized Chebyshev polynomials Generalized Chebyshev polynomials Clemene Cesarano Faculy of Engineering, Inernaional Telemaic Universiy UNINETTUNO Corso Viorio Emanuele II, 39 86 Roma, Ialy email: c.cesarano@unineunouniversiy.ne ABSTRACT

More information

Chapter 9 - The Laplace Transform

Chapter 9 - The Laplace Transform Chaper 9 - The Laplace Tranform Selece Soluion. Skech he pole-zero plo an region of convergence (if i exi) for hee ignal. ω [] () 8 (a) x e u = 8 ROC σ ( ) 3 (b) x e co π u ω [] ( ) () (c) x e u e u ROC

More information

f t te e = possesses a Laplace transform. Exercises for Module-III (Transform Calculus)

f t te e = possesses a Laplace transform. Exercises for Module-III (Transform Calculus) Exercises for Module-III (Transform Calculus) ) Discuss he piecewise coninuiy of he following funcions: =,, +, > c) e,, = d) sin,, = ) Show ha he funcion ( ) sin ( ) f e e = possesses a Laplace ransform.

More information

Some results on the fractional order Sturm-Liouville problems

Some results on the fractional order Sturm-Liouville problems Ru e al. Advance in Difference Equaion (27) 27:32 DOI.86/3662-7-377-x R E S E A R C H Open Acce Some reul on he fracional order Surm-Liouville problem Yuanfang Ru, Fanglei Wang *, Tianqing An and Yukun

More information

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information