Generalized Chebyshev polynomials

Size: px
Start display at page:

Download "Generalized Chebyshev polynomials"

Transcription

1 Generalized Chebyshev polynomials Clemene Cesarano Faculy of Engineering, Inernaional Telemaic Universiy UNINETTUNO Corso Viorio Emanuele II, Roma, Ialy ABSTRACT We generalize he firs and second kind Chebyshev polynomials by using he conceps and he operaional formalism of he Hermie polynomials of he Kampé de Férie ype. We will see how i is possible o derive inegral represenaions for hese generalized Chebyshev polynomials. Finally we will use hese resuls o sae several relaions for Gegenbauer polynomials. Keywords: Two-variable Chebyshev and Gegenbauer polynomials, Generaing funcions, Inegral represenaions. 2 Mahemaics Subjec Classificaion: 33C45, 33D5. Inroducion I is well known ha he explici form of he second kind Chebyshev polynomials [] reads U n x) = [ n 2 ] k= ) k n k)!2x) n 2k k!n 2k)!..) In a previous paper [2] we have saed for hese polynomials an inegral represenaion of he ype: where: U n x) = n! e n H n 2x, ) d,.2) [ n 2 ] y k x n 2k H n x, y) = n! k!n 2k)! k=.3) are he wo-variable Hermie polynomials of Kampé de Férie [3], [4] ype, wih generaing funcion given by he formula exp x + y 2) = n= n n! H nx, y).

2 I is also possible o sae a differen represenaion for he second kind Chebyshev polynomials U n x) by rearranging he argumen of he H n x, y) polynomials. In fac, by noing ha n H n 2x, [ n 2 ] = n! and, from he fac ha k= ) = n! n [ n 2 ] k= ) k k 2x) n 2k k!n 2k)! n k)! = we can immediaely conclude wih U n x) = n! ) k 2x) n 2k k k!n 2k)! = H n 2x, ) e n k d, e H n 2x, )d..4) The use of he above inegral represenaions for he second kind Chebyshev polynomials can be used o inroduce furher generalized polynomial ses, including he wo-variable Chebyshev polynomials [5] and he wo-variable Gegenbauer polynomials. = 2 Two-variable generalized Chebyshev polynomials Before o proceed, we premise some relevan operaional relaions involving he generalized Hermie polynomials. Proposiion The polynomials H m x, y) solve he following parial differenial equaion: 2 x 2 H mx, y) = y H mx, y). 2.) Proof By deriving, separaely wih respec o x and o y, in he.3), we obain: x H mx, y) = mh m x, y), 2.2) y H mx, y) = H m 2 x, y). 2

3 From he firs of he above relaions, by deriving again wih respec o x and by noing he second relaion in 2.2), we end up wih he 2.). The above resuls help us o derive he imporan operaional rule. In fac, by considering he differenial equaion 2.) as a linear ordinary one in he variable y and by noing ha H n x, ) = x n, we can immediaely sae ha H n x, y) = e y 2 x 2 x n. 2.3) Proposiion 2 The wo-variable Hermie polynomials saisfy he following relaion x + 2y ) n ) = x n 2y) s n )H n x, y) s ). 2.4) s xs s= Proof By muliplying he l.h.s. of he above equaion by n n! and hen summing up, we find: n x + 2y ) n = e x+2y x) ). 2.5) n! x n= To develop he exponenial in he r.h.s. of he 2.5) we need o apply he Weyl ideniy and hen we have o calculae he commuaor of he wo operaors: [ x, 2y ] = 2 2 y x which help us o wrie: n= n x + 2y ) n = e x+y2 e 2y x ). n! x Afer expanding and manipulaing he r.h.s. of he previous relaion and by equaing he like powers we find immediaely he 2.4). The above resul gives us anoher imporan operaional rule for he generalized Hermie polynomials. By using in fac he ideniy saed in equaion 2.3), we have e y 2 x 2 x n = n 2y) s n )H n x, y) s ) 2.6) s xs s= and by noing ha he r.h.s. of he above relaion is no zero only for s =, we can immediaely obain e y 2 x 2 x n = x + 2y ) n. 2.7) x 3

4 Finally, we can sae Proposiion 3 The Hermie polynomials H n x, y) solve he following differenial equaion: 2y 2 x 2 H nx, y) + x x H nx, y) = nh n x, y) 2.8) Proof By using he resuls derived from he Proposiion 2, we can easily find ha x + 2y ) H n x, y) = H n+ x, y) 2.9) x and from he firs of he recurrence relaions saed in 2.2): x H nx, y) = nh n x, y) we have: x + 2y ) ) H n x, y) = nh n x, y) 2.) x x which is he hesis. From his saemen can be also derived an imporan recurrence relaion. By exploiing, in fac, he relaion 2.9), we obain: and hen we can conclude wih H n+ x, y) = xh n x, y) + 2y x H nx, y) 2.) H n+ x, y) = xh n x, y) + 2nyH n x, y). 2.2) Definiion Le x, y real variables and le α a real parameer, we say generalized Chebyshev polynomials of second kind, he polynomials defined by he following relaion: U n x, y; α) = n! e α H n 2x, y)d. 2.3) By using he recurrence relaions relevan o he wo-variable Hermie polynomials, proved above, we can sae he following Proposiion 4 The generalized Chebyshev polynomials U n x, y; α) saisfy he following recurrence relaions y U nx, y; α) = α U n 2x, y; α) 2.4) x U nx, y; α) = 2 α U n x, y; α). 4

5 Proof By deriving respec o y in he relaion 2.3), we ge: and since: we obain: y U nx, y; α) = n! e α y H n2x, y)d y H n2x, y) = )nn )H n 2 2x, y) y U nx, y; α) = n! which gives he firs of he 2.4). e α )nn )H n 2 2x, y)d The second relaion can be obained in he same way, by noing ha: x H n2x, y) = 2)nH n 2x, y). Proposiion 5 The generalized Chebyshev polynomials U n x, y; α) saisfy he follow Cauchy problem: 2 x 2 U nx, y; α) = 4 2 αy U nx, y; α) U n x, ; α) = 2x)n α n+. 2.5) Proof By deriving wih respec o x in he second ideniy of 2.4), we find: 2 x 2 U nx, y; α) = 4 ) α α U n 2x, y; α) and hen, since: we obain: 2 α U n 2x, y; α) = y U nx, y; α) 2 x 2 U nx, y; α) = 4 αy U nx, y; α). 2.6) By seing y = in he relaion 2.3), we have: and since U n x, ; α) = n! H n 2x, ) = 2x) n e α H n 2x, )d 5

6 we find ha is U n x, ; α) = 2x)n n! e α n d U n x, ; α) = 2x)n. 2.7) αn+ The parial differenial equaion, saed in 2.6), can be viewed as a firs order ordinary differenial equaion for he variable y; and hen by using he iniial condiion founded hrough he 2.7), we can sae he soluion: U n x, y; α) = e y 4 which compleely prove he proposiion. The symbol D x D α 2 2x)n x 2, 2.8) αn+ denoes he inverse of he derivaive, defined by D x fx) = x fξ) dξ. We have inroduced he generalized Chebyshev polynomials U n x, y; α) by using a differen inegral form of he sandard second kind Chebyshev polynomials, defined in he equaion 2.3). By using he same procedure, i is possible o obain similar inegral represenaions for he firs kind Chebyshev polynomials. In fac, since heir explici form is: T n x) = n 2 [ n 2 ] k= we can immediaely derive ha T n x) = 2n )! ) k n k )!2x) n 2k k!n 2k)!, 2.9) e n H n 2x, ) d. 2.2) We have also inroduced [] a Chebyshev-like polynomials by using he mehod of inegral represenaion: W n x) = 2 n + )! e n+ H n 2x, ) d. 2.2) We can now generalize he above Chebyshev polynomials. Definiion 2 Le x, y real variables and le α a real parameer, we define he following hree polynomials ses: U n x, y; α) = n! e α n H n 2x, y ) d, 2.22) 6

7 and: T n x, y; α) = 2n )! W n x, y; α) = n + )! e α n H n 2x, y ) d, 2.23) e α n+ H n 2x, y ) d. 2.24) Proposiion 6 The generalized Chebyshev polynomials saisfy he following recurrence relaions α U nx, y; α) = 2 n + )W nx, y; α) 2.25) α T nx, y; α) = n 2 U nx, y; α). Proof By deriving wih respec o α in he relaion 2.3), we find: α U nx, y; α) = n! e α n+ H n 2x, y ) d and hen he firs of equaions 2.25), immediaely, follows. In he same way by following a similar procedure by using he ideniy 2.23), we have: and hen he hesis. α T nx, y; α) = 2n )! e α n H n 2x, y ) d 3 Generalized Gegenbauer polynomials I is worh noing ha he Chebyshev polynomials can be viewed as a paricular case of he Gegenbauer polynomials. Definiion 3 Le x and µ real variables, we say n h order Gegenbauer polynomials, he polynomials defined by he follow relaion: C n µ) x) = [ n 2 ] ) k 2x) n 2k Γ n k + µ) Γµ) k!n 2k)! k= where Γµ) is he Euler funcion. By recalling he inegral represenaion of he above Euler funcion: 3.) Γµ) = 7 e µ d 3.2)

8 and by using he same argumens exploied for he Chebyshev case, we can sae he inegral represenaion for he Gegenbauer polynomials C n µ) + x) = e n+µ H n 2x, ) d. 3.3) n!γµ) We can also generalized he Gegenbauer polynomials by using heir inegral represenaion. Definiion 4 Le x, y real variables and le α a real parameer, we say generalized Gegenbauer polynomials, he polynomials defined by he following relaion: C n µ) x, y; α) = n!γµ) e α n+µ H n 2x, y ) d. 3.4) The above inegral represenaion is a very flexible ool; in fac i can be exploied o derive ineresing relaions regarding he Gegenbauer polynomials and also he Chebyshev polynomials [6]. Proposiion 7 Le ξ R, such ha ξ <, µ. The generaing funcion of he polynomials C n µ) x, y; α) is given by: n= ξ n C n µ) x, y; α) = [α 2xξ + yξ 2 ] µ. 3.5) Proof By muliplying boh sides of he ideniy 3.4), by ξ n and by summing up over n, we ge: n= and by noing ha: we can wrie: ξ n C n µ) x, y; α) = n= n= ξ) n n! n= ξ n n n!γµ) e α µ H n 2x, y ) d H n 2x, y ) = exp [ ξ 2x) + ξ 2 y) ] ξ n C n µ) x, y; α) = Γµ) e α e ξ2x)+ξ 2 y) µ d. 3.6) Finally, by inegraing over, by using he inegral represenaion of he Euler funcion, we obain he hesis. Proposiion 8 The generalized second kind Chebyshev polynomials and he generalized Gegenbauer polynomials saisfy he following recurrence relaion: 8

9 ) m m α m U nx, y; α) = m!c m+) n x, y; α). 3.7) Proof By deriving wih respec o α in he relaion 2.22), m-imes, we ge: m α m U nx, y; α) = )m n! e α n+m H n 2x, y ) d. The r.h.s. of he above ideniy can be wrien in he form: ) m n! e α n+m H n 2x, y ) d = )m m! n!m! and hen he hesis follows. e α n+m H n 2x, y ) d By using he recurrence relaions relaed o he Hermie polynomials saed in Proposiion 3, i is easy o noe ha: [ 2x) + y ) ] H n 2x, y ) = H n+ 2x, y ) x which can be used o derive he following resuls: 3.8) Theorem The generalized Gegenbauer polynomials C n µ) x, y; α) saisfy he recurrence relaions: and: n + 2µ Cµ) n+ x, y; α) = xcµ+) n x, y; α) yc µ+) n x, y; α) 3.9) y Cµ) n x, y; α) = µc µ+) n 2 x, y; α). 3.) Proof By using he relaion 3.8), we can wrie he generalized Gegenbauer polynomial of order n +, in he form: = n + )!Γµ) C µ) n+ x, y; α) = 3.) e α [2x) n+µ + y ) ] H n 2x, y ) d. x Afer exploiing he r.h.s of he above ideniy, we ge: = n + )!Γµ) C µ) n+ x, y; α) = 3.2) [ e α n+µ 2x)H n 2x, y ) d e α n +µ y2n)h n 2x, y 9 ) ] d

10 and hen: 2x = n + )!Γµ) 2yn n + )!Γµ) C µ) n+ x, y; α) = 3.3) e α n+µ H n 2x, y ) d e α n +µ H n 2x, y ) d. We can rearrange he above relaion in he form: and finally: = x n!γµ) y n )!Γµ) = x n!γµ + ) n + C µ) n+ x, y; α) = 2 n + y n )!Γµ + ) which proves he 3.9). 2µ Cµ) n+ e α n+µ H n 2x, y ) d e α n +µ H n 2x, y ) d x, y; α) = e α n+µ H n 2x, y ) d e α n +µ H n 2x, y ) d To show he recurrence relaion in he 3.), i is imporan o noe ha: y H n 2x, y ) nn ) = H n 2 2x, y ). 3.4) In fac, by deriving respec o y in equaion 3.4), we ge: y Cµ) n x, y; α) = n!γµ) and by using he 3.4), we can wrie: nn ) y Cµ) n x, y; α) = n!γµ) which immediaely gives he hesis. e α n+µ y H n 2x, y ) d e α n 2+µ H n 2 2x, y ) d

11 References [] P. Davis, Inerpolaion and Approximaion, Dover, New York, 975. [2] C. Cesarano, Inegral represenaions and new generaing funcions of Chebyshev polynomials, Rev. Ma. Complu., submied). [3] P. Appell J. Kampé de Férie, Foncions Hypergéomériques e Hypersphériques. Polynômes d Hermie, Gauhier-Villars, Paris, 926. [4] H.W. Gould, A.T. Hopper, Operaional formulas conneced wih wo eneralizaions of Hermie polynomials, Duke Mah. J., 29, 962, [5] P.E. Ricci, I polinomi di Tchebycheff in più variabili, Rend. Ma., 6) 978), [6] H.W. Srivasava, H.L. Manocha, A reaise on generaing funcions, Wiley, New York, 984.

Integral representations and new generating functions of Chebyshev polynomials

Integral representations and new generating functions of Chebyshev polynomials Inegral represenaions an new generaing funcions of Chebyshev polynomials Clemene Cesarano Faculy of Engineering, Inernaional Telemaic Universiy UNINETTUNO Corso Viorio Emanuele II, 39 186 Roma, Ialy email:

More information

The Miki-type identity for the Apostol-Bernoulli numbers

The Miki-type identity for the Apostol-Bernoulli numbers Annales Mahemaicae e Informaicae 46 6 pp. 97 4 hp://ami.ef.hu The Mii-ype ideniy for he Aposol-Bernoulli numbers Orli Herscovici, Toufi Mansour Deparmen of Mahemaics, Universiy of Haifa, 3498838 Haifa,

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Undetermined coefficients for local fractional differential equations

Undetermined coefficients for local fractional differential equations Available online a www.isr-publicaions.com/jmcs J. Mah. Compuer Sci. 16 (2016), 140 146 Research Aricle Undeermined coefficiens for local fracional differenial equaions Roshdi Khalil a,, Mohammed Al Horani

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term Applied Mahemaics E-Noes, 8(28), 4-44 c ISSN 67-25 Available free a mirror sies of hp://www.mah.nhu.edu.w/ amen/ Properies Of Soluions To A Generalized Liénard Equaion Wih Forcing Term Allan Kroopnick

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

THE BERNOULLI NUMBERS. t k. = lim. = lim = 1, d t B 1 = lim. 1+e t te t = lim t 0 (e t 1) 2. = lim = 1 2.

THE BERNOULLI NUMBERS. t k. = lim. = lim = 1, d t B 1 = lim. 1+e t te t = lim t 0 (e t 1) 2. = lim = 1 2. THE BERNOULLI NUMBERS The Bernoulli numbers are defined here by he exponenial generaing funcion ( e The firs one is easy o compue: (2 and (3 B 0 lim 0 e lim, 0 e ( d B lim 0 d e +e e lim 0 (e 2 lim 0 2(e

More information

THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX

THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX J Korean Mah Soc 45 008, No, pp 479 49 THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX Gwang-yeon Lee and Seong-Hoon Cho Reprined from he Journal of he

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

On Two Integrability Methods of Improper Integrals

On Two Integrability Methods of Improper Integrals Inernaional Journal of Mahemaics and Compuer Science, 13(218), no. 1, 45 5 M CS On Two Inegrabiliy Mehods of Improper Inegrals H. N. ÖZGEN Mahemaics Deparmen Faculy of Educaion Mersin Universiy, TR-33169

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 1, Issue 6 Ver. II (Nov - Dec. 214), PP 48-54 Variaional Ieraion Mehod for Solving Sysem of Fracional Order Ordinary Differenial

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

Solution of Integro-Differential Equations by Using ELzaki Transform

Solution of Integro-Differential Equations by Using ELzaki Transform Global Journal of Mahemaical Sciences: Theory and Pracical. Volume, Number (), pp. - Inernaional Research Publicaion House hp://www.irphouse.com Soluion of Inegro-Differenial Equaions by Using ELzaki Transform

More information

On Carlsson type orthogonality and characterization of inner product spaces

On Carlsson type orthogonality and characterization of inner product spaces Filoma 26:4 (212), 859 87 DOI 1.2298/FIL124859K Published by Faculy of Sciences and Mahemaics, Universiy of Niš, Serbia Available a: hp://www.pmf.ni.ac.rs/filoma On Carlsson ype orhogonaliy and characerizaion

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 4 7, 00, Wilmingon, NC, USA pp 0 Oscillaion of an Euler Cauchy Dynamic Equaion S Huff, G Olumolode,

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page Assignmen 1 MATH 2270 SOLUTION Please wrie ou complee soluions for each of he following 6 problems (one more will sill be added). You may, of course, consul wih your classmaes, he exbook or oher resources,

More information

CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS

CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS SARAJEVO JOURNAL OF MATHEMATICS Vol.10 (22 (2014, 67 76 DOI: 10.5644/SJM.10.1.09 CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS ALMA OMERSPAHIĆ AND VAHIDIN HADŽIABDIĆ Absrac. This paper presens sufficien

More information

Positive continuous solution of a quadratic integral equation of fractional orders

Positive continuous solution of a quadratic integral equation of fractional orders Mah. Sci. Le., No., 9-7 (3) 9 Mahemaical Sciences Leers An Inernaional Journal @ 3 NSP Naural Sciences Publishing Cor. Posiive coninuous soluion of a quadraic inegral equaion of fracional orders A. M.

More information

Convergence of the Neumann series in higher norms

Convergence of the Neumann series in higher norms Convergence of he Neumann series in higher norms Charles L. Epsein Deparmen of Mahemaics, Universiy of Pennsylvania Version 1.0 Augus 1, 003 Absrac Naural condiions on an operaor A are given so ha he Neumann

More information

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15.

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15. SMT Calculus Tes Soluions February 5,. Le f() = and le g() =. Compue f ()g (). Answer: 5 Soluion: We noe ha f () = and g () = 6. Then f ()g () =. Plugging in = we ge f ()g () = 6 = 3 5 = 5.. There is a

More information

Single and Double Pendulum Models

Single and Double Pendulum Models Single and Double Pendulum Models Mah 596 Projec Summary Spring 2016 Jarod Har 1 Overview Differen ypes of pendulums are used o model many phenomena in various disciplines. In paricular, single and double

More information

Stochastic Model for Cancer Cell Growth through Single Forward Mutation

Stochastic Model for Cancer Cell Growth through Single Forward Mutation Journal of Modern Applied Saisical Mehods Volume 16 Issue 1 Aricle 31 5-1-2017 Sochasic Model for Cancer Cell Growh hrough Single Forward Muaion Jayabharahiraj Jayabalan Pondicherry Universiy, jayabharahi8@gmail.com

More information

SERIJA III

SERIJA III SERIJA III wwwmahhr/glasni M Riyasa and S Khan Some resuls on -Hermie based hybrid polynomials Acceped manuscrip This is a preliminary PDF of he auhor-produced manuscrip ha has been peer-reviewed and acceped

More information

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS LECTURE : GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS We will work wih a coninuous ime reversible Markov chain X on a finie conneced sae space, wih generaor Lf(x = y q x,yf(y. (Recall ha q

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

arxiv: v1 [math.nt] 13 Feb 2013

arxiv: v1 [math.nt] 13 Feb 2013 APOSTOL-EULER POLYNOMIALS ARISING FROM UMBRAL CALCULUS TAEKYUN KIM, TOUFIK MANSOUR, SEOG-HOON RIM, AND SANG-HUN LEE arxiv:130.3104v1 [mah.nt] 13 Feb 013 Absrac. In his paper, by using he orhogonaliy ype

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN Inernaional Journal of Scienific & Engineering Research, Volume 4, Issue 10, Ocober-2013 900 FUZZY MEAN RESIDUAL LIFE ORDERING OF FUZZY RANDOM VARIABLES J. EARNEST LAZARUS PIRIYAKUMAR 1, A. YAMUNA 2 1.

More information

GENERALIZATION OF THE FORMULA OF FAA DI BRUNO FOR A COMPOSITE FUNCTION WITH A VECTOR ARGUMENT

GENERALIZATION OF THE FORMULA OF FAA DI BRUNO FOR A COMPOSITE FUNCTION WITH A VECTOR ARGUMENT Inerna J Mah & Mah Sci Vol 4, No 7 000) 48 49 S0670000970 Hindawi Publishing Corp GENERALIZATION OF THE FORMULA OF FAA DI BRUNO FOR A COMPOSITE FUNCTION WITH A VECTOR ARGUMENT RUMEN L MISHKOV Received

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

Weyl sequences: Asymptotic distributions of the partition lengths

Weyl sequences: Asymptotic distributions of the partition lengths ACTA ARITHMETICA LXXXVIII.4 (999 Weyl sequences: Asympoic disribuions of he pariion lenghs by Anaoly Zhigljavsky (Cardiff and Iskander Aliev (Warszawa. Inroducion: Saemen of he problem and formulaion of

More information

A Note on the Equivalence of Fractional Relaxation Equations to Differential Equations with Varying Coefficients

A Note on the Equivalence of Fractional Relaxation Equations to Differential Equations with Varying Coefficients mahemaics Aricle A Noe on he Equivalence of Fracional Relaxaion Equaions o Differenial Equaions wih Varying Coefficiens Francesco Mainardi Deparmen of Physics and Asronomy, Universiy of Bologna, and he

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Heat kernel and Harnack inequality on Riemannian manifolds

Heat kernel and Harnack inequality on Riemannian manifolds Hea kernel and Harnack inequaliy on Riemannian manifolds Alexander Grigor yan UHK 11/02/2014 onens 1 Laplace operaor and hea kernel 1 2 Uniform Faber-Krahn inequaliy 3 3 Gaussian upper bounds 4 4 ean-value

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

The expectation value of the field operator.

The expectation value of the field operator. The expecaion value of he field operaor. Dan Solomon Universiy of Illinois Chicago, IL dsolom@uic.edu June, 04 Absrac. Much of he mahemaical developmen of quanum field heory has been in suppor of deermining

More information

A FAMILY OF MARTINGALES GENERATED BY A PROCESS WITH INDEPENDENT INCREMENTS

A FAMILY OF MARTINGALES GENERATED BY A PROCESS WITH INDEPENDENT INCREMENTS Theory of Sochasic Processes Vol. 14 3), no. 2, 28, pp. 139 144 UDC 519.21 JOSEP LLUÍS SOLÉ AND FREDERIC UTZET A FAMILY OF MARTINGALES GENERATED BY A PROCESS WITH INDEPENDENT INCREMENTS An explici procedure

More information

14 Autoregressive Moving Average Models

14 Autoregressive Moving Average Models 14 Auoregressive Moving Average Models In his chaper an imporan parameric family of saionary ime series is inroduced, he family of he auoregressive moving average, or ARMA, processes. For a large class

More information

t 2 B F x,t n dsdt t u x,t dxdt

t 2 B F x,t n dsdt t u x,t dxdt Evoluion Equaions For 0, fixed, le U U0, where U denoes a bounded open se in R n.suppose ha U is filled wih a maerial in which a conaminan is being ranspored by various means including diffusion and convecion.

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method Journal of Applied Mahemaics & Bioinformaics, vol., no., 01, 1-14 ISSN: 179-660 (prin), 179-699 (online) Scienpress Ld, 01 Improved Approimae Soluions for Nonlinear Evoluions Equaions in Mahemaical Physics

More information

Lecture 10: The Poincaré Inequality in Euclidean space

Lecture 10: The Poincaré Inequality in Euclidean space Deparmens of Mahemaics Monana Sae Universiy Fall 215 Prof. Kevin Wildrick n inroducion o non-smooh analysis and geomery Lecure 1: The Poincaré Inequaliy in Euclidean space 1. Wha is he Poincaré inequaliy?

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality Marix Versions of Some Refinemens of he Arihmeic-Geomeric Mean Inequaliy Bao Qi Feng and Andrew Tonge Absrac. We esablish marix versions of refinemens due o Alzer ], Carwrigh and Field 4], and Mercer 5]

More information

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx. . Use Simpson s rule wih n 4 o esimae an () +. Soluion: Since we are using 4 seps, 4 Thus we have [ ( ) f() + 4f + f() + 4f 3 [ + 4 4 6 5 + + 4 4 3 + ] 5 [ + 6 6 5 + + 6 3 + ]. 5. Our funcion is f() +.

More information

Math Final Exam Solutions

Math Final Exam Solutions Mah 246 - Final Exam Soluions Friday, July h, 204 () Find explici soluions and give he inerval of definiion o he following iniial value problems (a) ( + 2 )y + 2y = e, y(0) = 0 Soluion: In normal form,

More information

EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE

EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE Version April 30, 2004.Submied o CTU Repors. EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE Per Krysl Universiy of California, San Diego La Jolla, California 92093-0085,

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION

POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION Novi Sad J. Mah. Vol. 32, No. 2, 2002, 95-108 95 POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION Hajnalka Péics 1, János Karsai 2 Absrac. We consider he scalar nonauonomous neural delay differenial

More information

arxiv:math/ v1 [math.nt] 3 Nov 2005

arxiv:math/ v1 [math.nt] 3 Nov 2005 arxiv:mah/0511092v1 [mah.nt] 3 Nov 2005 A NOTE ON S AND THE ZEROS OF THE RIEMANN ZETA-FUNCTION D. A. GOLDSTON AND S. M. GONEK Absrac. Le πs denoe he argumen of he Riemann zea-funcion a he poin 1 + i. Assuming

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

Differential Harnack Estimates for Parabolic Equations

Differential Harnack Estimates for Parabolic Equations Differenial Harnack Esimaes for Parabolic Equaions Xiaodong Cao and Zhou Zhang Absrac Le M,g be a soluion o he Ricci flow on a closed Riemannian manifold In his paper, we prove differenial Harnack inequaliies

More information

arxiv: v1 [math.ca] 15 Nov 2016

arxiv: v1 [math.ca] 15 Nov 2016 arxiv:6.599v [mah.ca] 5 Nov 26 Counerexamples on Jumarie s hree basic fracional calculus formulae for non-differeniable coninuous funcions Cheng-shi Liu Deparmen of Mahemaics Norheas Peroleum Universiy

More information

Theory of! Partial Differential Equations!

Theory of! Partial Differential Equations! hp://www.nd.edu/~gryggva/cfd-course/! Ouline! Theory o! Parial Dierenial Equaions! Gréar Tryggvason! Spring 011! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity ANNALES POLONICI MATHEMATICI LIV.2 99) L p -L q -Time decay esimae for soluion of he Cauchy problem for hyperbolic parial differenial equaions of linear hermoelasiciy by Jerzy Gawinecki Warszawa) Absrac.

More information

Short Introduction to Fractional Calculus

Short Introduction to Fractional Calculus . Shor Inroducion o Fracional Calculus Mauro Bologna Deparameno de Física, Faculad de Ciencias Universidad de Tarapacá, Arica, Chile email: mbologna@ua.cl Absrac In he pas few years fracional calculus

More information

On the Fourier Transform for Heat Equation

On the Fourier Transform for Heat Equation Applied Mahemaical Sciences, Vol. 8, 24, no. 82, 463-467 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/.2988/ams.24.45355 On he Fourier Transform for Hea Equaion P. Haarsa and S. Poha 2 Deparmen of Mahemaics,

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function Elecronic Journal of Qualiaive Theory of Differenial Equaions 13, No. 3, 1-11; hp://www.mah.u-szeged.hu/ejqde/ Exisence of posiive soluion for a hird-order hree-poin BVP wih sign-changing Green s funcion

More information

Average Number of Lattice Points in a Disk

Average Number of Lattice Points in a Disk Average Number of Laice Poins in a Disk Sujay Jayakar Rober S. Sricharz Absrac The difference beween he number of laice poins in a disk of radius /π and he area of he disk /4π is equal o he error in he

More information

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION MATH 28A, SUMME 2009, FINAL EXAM SOLUTION BENJAMIN JOHNSON () (8 poins) [Lagrange Inerpolaion] (a) (4 poins) Le f be a funcion defined a some real numbers x 0,..., x n. Give a defining equaion for he Lagrange

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

Existence Theory of Second Order Random Differential Equations

Existence Theory of Second Order Random Differential Equations Global Journal of Mahemaical Sciences: Theory and Pracical. ISSN 974-32 Volume 4, Number 3 (22), pp. 33-3 Inernaional Research Publicaion House hp://www.irphouse.com Exisence Theory of Second Order Random

More information

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004 ODEs II, Lecure : Homogeneous Linear Sysems - I Mike Raugh March 8, 4 Inroducion. In he firs lecure we discussed a sysem of linear ODEs for modeling he excreion of lead from he human body, saw how o ransform

More information

STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS Elecronic Journal of Differenial Equaions, Vol. 217 217, No. 118, pp. 1 14. ISSN: 172-6691. URL: hp://ejde.mah.xsae.edu or hp://ejde.mah.un.edu STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

Math 334 Fall 2011 Homework 11 Solutions

Math 334 Fall 2011 Homework 11 Solutions Dec. 2, 2 Mah 334 Fall 2 Homework Soluions Basic Problem. Transform he following iniial value problem ino an iniial value problem for a sysem: u + p()u + q() u g(), u() u, u () v. () Soluion. Le v u. Then

More information

Theory of! Partial Differential Equations-I!

Theory of! Partial Differential Equations-I! hp://users.wpi.edu/~grear/me61.hml! Ouline! Theory o! Parial Dierenial Equaions-I! Gréar Tryggvason! Spring 010! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

Math 334 Test 1 KEY Spring 2010 Section: 001. Instructor: Scott Glasgow Dates: May 10 and 11.

Math 334 Test 1 KEY Spring 2010 Section: 001. Instructor: Scott Glasgow Dates: May 10 and 11. 1 Mah 334 Tes 1 KEY Spring 21 Secion: 1 Insrucor: Sco Glasgow Daes: Ma 1 and 11. Do NOT wrie on his problem saemen bookle, excep for our indicaion of following he honor code jus below. No credi will be

More information

ψ(t) = V x (0)V x (t)

ψ(t) = V x (0)V x (t) .93 Home Work Se No. (Professor Sow-Hsin Chen Spring Term 5. Due March 7, 5. This problem concerns calculaions of analyical expressions for he self-inermediae scaering funcion (ISF of he es paricle in

More information

A New Perturbative Approach in Nonlinear Singularity Analysis

A New Perturbative Approach in Nonlinear Singularity Analysis Journal of Mahemaics and Saisics 7 (: 49-54, ISSN 549-644 Science Publicaions A New Perurbaive Approach in Nonlinear Singulariy Analysis Ta-Leung Yee Deparmen of Mahemaics and Informaion Technology, The

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

STABILITY OF PEXIDERIZED QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN FUZZY NORMED SPASES

STABILITY OF PEXIDERIZED QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN FUZZY NORMED SPASES Novi Sad J. Mah. Vol. 46, No. 1, 2016, 15-25 STABILITY OF PEXIDERIZED QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN FUZZY NORMED SPASES N. Eghbali 1 Absrac. We deermine some sabiliy resuls concerning

More information

Solving a System of Nonlinear Functional Equations Using Revised New Iterative Method

Solving a System of Nonlinear Functional Equations Using Revised New Iterative Method Solving a Sysem of Nonlinear Funcional Equaions Using Revised New Ieraive Mehod Sachin Bhalekar and Varsha Dafardar-Gejji Absrac In he presen paper, we presen a modificaion of he New Ieraive Mehod (NIM

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Noes for EE7C Spring 018: Convex Opimizaion and Approximaion Insrucor: Moriz Hard Email: hard+ee7c@berkeley.edu Graduae Insrucor: Max Simchowiz Email: msimchow+ee7c@berkeley.edu Ocober 15, 018 3

More information

On Gronwall s Type Integral Inequalities with Singular Kernels

On Gronwall s Type Integral Inequalities with Singular Kernels Filoma 31:4 (217), 141 149 DOI 1.2298/FIL17441A Published by Faculy of Sciences and Mahemaics, Universiy of Niš, Serbia Available a: hp://www.pmf.ni.ac.rs/filoma On Gronwall s Type Inegral Inequaliies

More information

2 Some Property of Exponential Map of Matrix

2 Some Property of Exponential Map of Matrix Soluion Se for Exercise Session No8 Course: Mahemaical Aspecs of Symmeries in Physics, ICFP Maser Program for M 22nd, January 205, a Room 235A Lecure by Amir-Kian Kashani-Poor email: kashani@lpensfr Exercise

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018 MATH 5720: Gradien Mehods Hung Phan, UMass Lowell Ocober 4, 208 Descen Direcion Mehods Consider he problem min { f(x) x R n}. The general descen direcions mehod is x k+ = x k + k d k where x k is he curren

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that ODEs, Homework #4 Soluions. Check ha y ( = is a soluion of he second-order ODE ( cos sin y + y sin y sin = 0 and hen use his fac o find all soluions of he ODE. When y =, we have y = and also y = 0, so

More information

Efficient Solution of Fractional Initial Value Problems Using Expanding Perturbation Approach

Efficient Solution of Fractional Initial Value Problems Using Expanding Perturbation Approach Journal of mahemaics and compuer Science 8 (214) 359-366 Efficien Soluion of Fracional Iniial Value Problems Using Expanding Perurbaion Approach Khosro Sayevand Deparmen of Mahemaics, Faculy of Science,

More information

Solitons Solutions to Nonlinear Partial Differential Equations by the Tanh Method

Solitons Solutions to Nonlinear Partial Differential Equations by the Tanh Method IOSR Journal of Mahemaics (IOSR-JM) e-issn: 7-7,p-ISSN: 319-7X, Volume, Issue (Sep. - Oc. 13), PP 1-19 Solions Soluions o Nonlinear Parial Differenial Equaions by he Tanh Mehod YusurSuhail Ali Compuer

More information

The Arcsine Distribution

The Arcsine Distribution The Arcsine Disribuion Chris H. Rycrof Ocober 6, 006 A common heme of he class has been ha he saisics of single walker are ofen very differen from hose of an ensemble of walkers. On he firs homework, we

More information

Fractional Method of Characteristics for Fractional Partial Differential Equations

Fractional Method of Characteristics for Fractional Partial Differential Equations Fracional Mehod of Characerisics for Fracional Parial Differenial Equaions Guo-cheng Wu* Modern Teile Insiue, Donghua Universiy, 188 Yan-an ilu Road, Shanghai 51, PR China Absrac The mehod of characerisics

More information

A Sharp Existence and Uniqueness Theorem for Linear Fuchsian Partial Differential Equations

A Sharp Existence and Uniqueness Theorem for Linear Fuchsian Partial Differential Equations A Sharp Exisence and Uniqueness Theorem for Linear Fuchsian Parial Differenial Equaions Jose Ernie C. LOPE Absrac This paper considers he equaion Pu = f, where P is he linear Fuchsian parial differenial

More information

On Volterra Integral Equations of the First Kind with a Bulge Function by Using Laplace Transform

On Volterra Integral Equations of the First Kind with a Bulge Function by Using Laplace Transform Applied Mahemaical Sciences, Vol. 9, 15, no., 51-56 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/1.1988/ams.15.41196 On Volerra Inegral Equaions of he Firs Kind wih a Bulge Funcion by Using Laplace Transform

More information

Harnack inequalities and Gaussian estimates for a class of hypoelliptic operators

Harnack inequalities and Gaussian estimates for a class of hypoelliptic operators Harnack inequaliies and Gaussian esimaes for a class of hypoellipic operaors Sergio Polidoro Diparimeno di Maemaica, Universià di Bologna Absrac We announce some resuls obained in a recen sudy [14], concerning

More information

Online Appendix to Solution Methods for Models with Rare Disasters

Online Appendix to Solution Methods for Models with Rare Disasters Online Appendix o Soluion Mehods for Models wih Rare Disasers Jesús Fernández-Villaverde and Oren Levinal In his Online Appendix, we presen he Euler condiions of he model, we develop he pricing Calvo block,

More information

IMPLICIT AND INVERSE FUNCTION THEOREMS PAUL SCHRIMPF 1 OCTOBER 25, 2013

IMPLICIT AND INVERSE FUNCTION THEOREMS PAUL SCHRIMPF 1 OCTOBER 25, 2013 IMPLICI AND INVERSE FUNCION HEOREMS PAUL SCHRIMPF 1 OCOBER 25, 213 UNIVERSIY OF BRIISH COLUMBIA ECONOMICS 526 We have exensively sudied how o solve sysems of linear equaions. We know how o check wheher

More information

Application of variational iteration method for solving the nonlinear generalized Ito system

Application of variational iteration method for solving the nonlinear generalized Ito system Applicaion of variaional ieraion mehod for solving he nonlinear generalized Io sysem A.M. Kawala *; Hassan A. Zedan ** *Deparmen of Mahemaics, Faculy of Science, Helwan Universiy, Cairo, Egyp **Deparmen

More information

A Study of Inventory System with Ramp Type Demand Rate and Shortage in The Light Of Inflation I

A Study of Inventory System with Ramp Type Demand Rate and Shortage in The Light Of Inflation I Inernaional Journal of Mahemaics rends and echnology Volume 7 Number Jan 5 A Sudy of Invenory Sysem wih Ramp ype emand Rae and Shorage in he Ligh Of Inflaion I Sangeea Gupa, R.K. Srivasava, A.K. Singh

More information