Application of variational iteration method for solving the nonlinear generalized Ito system

Size: px
Start display at page:

Download "Application of variational iteration method for solving the nonlinear generalized Ito system"

Transcription

1 Applicaion of variaional ieraion mehod for solving he nonlinear generalized Io sysem A.M. Kawala *; Hassan A. Zedan ** *Deparmen of Mahemaics, Faculy of Science, Helwan Universiy, Cairo, Egyp **Deparmen of Mahemaics, Faculy of Science, Kafer el sheik Universiy, Cairo, Egyp Absrac: In his aricle, we implemen relaively analyical echnique called he variaional ieraion mehod VIM)for solving nonlinear generalized Io sysem. In his mehod, a correcion funcional is consruced by a general Lagrange muliplier. Two cases are given o illusrae he accuracy and effeciveness of he mehod.we compare our resuls wih resuls obained by exac soluion. This Comparison reveals ha he variaional ieraion mehod is very effecive, convenien and easier o be implemened. [A.M. Kawala; Hassan A. Zedan. Applicaion of variaional ieraion mehod for solving he nonlinear generalized Io sysem. Journal of American Science 11;71):65-659]. ISSN: ).. Keywords: Variaional ieraion mehod; Lagrange muliplier; nonlinear generalized Io sysem. 1. Inroducion In his paper, we exend he applicaion of he variaioal ieraion mehod o find approximae soluions for nonlinear generalized Io sysem. The variaional ieraion mehod, which proposed by Ji- Huan He [1-3], is considered o find analyic and approximae soluions of differenial equaions. I's effecively and easily used o solve some classes of nonlinear problems, Variaional ieraion mehod has been favorably applied o various kinds of nonlinear problems. The main propery of he mehod is in is flexibiliy and abiliy o solve nonlinear equaions accuraely and convenienly. Major applicaions o nonlinear wave equaion, nonlinear fracional differenial equaions, nonlinear oscillaions and nonlinear problems arising in various engineering applicaions are surveyed. The flexibiliy and adapaion provided by he mehod have made he mehod a srong candidae for approximae analyical soluions.. Variaional Ieraion mehod To illusrae he basic conceps of he Variaioal ieraion mehod, we consider he differenial equaion in he formal form Lu +Nu=gx), where L is a linear operaor, N a nonlinear operaor and gx) an inhomogeneous erm. According o VIM, we can consruc a correcional funcional as x) + x u n+1 x) = u n λ{ Lun ξ ) + Nun ξ )} dξ, where λ is a Lagrangeian muliplier [4], which can be deermined by using variaional heory, he subscrip n denoes he n-h order approximaion, and u ξ ) is considered as a resriced n variaional, i.e. u ξ ) =. 3. Applicaion Consider he nonlinear generalized Io sysem of parial differenial equaions [5] u = v x, 1) v = -v xxx + 3 u v x + 3 v u x ) 1 w w x + 6p x, ) w = w xxx + u w x, 3) p = p xxx + u p x. 4) To illusrae he degree of accuracy o VIM, wo cases of nonlinear generalized Io sysem exac are discussed in deails Nonlinear generalized Io sysem case 1 In his case he analyical soluion for sysem 1-4) ux,) = a k m Sn ξ ), 5a) vx,) = 3 k m 1 + m ) 1 k m 1 + m ) a k m 5b) k m a c1 ) + k m 1 + m ) 6 k m a ) Sn ξ) wx,) = c + c 1 Sn ξ ), 5c) px,) = e + c c 1 Sn ξ ). 5d) where a, k, m, c, c 1 and e are consan, and ξ = k x +- k 3 1+ m )+3ka ) + ξ, and ξ is consan. we sar wih iniial approximaion u = ux,), v = vx,), w = wx,) and p = px,) given by u x,) = a k m Sn k x + ξ ), 6a) n 65

2 v x,) = k m 1 + m ) 1k m k m + 9k m a c ) Sn kx + ξ ) 1 w x,) = c + c 1 Sn kx + ξ ), 6c) p x,) = e + c c 1 Sn kx + ξ ). 6d) 1 + m To solve he sysem 1-4) by means of variaional ieraion mehod, we can consruc he correc funcional as follows: ) a { v v u v v u w w p dτ,6b) n + nxxx+ 3 n nx + 3 n nx) + 1 n nx 6 nx)}, 9b) v n+1 x,) = v n x,) + w n+1 x,) = w n x,) - p n+1 x,) = p n x,) - 9d) wih n. { w w 3u w } dτ, 9c) n nxxx n nx { p p 3u p } dτ. n nxxx n nx u n+1 x,) = u n x,) + λ { u v dτ, 7a) 1 n nx} v n+1 x,) = v n x,) + λ { vn + vnxxx+ 3u nvnx + 3v nunx) + 1w nwnx + 6pnx)} dτ 7b) w n+1 x,) = w n x,) + λ w w 3u w dτ {, 7c) 3 n nxxx n nx} p n+1 x,) = p n x,) + λ { p p 3u p dτ. 7d) 3 n nxxx n nx} where λ 1, λ, 3 o deermined, and w w n nx, p nx, w n nx λ and λ4 are Lagrange mulipliers are v nx, v n nx u, v u n nx, u and u p n nx resriced variaions, i.e. = are denoes δ v nx, u v n nx = δ, δ v u n nx =, δ w w = n nx, δ p = nx, and δ u p n nx =. Is saionary condiions can be obained as follows : 1 + λ 1 τ= =, 1 + λ τ= =, 1 + λ 3 τ= =, 1 + λ 4 τ= =, 1 λ = 1 λ = 3 λ = -1, λ = -1, λ = λ 3 = -1, λ 4 = λ 4 = -1. 8a) 8b) 8c) 8d) subsiuing 8a - 8d) in 7a - 7d), and he following variaional ieraion formula can be obained u n+1 x,) = u n x,) - { u v } dτ, 9a) n nx By he above ieraion formulas 9a - 9d ),we can obain direcly he order componens as u 1 x,) = a +4 k3a k m + k 4 m + k 4 m 4 ) Cn kx + ξ ) Dn kx + ξ ) Sn kx + ξ ) - k m Sn kx + ξ ), v 1 x,) =1 k m { c 1-9 a k m +1 a k 4 m - 3 k 6 m + 1 a k 4 m 4-6k 6 m 4-3 k 6 m k 7 m 5-3 a + k 1+m )Cn 3 kx + ξ ) Dn kx + ξ ) Sn kx + ξ ) + 4k 4 m 4-3 a + k 1+ m ))Sn kx + ξ ) -8 k 5 m 4 Cn kx + ξ ) Dn kx + ξ ) Sn kx + ξ ) 9 a - 3 a k + 9 k 4-3 a k m +18 k 4 m + 9 k 4 m a k -k m ) Dn kx + ξ ) 8 k m m)-3 a + k 1 + m )Sn kx + ξ ) } w 1 x,) = c - c 1 k 3 m Cn 3 kx + ξ ) Dn kx + ξ ) + c 1 Sn kx + ξ ) + c 1 k Cn kx + ξ ) Dn kx + ξ ) 3 a - k Dn kx + ξ ) + k - 3 m) m Sn kx + ξ ), p 1 x,) = e + c c 1 Sn kx + ξ ) - c c 1 k 3 Cn kx + ξ ) Dn kx + ξ ) m Cn kx + ξ ) + Dn kx + ξ ) -4m Sn kx + ξ ) )+ 6 c c 1 k Cn kx + ξ ) Dn kx + ξ ) a -k m Sn kx + ξ ). and so on, in he same manner using Mahemaica Package, we can evaluae he numerical soluions o he res componens of ieraion formulas 9a - 9d ) wih n h approximaions n =3 ). The obained numerical resuls are summarized in Table

3 x= - x= -1 x= x= 1 x= Table 1. Comparison of he exac and numerical soluions for Io sysem Error u Error v Error w Error p E E E E E E E E E E E E E E-1.35E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-1-8.5E E E E E E E E E E E-8 From hese resuls we conclude ha he variaional ieraion mehod for Io sysem, gives high degree of accuracy in comparison wih analyical soluion 5a-5d). Now we sudy he diagrams obained by VIM and analyical soluions o show he relaion beween u,v,w,p and x wih differen values for, and he relaion beween u,v,w,p and wih differen values for x. 3.. Nonlinear generalized Io sysem case In his case he analyical soluion for sysem 1-4) ux,) = a k m Cs ξ ), 1a) vx,) = 3 k m ) 1 k m ) a + 9 k a c 1 ) 1b) k + k m ) 6 k a ) Cs ξ) 4 wx,) = c + c 1 Cs ξ ), 1c) px,) = e + c c 1 Cs ξ ). 1d) where a, k, m, c, c 1 and e are consan, and ξ = k x +- k 3 1+ m )+3ka ) + ξ, and ξ is consan. we sar wih iniial approximaion u = ux,), v = vx,), w = wx,) and p = px,) given by u x,) = a k m Sn k x + ξ ), 11a) v x,) = 3 k m ) 1 k m ) a + 9 k a c 1 ) k 11b) 4 + k m ) 6 k a) Cs k x +ξ ) w x,) = c + c 1 Sn kx + ξ ), 11c) p x,) = e + c c 1 Sn kx + ξ ). 11d) By using ieraion formulas 9a - 9d ),we can obain direcly case order componens as u 1 x,) = a - k Cs k x + ξ )+4k 3 3 a k -+m ) Csk x + ξ ) Dsk x + ξ ) Nsk x + ξ ). v 1 x,) = 1/ k ) {c 1-33 a k - 4 a k m ) + k 6 - +m ) ) - 43 a k 4 - k m ) Cs k x + ξ )+ 65

4 18 k 7 3 a - k -+m ) Cs 3 k x + ξ )Dsk x + ξ )Nsk x + ξ ) + 8 k 5 Csk x + ξ )Dsk x + ξ ) Nsk x + ξ ) 9 a + 6 a k + 36 k 4 3 a k m - 36 k 4 m + 9 k 4 m 4 83 a k - k m )Ds k x + ξ ) - 83 a k - k m )Ns k x + ξ )} w 1 x,) = c + c 1 Csk x + ξ ) + c 1 k 3 Cs k x + ξ )Dsk x + ξ ) Nsk x + ξ ) - c 1 k 3 Ds 3 k x + ξ ) Nsk x + ξ )- c 1 k Dsk x + ξ ) Nsk x + ξ ) 3 a + k Ns k x + ξ )) p 1 x,) = e + c c 1 Csk x + ξ )+ 4 c c 1 k 3 Cs k x + ξ )Dsk x + ξ ) Nsk x + ξ ) c c 1 k 3 Ds 3 k x + ξ ) Nsk x + ξ ) - c c 1 k Dsk x + ξ ) Nsk x + ξ )3 a + k Ns k x + ξ )) and so on, in he same manner we can evaluae he res componens of ieraion formulas 9a - 9d ) wih n h approximaions n =3 ).The obained numerical resuls are summarized in Table. The behavior of he soluion obained by VIM and analyic soluion are shown in Figs. 3a - 3d ) and 4a - 4d). Now we sudy he diagrams obained by VIM and analyical soluions o show he relaion beween u,v,w,p and x wih differen values for, and he relaion beween u,v,w,p and wih differen values for x. The behavior of he 3rd ieraion obained by VIM Fig[4a - 4d] and he analyic soluion Fig[3a - 3d]. Then, he surfaces respecively show he soluion ux,),vx,), wx,), px,). Fig show relaion beween u,v,w,p and x wih consan values for. 653

5 Fig show relaion beween u,v,w,p and wih consan values for x. 654

6 The behavior of he 3rd ieraion obained by VIM Fig[1a - 1d] and he analyic soluion Fig[a - d]. Then, he surfaces respecively show he soluion ux,),vx,), wx,), px,) 655

7 4- Conclusion In his paper, he variaional ieraion mehod has been successfully used o find approximae soluion for he nonlinear generalized Io sysem of parial differenial equaion. The numerical resuls obain using n approximaions n=3), compared wih analyic soluion show he high degree of accuracy. Table. comparison of he nd case exac and numerical soluions for Io sysem x= - Error u Error v Error w Error p.5.61e E E E E E E E E-1.563E E E-8 x= E E E E E E E E E E E E-7 x= E E E E E E E E E-5 x= E E-7 1.4E-7 1.4E E E E E E E E E-6 x= E E E E E E E E E E E E-8 x= E E E E E E E E E E E E-7 656

8 Fig show relaion beween u,v,w,p and x wih consan values for. 657

9 Fig show relaion beween u,v,w,p and wih consan values for x. 658

10 The behavior of he 3rd ieraion obained by VIM Fig[4a - 4d] and he analyic soluion Fig[3a - 3d]. Then, he surfaces respecively show he soluion ux,),vx,), wx,), px,) * Corresponding auhor: A.M. Kawala Deparmen of Mahemaics, Faculy of Science, Helwan Universiy, Cairo, Egyp kawala_6_1@yahoo.com References 1. J.H. He, A New Approach o Nonlinear Parial Differenial Equaion, Shanghi Universiy, Shanghi Insiue of Applied Mah. and Mechanics.. J.H. He, Variaioal ieraion mehod for delay differenial equaion, commun.nonlinear Sci. Numer. Simula. 4) 1997) M.A. Abdu, A.A. Soliman, Variaioal ieraion mehod for solving Burger s and coupled Burger sequaions, J. Comp. Appl. Mech ) M.Inokui, H. Sckine, T. Mura, General Use of he Lagrange Muliplier in Non-Linear Mahemaical Physics, in Variaioal mehod in he Mechanics of Solids, Pergamon Press, New York, 1978,pp A.A.Darwish, Hassan A.Zedan, A.M.Kawala, A.M.El Hadid " Invarian soluions and soliary wave soluions for some Parial Differenial Equaions" M.SC.7. 1//1 659

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 1, Issue 6 Ver. II (Nov - Dec. 214), PP 48-54 Variaional Ieraion Mehod for Solving Sysem of Fracional Order Ordinary Differenial

More information

Application of He s Variational Iteration Method for Solving Seventh Order Sawada-Kotera Equations

Application of He s Variational Iteration Method for Solving Seventh Order Sawada-Kotera Equations Applied Mahemaical Sciences, Vol. 2, 28, no. 1, 471-477 Applicaion of He s Variaional Ieraion Mehod for Solving Sevenh Order Sawada-Koera Equaions Hossein Jafari a,1, Allahbakhsh Yazdani a, Javad Vahidi

More information

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method Journal of Applied Mahemaics & Bioinformaics, vol., no., 01, 1-14 ISSN: 179-660 (prin), 179-699 (online) Scienpress Ld, 01 Improved Approimae Soluions for Nonlinear Evoluions Equaions in Mahemaical Physics

More information

Research Article Convergence of Variational Iteration Method for Second-Order Delay Differential Equations

Research Article Convergence of Variational Iteration Method for Second-Order Delay Differential Equations Applied Mahemaics Volume 23, Aricle ID 63467, 9 pages hp://dx.doi.org/.55/23/63467 Research Aricle Convergence of Variaional Ieraion Mehod for Second-Order Delay Differenial Equaions Hongliang Liu, Aiguo

More information

Efficient Solution of Fractional Initial Value Problems Using Expanding Perturbation Approach

Efficient Solution of Fractional Initial Value Problems Using Expanding Perturbation Approach Journal of mahemaics and compuer Science 8 (214) 359-366 Efficien Soluion of Fracional Iniial Value Problems Using Expanding Perurbaion Approach Khosro Sayevand Deparmen of Mahemaics, Faculy of Science,

More information

APPLICATION OF CHEBYSHEV APPROXIMATION IN THE PROCESS OF VARIATIONAL ITERATION METHOD FOR SOLVING DIFFERENTIAL- ALGEBRAIC EQUATIONS

APPLICATION OF CHEBYSHEV APPROXIMATION IN THE PROCESS OF VARIATIONAL ITERATION METHOD FOR SOLVING DIFFERENTIAL- ALGEBRAIC EQUATIONS Mahemaical and Compuaional Applicaions, Vol., No. 4, pp. 99-978,. Associaion for Scienific Research APPLICATION OF CHEBYSHEV APPROXIMATION IN THE PROCESS OF VARIATIONAL ITERATION METHOD FOR SOLVING DIFFERENTIAL-

More information

THE SOLUTION OF COUPLED MODIFIED KDV SYSTEM BY THE HOMOTOPY ANALYSIS METHOD

THE SOLUTION OF COUPLED MODIFIED KDV SYSTEM BY THE HOMOTOPY ANALYSIS METHOD TWMS Jour. Pure Appl. Mah., V.3, N.1, 1, pp.1-134 THE SOLUTION OF COUPLED MODIFIED KDV SYSTEM BY THE HOMOTOPY ANALYSIS METHOD M. GHOREISHI 1, A.I.B.MD. ISMAIL 1, A. RASHID Absrac. In his paper, he Homoopy

More information

Homotopy Perturbation Method for Solving Some Initial Boundary Value Problems with Non Local Conditions

Homotopy Perturbation Method for Solving Some Initial Boundary Value Problems with Non Local Conditions Proceedings of he World Congress on Engineering and Compuer Science 23 Vol I WCECS 23, 23-25 Ocober, 23, San Francisco, USA Homoopy Perurbaion Mehod for Solving Some Iniial Boundary Value Problems wih

More information

Solution of Integro-Differential Equations by Using ELzaki Transform

Solution of Integro-Differential Equations by Using ELzaki Transform Global Journal of Mahemaical Sciences: Theory and Pracical. Volume, Number (), pp. - Inernaional Research Publicaion House hp://www.irphouse.com Soluion of Inegro-Differenial Equaions by Using ELzaki Transform

More information

Solving a System of Nonlinear Functional Equations Using Revised New Iterative Method

Solving a System of Nonlinear Functional Equations Using Revised New Iterative Method Solving a Sysem of Nonlinear Funcional Equaions Using Revised New Ieraive Mehod Sachin Bhalekar and Varsha Dafardar-Gejji Absrac In he presen paper, we presen a modificaion of he New Ieraive Mehod (NIM

More information

Undetermined coefficients for local fractional differential equations

Undetermined coefficients for local fractional differential equations Available online a www.isr-publicaions.com/jmcs J. Mah. Compuer Sci. 16 (2016), 140 146 Research Aricle Undeermined coefficiens for local fracional differenial equaions Roshdi Khalil a,, Mohammed Al Horani

More information

Solitons Solutions to Nonlinear Partial Differential Equations by the Tanh Method

Solitons Solutions to Nonlinear Partial Differential Equations by the Tanh Method IOSR Journal of Mahemaics (IOSR-JM) e-issn: 7-7,p-ISSN: 319-7X, Volume, Issue (Sep. - Oc. 13), PP 1-19 Solions Soluions o Nonlinear Parial Differenial Equaions by he Tanh Mehod YusurSuhail Ali Compuer

More information

On the Solutions of First and Second Order Nonlinear Initial Value Problems

On the Solutions of First and Second Order Nonlinear Initial Value Problems Proceedings of he World Congress on Engineering 13 Vol I, WCE 13, July 3-5, 13, London, U.K. On he Soluions of Firs and Second Order Nonlinear Iniial Value Problems Sia Charkri Absrac In his paper, we

More information

Iterative Laplace Transform Method for Solving Fractional Heat and Wave- Like Equations

Iterative Laplace Transform Method for Solving Fractional Heat and Wave- Like Equations Research Journal of Mahemaical and Saisical Sciences ISSN 3 647 Vol. 3(), 4-9, February (5) Res. J. Mahemaical and Saisical Sci. Ieraive aplace Transform Mehod for Solving Fracional Hea and Wave- ike Euaions

More information

Variational Iteration Method for Solving Riccati Matrix Differential Equations

Variational Iteration Method for Solving Riccati Matrix Differential Equations Indonesian Journal of Elecrical Engineering and Compuer Science Vol. 5, No. 3, March 17, pp. 673 ~ 683 DOI: 1.11591/ijeecs.v5.i3.pp673-683 673 Variaional Ieraion Mehod for Solving Riccai Marix Differenial

More information

Fractional Method of Characteristics for Fractional Partial Differential Equations

Fractional Method of Characteristics for Fractional Partial Differential Equations Fracional Mehod of Characerisics for Fracional Parial Differenial Equaions Guo-cheng Wu* Modern Teile Insiue, Donghua Universiy, 188 Yan-an ilu Road, Shanghai 51, PR China Absrac The mehod of characerisics

More information

IMPROVED HYPERBOLIC FUNCTION METHOD AND EXACT SOLUTIONS FOR VARIABLE COEFFICIENT BENJAMIN-BONA-MAHONY-BURGERS EQUATION

IMPROVED HYPERBOLIC FUNCTION METHOD AND EXACT SOLUTIONS FOR VARIABLE COEFFICIENT BENJAMIN-BONA-MAHONY-BURGERS EQUATION THERMAL SCIENCE, Year 015, Vol. 19, No. 4, pp. 1183-1187 1183 IMPROVED HYPERBOLIC FUNCTION METHOD AND EXACT SOLUTIONS FOR VARIABLE COEFFICIENT BENJAMIN-BONA-MAHONY-BURGERS EQUATION by Hong-Cai MA a,b*,

More information

Haar Wavelet Operational Matrix Method for Solving Fractional Partial Differential Equations

Haar Wavelet Operational Matrix Method for Solving Fractional Partial Differential Equations Copyrigh 22 Tech Science Press CMES, vol.88, no.3, pp.229-243, 22 Haar Wavele Operaional Mari Mehod for Solving Fracional Parial Differenial Equaions Mingu Yi and Yiming Chen Absrac: In his paper, Haar

More information

J. Appl. Environ. Biol. Sci., 4(7S) , , TextRoad Publication

J. Appl. Environ. Biol. Sci., 4(7S) , , TextRoad Publication J Appl Environ Biol Sci, 4(7S)379-39, 4 4, TexRoad Publicaion ISSN: 9-474 Journal of Applied Environmenal and Biological Sciences wwwexroadcom Applicaion of Opimal Homoopy Asympoic Mehod o Convecive Radiaive

More information

Analytical Solutions of an Economic Model by the Homotopy Analysis Method

Analytical Solutions of an Economic Model by the Homotopy Analysis Method Applied Mahemaical Sciences, Vol., 26, no. 5, 2483-249 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/.2988/ams.26.6688 Analyical Soluions of an Economic Model by he Homoopy Analysis Mehod Jorge Duare ISEL-Engineering

More information

A NEW TECHNOLOGY FOR SOLVING DIFFUSION AND HEAT EQUATIONS

A NEW TECHNOLOGY FOR SOLVING DIFFUSION AND HEAT EQUATIONS THERMAL SCIENCE: Year 7, Vol., No. A, pp. 33-4 33 A NEW TECHNOLOGY FOR SOLVING DIFFUSION AND HEAT EQUATIONS by Xiao-Jun YANG a and Feng GAO a,b * a School of Mechanics and Civil Engineering, China Universiy

More information

Sumudu Decomposition Method for Solving Fractional Delay Differential Equations

Sumudu Decomposition Method for Solving Fractional Delay Differential Equations vol. 1 (2017), Aricle ID 101268, 13 pages doi:10.11131/2017/101268 AgiAl Publishing House hp://www.agialpress.com/ Research Aricle Sumudu Decomposiion Mehod for Solving Fracional Delay Differenial Equaions

More information

New effective moduli of isotropic viscoelastic composites. Part I. Theoretical justification

New effective moduli of isotropic viscoelastic composites. Part I. Theoretical justification IOP Conference Series: Maerials Science and Engineering PAPE OPEN ACCESS New effecive moduli of isoropic viscoelasic composies. Par I. Theoreical jusificaion To cie his aricle: A A Sveashkov and A A akurov

More information

An Iterative Method for Solving Two Special Cases of Nonlinear PDEs

An Iterative Method for Solving Two Special Cases of Nonlinear PDEs Conemporary Engineering Sciences, Vol. 10, 2017, no. 11, 55-553 HIKARI Ld, www.m-hikari.com hps://doi.org/10.12988/ces.2017.7651 An Ieraive Mehod for Solving Two Special Cases of Nonlinear PDEs Carlos

More information

Application of homotopy Analysis Method for Solving non linear Dynamical System

Application of homotopy Analysis Method for Solving non linear Dynamical System IOSR Journal of Mahemaics (IOSR-JM) e-issn: 78-578, p-issn: 319-765X. Volume 1, Issue 1 Ver. V (Jan. - Feb. 16), PP 6-1 www.iosrjournals.org Applicaion of homoopy Analysis Mehod for Solving non linear

More information

STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS Elecronic Journal of Differenial Equaions, Vol. 217 217, No. 118, pp. 1 14. ISSN: 172-6691. URL: hp://ejde.mah.xsae.edu or hp://ejde.mah.un.edu STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS

More information

Research Article Solving the Fractional Rosenau-Hyman Equation via Variational Iteration Method and Homotopy Perturbation Method

Research Article Solving the Fractional Rosenau-Hyman Equation via Variational Iteration Method and Homotopy Perturbation Method Inernaional Differenial Equaions Volume 22, Aricle ID 4723, 4 pages doi:.55/22/4723 Research Aricle Solving he Fracional Rosenau-Hyman Equaion via Variaional Ieraion Mehod and Homoopy Perurbaion Mehod

More information

Adomian Decomposition Method for Approximating the Solutions of the Bidirectional Sawada-Kotera Equation

Adomian Decomposition Method for Approximating the Solutions of the Bidirectional Sawada-Kotera Equation Adomian Decomposiion Mehod for Approximaing he Soluions of he Bidirecional Sawada-Koera Equaion Xian-Jing Lai and Xiao-Ou Cai Deparmen of Basic Science, Zhejiang Shuren Universiy, Hangzhou, 310015, Zhejiang

More information

On Gronwall s Type Integral Inequalities with Singular Kernels

On Gronwall s Type Integral Inequalities with Singular Kernels Filoma 31:4 (217), 141 149 DOI 1.2298/FIL17441A Published by Faculy of Sciences and Mahemaics, Universiy of Niš, Serbia Available a: hp://www.pmf.ni.ac.rs/filoma On Gronwall s Type Inegral Inequaliies

More information

Research Article On Perturbative Cubic Nonlinear Schrodinger Equations under Complex Nonhomogeneities and Complex Initial Conditions

Research Article On Perturbative Cubic Nonlinear Schrodinger Equations under Complex Nonhomogeneities and Complex Initial Conditions Hindawi Publishing Corporaion Differenial Equaions and Nonlinear Mechanics Volume 9, Aricle ID 959, 9 pages doi:.55/9/959 Research Aricle On Perurbaive Cubic Nonlinear Schrodinger Equaions under Complex

More information

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term Applied Mahemaics E-Noes, 8(28), 4-44 c ISSN 67-25 Available free a mirror sies of hp://www.mah.nhu.edu.w/ amen/ Properies Of Soluions To A Generalized Liénard Equaion Wih Forcing Term Allan Kroopnick

More information

THE FOURIER-YANG INTEGRAL TRANSFORM FOR SOLVING THE 1-D HEAT DIFFUSION EQUATION. Jian-Guo ZHANG a,b *

THE FOURIER-YANG INTEGRAL TRANSFORM FOR SOLVING THE 1-D HEAT DIFFUSION EQUATION. Jian-Guo ZHANG a,b * Zhang, J.-G., e al.: The Fourier-Yang Inegral Transform for Solving he -D... THERMAL SCIENCE: Year 07, Vol., Suppl., pp. S63-S69 S63 THE FOURIER-YANG INTEGRAL TRANSFORM FOR SOLVING THE -D HEAT DIFFUSION

More information

Available online Journal of Scientific and Engineering Research, 2017, 4(10): Research Article

Available online   Journal of Scientific and Engineering Research, 2017, 4(10): Research Article Available online www.jsaer.com Journal of Scienific and Engineering Research, 2017, 4(10):276-283 Research Aricle ISSN: 2394-2630 CODEN(USA): JSERBR Numerical Treamen for Solving Fracional Riccai Differenial

More information

ItsApplication To Derivative Schrödinger Equation

ItsApplication To Derivative Schrödinger Equation IOSR Journal of Mahemaics (IOSR-JM) e-issn: 78-578, p-issn: 19-765X. Volume 1, Issue 5 Ver. II (Sep. - Oc.016), PP 41-54 www.iosrjournals.org The Generalized of cosh() Expansion Mehod And IsApplicaion

More information

Comparison between the Discrete and Continuous Time Models

Comparison between the Discrete and Continuous Time Models Comparison beween e Discree and Coninuous Time Models D. Sulsky June 21, 2012 1 Discree o Coninuous Recall e discree ime model Î = AIS Ŝ = S Î. Tese equaions ell us ow e populaion canges from one day o

More information

EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS

EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS Elecronic Journal of Differenial Equaions, Vol. 206 (206, No. 39, pp.. ISSN: 072-669. URL: hp://ejde.mah.xsae.edu or hp://ejde.mah.un.edu fp ejde.mah.xsae.edu EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO

More information

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi Creep in Viscoelasic Subsances Numerical mehods o calculae he coefficiens of he Prony equaion using creep es daa and Herediary Inegrals Mehod Navnee Saini, Mayank Goyal, Vishal Bansal (23); Term Projec

More information

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS)

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) Inernaional Associaion of Scienific Innovaion and Research (IASIR) (An Associaion Unifying he Sciences, Engineering, and Applied Research) Inernaional Journal of Emerging Technologies in Compuaional and

More information

Engineering Letter, 16:4, EL_16_4_03

Engineering Letter, 16:4, EL_16_4_03 3 Exisence In his secion we reduce he problem (5)-(8) o an equivalen problem of solving a linear inegral equaion of Volerra ype for C(s). For his purpose we firs consider following free boundary problem:

More information

Symmetry and Numerical Solutions for Systems of Non-linear Reaction Diffusion Equations

Symmetry and Numerical Solutions for Systems of Non-linear Reaction Diffusion Equations Symmery and Numerical Soluions for Sysems of Non-linear Reacion Diffusion Equaions Sanjeev Kumar* and Ravendra Singh Deparmen of Mahemaics, (Dr. B. R. Ambedkar niversiy, Agra), I. B. S. Khandari, Agra-8

More information

Generalized Chebyshev polynomials

Generalized Chebyshev polynomials Generalized Chebyshev polynomials Clemene Cesarano Faculy of Engineering, Inernaional Telemaic Universiy UNINETTUNO Corso Viorio Emanuele II, 39 86 Roma, Ialy email: c.cesarano@unineunouniversiy.ne ABSTRACT

More information

A residual power series technique for solving systems of initial value problems

A residual power series technique for solving systems of initial value problems A residual power series echnique for solving sysems of iniial value problems Omar Abu Arqub, Shaher Momani,3, Ma'mon Abu Hammad, Ahmed Alsaedi 3 Deparmen of Mahemaics, Faculy of Science, Al Balqa Applied

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Mathematical Theory and Modeling ISSN (Paper) ISSN (Online) Vol.2, No.4, 2012

Mathematical Theory and Modeling ISSN (Paper) ISSN (Online) Vol.2, No.4, 2012 Soluion of Telegraph quaion by Modified of Double Sumudu Transform "lzaki Transform" Tarig. M. lzaki * man M. A. Hilal. Mahemaics Deparmen, Faculy of Sciences and Ars-Alkamil, King Abdulaziz Uniersiy,

More information

Exact travelling wave solutions for some important nonlinear physical models

Exact travelling wave solutions for some important nonlinear physical models PRAMANA c Indian Academy of Sciences Vol. 8, No. journal of May 3 physics pp. 77 769 Eac ravelling wave soluions for some imporan nonlinear physical models JONU LEE and RATHINASAMY SAKTHIVEL, School of

More information

Average Number of Lattice Points in a Disk

Average Number of Lattice Points in a Disk Average Number of Laice Poins in a Disk Sujay Jayakar Rober S. Sricharz Absrac The difference beween he number of laice poins in a disk of radius /π and he area of he disk /4π is equal o he error in he

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

TO our knowledge, most exciting results on the existence

TO our knowledge, most exciting results on the existence IAENG Inernaional Journal of Applied Mahemaics, 42:, IJAM_42 2 Exisence and Uniqueness of a Periodic Soluion for hird-order Delay Differenial Equaion wih wo Deviaing Argumens A. M. A. Abou-El-Ela, A. I.

More information

Exact solution of the(2+1)-dimensional hyperbolic nonlinear Schrödinger equation by Adomian decomposition method

Exact solution of the(2+1)-dimensional hyperbolic nonlinear Schrödinger equation by Adomian decomposition method Malaa J Ma ((014 160 164 Exac soluion of he(+1-dimensional hperbolic nonlinear Schrödinger equaion b Adomian decomposiion mehod Ifikhar Ahmed, a, Chunlai Mu b and Pan Zheng c a,b,c College of Mahemaics

More information

SUFFICIENT CONDITIONS FOR EXISTENCE SOLUTION OF LINEAR TWO-POINT BOUNDARY PROBLEM IN MINIMIZATION OF QUADRATIC FUNCTIONAL

SUFFICIENT CONDITIONS FOR EXISTENCE SOLUTION OF LINEAR TWO-POINT BOUNDARY PROBLEM IN MINIMIZATION OF QUADRATIC FUNCTIONAL HE PUBLISHING HOUSE PROCEEDINGS OF HE ROMANIAN ACADEMY, Series A, OF HE ROMANIAN ACADEMY Volume, Number 4/200, pp 287 293 SUFFICIEN CONDIIONS FOR EXISENCE SOLUION OF LINEAR WO-POIN BOUNDARY PROBLEM IN

More information

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 4 7, 00, Wilmingon, NC, USA pp 0 Oscillaion of an Euler Cauchy Dynamic Equaion S Huff, G Olumolode,

More information

Stochastic Model for Cancer Cell Growth through Single Forward Mutation

Stochastic Model for Cancer Cell Growth through Single Forward Mutation Journal of Modern Applied Saisical Mehods Volume 16 Issue 1 Aricle 31 5-1-2017 Sochasic Model for Cancer Cell Growh hrough Single Forward Muaion Jayabharahiraj Jayabalan Pondicherry Universiy, jayabharahi8@gmail.com

More information

The Application of Optimal Homotopy Asymptotic Method for One-Dimensional Heat and Advection- Diffusion Equations

The Application of Optimal Homotopy Asymptotic Method for One-Dimensional Heat and Advection- Diffusion Equations Inf. Sci. Le., No., 57-61 13) 57 Informaion Sciences Leers An Inernaional Journal hp://d.doi.org/1.1785/isl/ The Applicaion of Opimal Homoopy Asympoic Mehod for One-Dimensional Hea and Advecion- Diffusion

More information

Exact travelling wave solutions for some important nonlinear physical models

Exact travelling wave solutions for some important nonlinear physical models Universiy of Wollongong Research Online Faculy of Engineering and Informaion Sciences - Papers: Par A Faculy of Engineering and Informaion Sciences 3 Eac ravelling wave soluions for some imporan nonlinear

More information

A novel solution for fractional chaotic Chen system

A novel solution for fractional chaotic Chen system Available online a www.jnsa.com J. Nonlinear Sci. Appl. 8 (2) 478 488 Research Aricle A novel soluion for fracional chaoic Chen sysem A. K. Alomari Deparmen of Mahemaics Faculy of Science Yarmouk Universiy

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

Application of Homotopy Analysis Method for Solving various types of Problems of Partial Differential Equations

Application of Homotopy Analysis Method for Solving various types of Problems of Partial Differential Equations Applicaion of Hooopy Analysis Mehod for olving various ypes of Probles of Parial Differenial Equaions V.P.Gohil, Dr. G. A. anabha,assisan Professor, Deparen of Maheaics, Governen Engineering College, Bhavnagar,

More information

A Note on the Equivalence of Fractional Relaxation Equations to Differential Equations with Varying Coefficients

A Note on the Equivalence of Fractional Relaxation Equations to Differential Equations with Varying Coefficients mahemaics Aricle A Noe on he Equivalence of Fracional Relaxaion Equaions o Differenial Equaions wih Varying Coefficiens Francesco Mainardi Deparmen of Physics and Asronomy, Universiy of Bologna, and he

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

On Volterra Integral Equations of the First Kind with a Bulge Function by Using Laplace Transform

On Volterra Integral Equations of the First Kind with a Bulge Function by Using Laplace Transform Applied Mahemaical Sciences, Vol. 9, 15, no., 51-56 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/1.1988/ams.15.41196 On Volerra Inegral Equaions of he Firs Kind wih a Bulge Funcion by Using Laplace Transform

More information

A New Perturbative Approach in Nonlinear Singularity Analysis

A New Perturbative Approach in Nonlinear Singularity Analysis Journal of Mahemaics and Saisics 7 (: 49-54, ISSN 549-644 Science Publicaions A New Perurbaive Approach in Nonlinear Singulariy Analysis Ta-Leung Yee Deparmen of Mahemaics and Informaion Technology, The

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

Solving Nonlinear Fractional Partial Differential Equations Using the Homotopy Analysis Method

Solving Nonlinear Fractional Partial Differential Equations Using the Homotopy Analysis Method Solving Nonlinear Fracional Parial Differenial Equaions Using he Homoopy Analysis Mehod Mehdi Dehghan, 1 Jalil Manafian, 1 Abbas Saadamandi 1 Deparmen of Applied Mahemaics, Faculy of Mahemaics and Compuer

More information

Ordinary Differential Equations

Ordinary Differential Equations Lecure 22 Ordinary Differenial Equaions Course Coordinaor: Dr. Suresh A. Karha, Associae Professor, Deparmen of Civil Engineering, IIT Guwahai. In naure, mos of he phenomena ha can be mahemaically described

More information

arxiv: v1 [math.ca] 15 Nov 2016

arxiv: v1 [math.ca] 15 Nov 2016 arxiv:6.599v [mah.ca] 5 Nov 26 Counerexamples on Jumarie s hree basic fracional calculus formulae for non-differeniable coninuous funcions Cheng-shi Liu Deparmen of Mahemaics Norheas Peroleum Universiy

More information

Single and Double Pendulum Models

Single and Double Pendulum Models Single and Double Pendulum Models Mah 596 Projec Summary Spring 2016 Jarod Har 1 Overview Differen ypes of pendulums are used o model many phenomena in various disciplines. In paricular, single and double

More information

Modified Iterative Method For the Solution of Fredholm Integral Equations of the Second Kind via Matrices

Modified Iterative Method For the Solution of Fredholm Integral Equations of the Second Kind via Matrices Modified Ieraive Mehod For he Soluion of Fredholm Inegral Equaions of he Second Kind via Marices Shoukralla, E. S 1, Saber. Nermein. A 2 and EL-Serafi, S. A. 3 1s Auhor, Prof. Dr, faculy of engineering

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

Approximate Solution to Burgers Equation Using Reconstruction of Variational Iteration Method

Approximate Solution to Burgers Equation Using Reconstruction of Variational Iteration Method Applied Mahemaics 2013, 3(2): 45-49 DOI: 10.5923/j.am.20130302.02 Approximae Soluion o Burgers Equaion Using Reconsrucion of Variaional Ieraion Mehod A. Esfandyaripour 1, M. Hadi. Rafiee 2,*, M. Esfandyaripour

More information

Hall Effects on Rayleigh-Stokes Problem for Heated Second Grade Fluid

Hall Effects on Rayleigh-Stokes Problem for Heated Second Grade Fluid Proceedings of he Pakisan Academy of Sciences 49 (3):193 198 (1) Copyrigh Pakisan Academy of Sciences ISSN: 377-969 Pakisan Academy of Sciences Original Aricle Hall Effecs on Rayleigh-Sokes Problem for

More information

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type In. J. Conemp. Mah. Sci., Vol. 2, 27, no. 2, 89-2 Monoonic Soluions of a Class of Quadraic Singular Inegral Equaions of Volerra ype Mahmoud M. El Borai Deparmen of Mahemaics, Faculy of Science, Alexandria

More information

THE EFFECT OF SUCTION AND INJECTION ON UNSTEADY COUETTE FLOW WITH VARIABLE PROPERTIES

THE EFFECT OF SUCTION AND INJECTION ON UNSTEADY COUETTE FLOW WITH VARIABLE PROPERTIES Kragujevac J. Sci. 3 () 7-4. UDC 53.5:536. 4 THE EFFECT OF SUCTION AND INJECTION ON UNSTEADY COUETTE FLOW WITH VARIABLE PROPERTIES Hazem A. Aia Dep. of Mahemaics, College of Science,King Saud Universiy

More information

Numerical Solution of Fractional Variational Problems Using Direct Haar Wavelet Method

Numerical Solution of Fractional Variational Problems Using Direct Haar Wavelet Method ISSN: 39-8753 Engineering and echnology (An ISO 397: 7 Cerified Organizaion) Vol. 3, Issue 5, May 4 Numerical Soluion of Fracional Variaional Problems Using Direc Haar Wavele Mehod Osama H. M., Fadhel

More information

Approximating positive solutions of nonlinear first order ordinary quadratic differential equations

Approximating positive solutions of nonlinear first order ordinary quadratic differential equations Dhage & Dhage, Cogen Mahemaics (25, 2: 2367 hp://dx.doi.org/.8/233835.25.2367 APPLIED & INTERDISCIPLINARY MATHEMATICS RESEARCH ARTICLE Approximaing posiive soluions of nonlinear firs order ordinary quadraic

More information

A new method for approximate solutions of some nonlinear equations: Residual power series method

A new method for approximate solutions of some nonlinear equations: Residual power series method Research Aricle A new mehod for approximae soluions of some nonlinear equaions: Residual power series mehod Advances in Mechanical Engineering 016, Vol. 8(4) 1 7 Ó The Auhor(s) 016 DOI: 10.1177/1687814016644580

More information

On the Integro-Differential Equation with a Bulge Function by Using Laplace Transform

On the Integro-Differential Equation with a Bulge Function by Using Laplace Transform Applied Mahemaical Sciences, Vol. 9, 15, no. 5, 9-34 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/1.1988/ams.15.411931 On he Inegro-Differenial Equaion wih a Bulge Funcion by Using Laplace Transform P.

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information

SOME PROPERTIES OF GENERALIZED STRONGLY HARMONIC CONVEX FUNCTIONS MUHAMMAD ASLAM NOOR, KHALIDA INAYAT NOOR, SABAH IFTIKHAR AND FARHAT SAFDAR

SOME PROPERTIES OF GENERALIZED STRONGLY HARMONIC CONVEX FUNCTIONS MUHAMMAD ASLAM NOOR, KHALIDA INAYAT NOOR, SABAH IFTIKHAR AND FARHAT SAFDAR Inernaional Journal o Analysis and Applicaions Volume 16, Number 3 2018, 427-436 URL: hps://doi.org/10.28924/2291-8639 DOI: 10.28924/2291-8639-16-2018-427 SOME PROPERTIES OF GENERALIZED STRONGLY HARMONIC

More information

The modified KdV equation with variable. Exact uni/bi-variable travelling wave-like solutions

The modified KdV equation with variable. Exact uni/bi-variable travelling wave-like solutions MM Research Preprins KLMM, Chinese Academy of Sciences Vol. 28, 30 39, Feb., 2009 The modified KdV equaion wih variable coefficiens: Exac uni/bi-variable ravelling wave-like soluions Zhenya Yan Key Laboraory

More information

A NEW APPROACH FOR STUDYING FUZZY FUNCTIONAL EQUATIONS

A NEW APPROACH FOR STUDYING FUZZY FUNCTIONAL EQUATIONS IJMMS 28:12 2001) 733 741 PII. S0161171201006639 hp://ijmms.hindawi.com Hindawi Publishing Corp. A NEW APPROACH FOR STUDYING FUZZY FUNCTIONAL EQUATIONS ELIAS DEEBA and ANDRE DE KORVIN Received 29 January

More information

Positive continuous solution of a quadratic integral equation of fractional orders

Positive continuous solution of a quadratic integral equation of fractional orders Mah. Sci. Le., No., 9-7 (3) 9 Mahemaical Sciences Leers An Inernaional Journal @ 3 NSP Naural Sciences Publishing Cor. Posiive coninuous soluion of a quadraic inegral equaion of fracional orders A. M.

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008 [E5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 008 EEE/ISE PART II MEng BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: :00 hours There are FOUR quesions

More information

Legendre wavelet collocation method for the numerical solution of singular initial value problems

Legendre wavelet collocation method for the numerical solution of singular initial value problems Inernaional Journal of Saisics and Applied Mahemaics 8; 3(4): -9 ISS: 456-45 Mahs 8; 3(4): -9 8 Sas & Mahs www.mahsjournal.com Received: -5-8 Acceped: 3-6-8 SC Shiralashei Deparmen of Mahemaics, Karnaa

More information

A Sharp Existence and Uniqueness Theorem for Linear Fuchsian Partial Differential Equations

A Sharp Existence and Uniqueness Theorem for Linear Fuchsian Partial Differential Equations A Sharp Exisence and Uniqueness Theorem for Linear Fuchsian Parial Differenial Equaions Jose Ernie C. LOPE Absrac This paper considers he equaion Pu = f, where P is he linear Fuchsian parial differenial

More information

Construction of Analytical Solutions to Fractional Differential Equations Using Homotopy Analysis Method

Construction of Analytical Solutions to Fractional Differential Equations Using Homotopy Analysis Method IAENG Inernaional Journal of Applied Mahemaics, 0:, IJAM_0 01 Consrucion of Analical Soluions o Fracional Differenial Equaions Using Homoop Analsis Mehod Ahmad El-Ajou 1, Zaid Odiba *, Shaher Momani 3,

More information

New Seven-Step Numerical Method for Direct Solution of Fourth Order Ordinary Differential Equations

New Seven-Step Numerical Method for Direct Solution of Fourth Order Ordinary Differential Equations 9 J. Mah. Fund. Sci., Vol. 8, No.,, 9-5 New Seven-Sep Numerical Mehod for Direc Soluion of Fourh Order Ordinary Differenial Equaions Zurni Omar & John Olusola Kuboye Deparmen of Mahemaics, School of Quaniaive

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

CONTRIBUTION TO IMPULSIVE EQUATIONS

CONTRIBUTION TO IMPULSIVE EQUATIONS European Scienific Journal Sepember 214 /SPECIAL/ ediion Vol.3 ISSN: 1857 7881 (Prin) e - ISSN 1857-7431 CONTRIBUTION TO IMPULSIVE EQUATIONS Berrabah Faima Zohra, MA Universiy of sidi bel abbes/ Algeria

More information

POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION

POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION Novi Sad J. Mah. Vol. 32, No. 2, 2002, 95-108 95 POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION Hajnalka Péics 1, János Karsai 2 Absrac. We consider he scalar nonauonomous neural delay differenial

More information

A Comparison Among Homotopy Perturbation Method And The Decomposition Method With The Variational Iteration Method For Dispersive Equation

A Comparison Among Homotopy Perturbation Method And The Decomposition Method With The Variational Iteration Method For Dispersive Equation Inernaional Jornal of Basic & Applied Sciences IJBAS-IJENS Vol:9 No: A Comparison Among Homoopy Perrbaion Mehod And The Decomposiion Mehod Wih The Variaional Ieraion Mehod For Dispersive Eqaion Hasan BULUT*

More information

Directional Tubular Surfaces

Directional Tubular Surfaces Inernaional Journal of Algebra, Vol. 9, 015, no. 1, 57-535 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/10.1988/ija.015.5174 Direcional Tubular Surfaces Musafa Dede Deparmen of Mahemaics, Faculy of Ars

More information

Some New Uniqueness Results of Solutions to Nonlinear Fractional Integro-Differential Equations

Some New Uniqueness Results of Solutions to Nonlinear Fractional Integro-Differential Equations Annals of Pure and Applied Mahemaics Vol. 6, No. 2, 28, 345-352 ISSN: 2279-87X (P), 2279-888(online) Published on 22 February 28 www.researchmahsci.org DOI: hp://dx.doi.org/.22457/apam.v6n2a Annals of

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

Solution of Nonlinear Stochastic Langevin s Equation Using WHEP, Pickard and HPM Methods

Solution of Nonlinear Stochastic Langevin s Equation Using WHEP, Pickard and HPM Methods Applied Mahemaics, 4, 5, 398-4 Published Online February 4 (hp://www.scirp.org/journal/am) hp://dx.doi.org/.436/am.4.534 Soluion of Nonlinear Sochasic Langevin s Equaion Using WHEP, Pickard and HPM Mehods

More information

Problem Set on Differential Equations

Problem Set on Differential Equations Problem Se on Differenial Equaions 1. Solve he following differenial equaions (a) x () = e x (), x () = 3/ 4. (b) x () = e x (), x (1) =. (c) xe () = + (1 x ()) e, x () =.. (An asse marke model). Le p()

More information

Asymptotic instability of nonlinear differential equations

Asymptotic instability of nonlinear differential equations Elecronic Journal of Differenial Equaions, Vol. 1997(1997), No. 16, pp. 1 7. ISSN: 172-6691. URL: hp://ejde.mah.sw.edu or hp://ejde.mah.un.edu fp (login: fp) 147.26.13.11 or 129.12.3.113 Asympoic insabiliy

More information

Department of Mechanical Engineering, Salmas Branch, Islamic Azad University, Salmas, Iran

Department of Mechanical Engineering, Salmas Branch, Islamic Azad University, Salmas, Iran Inernaional Parial Differenial Equaions Volume 4, Aricle ID 6759, 6 pages hp://dx.doi.org/.55/4/6759 Research Aricle Improvemen of he Modified Decomposiion Mehod for Handling Third-Order Singular Nonlinear

More information