The Application of Optimal Homotopy Asymptotic Method for One-Dimensional Heat and Advection- Diffusion Equations

Size: px
Start display at page:

Download "The Application of Optimal Homotopy Asymptotic Method for One-Dimensional Heat and Advection- Diffusion Equations"

Transcription

1 Inf. Sci. Le., No., ) 57 Informaion Sciences Leers An Inernaional Journal hp://d.doi.org/1.1785/isl/ The Applicaion of Opimal Homoopy Asympoic Mehod for One-Dimensional Hea and Advecion- Diffusion Equaions Fazle Mabood Deparmen of Mahemaics, Edwardes College Peshawar, KPK, 5, Pakisan Received: 16 Nov. 1, Revised: 3 Mar. 13, Acceped: 4 Mar. 13 Published online: 1 May. 13 Absrac: Aim of he paper is o invesigae approimae analyical soluion of ime-dependen parial differenial equaion using a semi-analyical mehod, he Opimal Homoopy Asympoic Mehod OHAM). To show he efficiency of he proposed mehod, we consider one-dimensional hea and advecion-diffusion equaions. OHAM uses simple compuaions wih prey good enough approimae soluion, which has an ecellen agreemen wih he eac soluion available in open lieraure. OHAM is no only reliable in obaining series soluion for such problems wih high accuracy bu i also saving he volume and ime as compared o oher analyical mehods. Keywords: Opimal Homoopy Asympoic Mehod, Hea Equaion, Advecion-Diffusion Equaion 1 Inroducion Consider he one dimensional advecion-diffusion equaion [4]: u + βu = αu, a b,. 1) subjec o he iniial condiion: u,) = ϕ), [a,b] ) and he boundary condiions are: { ua,) = g ) ub,) = g 1 ), [,T ] where he subscrips and denoe differeniaion wih respec o ime and space respecively, and are supposed o be smooh funcions. In case of g, g 1 he advecion-diffusion equaion will reduced ino one-dimensional hea equaion is considered as hermal diffusion. In case of β =, he advecion-diffusion equaion will reduced ino one-dimensional hea equaion is considered as hermal diffusion. 3) The Advecion-Diffusion Equaion ADE) is of primary imporance in many physical sysems, especially hose involving fluid flow [1], one-dimensional version of he parial differenial equaions which describe advecion-diffusion equaion arise frequenly in ransferring mass, hea, energy and voriciy in chemisry and engineering []. Parlarge [3] used ADE is o model waer ranspor in soils, Caglar e al. [4] have uilized hird-degree B-Spline funcion for he numerical soluion of one dimensional hea equaion, Mohebbi and Dehghan [5] have presened finie difference approimaion and cubic C1-spline collocaion mehod for he soluion wih fourh-order accuracy in boh space and ime variables Oh4, k4). Cubic B-Spline Collocaion Mehod for he numerical soluion of one dimensional hea and advecion-diffusion equaions are well repored by Goh e al. [6]. A newly developed analyical mehod namely he opimal homoopy asympoic mehod has recenly been used o solve a wide class of physical problems. Marinca and Nicolae [7,8,9] used OHAM for solving nonlinear equaions relaed o differen physical phenomena. Also Marinca e al. [1] sudied he hin film flow using OHAM. Iqbal e al. [11] provided he OHAM soluions of Corresponding auhor mabood1971@yahoo.com c 13 NSP

2 58 F. Mabood: The Applicaion of Opimal Homoopy Asympoic... he linear and nonlinear Klein-Gordon equaions, Islam e al. [1] applied OHAM for he asympoic soluions of Couee and Poiseuille flows of a hird grade fluid whils Idrees e al. [13, 14] and Mabood e al. [15, 16] have uilized he proposed mehod OHAM) effecively for differen higher order boundary values problems. According o he bes of auhor s knowledge he hea modeling problem menioned above has no been ye sudied by opimal homoopy asympoic mehod OHAM). Basic Formulaion of OHAM We review he basic principles of OHAM as developed by Marinca e al. [8]. Consider he following differenial equaion and boundary condiion: Lvz,)) + gz,) + Nvz,)) =, z Ω 4) B v, dv ) = 5) where L, N are linear and nonlinear operaors, z, denoe he spaial and ime variables respecively, Ω is he problem domain and vz, ) is an unknown funcion, gz,) is a known funcion and B is a boundary operaor. An equaion known as opimal homoopy equaion is consruced: 1 r)[lϕz,;r) + gz,)] = Hr)[Lϕz,;r) + gz,) + Nϕz,;r))] 6) where r 1 is an embedding parameer, Hr) is auiliary funcion such ha Hr) for r and H) =, we have from Eq.6) r = [Lϕz,;) + gz,)] = 7) r = 1 [Lϕz,;1) + gz,1) + Nϕz,;1))] = 8) Thus, for r = and r = 1 we obain, ϕz,;) = v z,) and ϕz,;1) = vz,) respecively. Hence, as r varies from o 1 he soluion ϕz,;r) varies from v z,) o he soluion vz,), where v z,) is obained from Eq. 6) se r = Lv z,)) + gz,) =, B v, dv ) = 9) The auiliary funcion Hr) is chosen of he form: Hr) = n k=1 r k C k 1) where C i, i N are consans which are o be deermined laer [8]. For soluion, epand ϕz,;r,c i ) in Taylor s series abou r and wrien as: ϕz,;r,c i ) = v z,) + k=1 v k z,;c i ), i = 1,, 11) Subsiuing equaion 11) ino equaion 6), and equaing he coefficiens of he like powers of r equal o zero, gives he linear equaions as described below: The zeroh order problem is given by equaion 9), and he firs and second order problems are given by he equaions 1) and 13), respecively, while he general governing equaion for v k z,) is given in equaion 14): Lv 1 z,)) = C 1 N v z,)), B v 1, dv 1 ) = 1) Lv z,)) Lv 1 z,)) = C N v z,)) +C 1 [Lv 1 z,)) + N 1 v z,),v 1 z,))] 13) B v, dv ) = Lv k z,)) Lv k 1 z,)) = C k N v z,)) k 1 + i=1 C i [Lv k i z,)) + N k i v z,), v 1 z,),...,v k 1 z,)))] 14) B v k, dv ) k =, k = 1,, where N m v z,),v 1 z,),v z,),...,v m z,)) is he coefficien of r m in he epansion of Nϕz,;r,C i )) abou he embeding parameer. Nϕz,;r,C i )) = N v z,)) + N m v,v 1,v,...,v m )r m 15) k 1 The convergence of he series 11) is dependen upon he auiliary consans C 1,C,... If i is convergen a r = 1, one has: ṽz,;c i ) = v z,) + m i=1 v i z,;c i ) 16) Subsiuing equaion 16) ino equaion 4), he general problem resuls in he following residual: Rz,;C i ) = Lṽz,;C i )) + gz,) + Nṽz,;C i )) 17) If Rz,;C i ) =, hen will be he eac soluion. For nonlinear problems, generally his will no be he case. For deermining C i i = 1,,...), a and b are chosen such ha he opimum values for C i are obained, using he mehod of leas squares: JC i ) = where R is he residual, R z,,c i )dz 18) Ω J = J =... = J = 19) C 1 C C m c 13 NSP

3 Inf. Sci. Le., No., ) / Soluion of Hea Equaion via OHAM Consider he hea equaion is as follow [6]: wih iniial condiion is u = u, < < 1, > ) and boundary condiions are u, ) = sinπ) 1) u,) = u1,) = ) The eac soluion is u,) = e π sinπ) wich saisfies equaion ). Applying he proposed mehod OHAM) menioned in Secion, on equaion ) leads o he following: Zeroh order problem: u,) = 3) wih iniial condiion: u,) = sinπ) u,) = sinπ) 4) Firs order problem: u 1,,C 1 ) = 1 +C 1 ) u,) wih iniial condiion: u 1,) = C 1 u,) 5) u 1,,C 1 ) = C 1 π sinπ) 6) Second order problem: wih iniial condiion: u 3,) = u 3,,C 1,C,C 3 ) = 1 6 [6C 1π sinπ) + 1C 1π sinπ) +6C 1π 4 sinπ) + 6C 3 1 π sinπ) +6C 3 1 π4 sinπ) +C 3 1 π6 3 sinπ) +6C πcosπ) + 6C 1 C πcosπ) +3C 1 C π 3 cosπ) + 6C 3 π sinπ) +3C 1 C π 4 sinπ) +6C 1 C π sinπ)] 3) Using equaions 4), 6), 8) and 3), he hird order approimae soluion via OHAM for r = 1 is ũ,,c 1,C,C 3 ) = u,) + u 1,,C 1 ) + u,,c 1,C ) +u 3,,C 1,C,C 3 ) 31) Wih he help of leas square mehod, we can obain he values of unknown consans, for = 1 he values of C 1 = 3639, C = 7461, C 3 = 175 and subsiuing he values of C 1,C,C 3 in equaion 31), we obain he approimae soluion of hea equaion as follow: ũ, ) = [ ]cosπ)[ ))]sinπ) 3) Figs.1, and 3 have been prepared for he comparaive picure of he series soluion obained using OHAM wih he eising eac soluion for differen assigned values of. u,,c 1,C ) C 1 u 1,,C 1 ) = 1 +C 1 ) u 1,,C 1 ) +C u,) wih iniial condiion: u,) = +C u,) u,,c 1,C ) = 1 [C 1π sinπ) + C 1π sinπ) 7) u,.. Fig. 1: Comparison of soluion suing OHAM solid line) wih eac soluion dashed line) for = 1 +C 1π 4 sinπ) + C πcosπ)] 8) Third order problem: u 3,,C 1,C,C 3 ) +C 3 u,) = 1 +C 1 ) u,,c 1,C ) +C u 1,,C 1 ) C 3 u,) C u 1,,C 1 ) C 1 u,,c 1,C ) 9) 4 Soluion of Advecion-Diffusion Equaion via OHAM The advecion-diffusion equaion wih β = 1,α =.1 in equaion 1) is as follow [4]: u + u =.1u, < < 1, > 33) c 13 NSP

4 6 F. Mabood: The Applicaion of Opimal Homoopy Asympoic... 3 uh,l Fig. : Comparison of soluion suing OHAM solid line) wih eac soluion dashed line) for = 15 Fig. 5: Spaial-ime approimaion for Advecion-Diffusion Equaion over a ime period [, 1.] mehod OHAM) on Eq. 33), he zeroh, firs and second order problem are given as: uh,l =. 36) wih boundary u, ) = e5 [cos π ) +.5sin π )]. condiion: Fig. 3: Comparison of soluion suing OHAM solid line) wih eac soluion dashed line) for = Eac OHAM wih iniial condiion: uh,l 1 5. Fig. 4: Comparison of soluion using OHAM wih eac soluion u, ) = e5 [cos π π ) +.5sin )] 34) The eac soluion of equaion 33) is π ) 4 [cos π π ) +.5sin )] 35) The boundary condiions can be obained easily a = and = 1 from he eac soluion. Applying he proposed c 13 NSP wih iniial condiion: u, ) = Solving equaions 36), 37) and 38), we can obain second order approimae soluion using OHAM for r = 1 is u,,c1,c ) = u,) + u1,,c1 ) + u,,c1,c ) 39) wih iniial condiion is u1, ) = u,) = e5 ) e 37) u,,c1,c ) u1,,c1 ) u1,,c1 ) = 1 +C1 ) +C1 u1,) +C.1C1 +C.1C 38) 15 u1,,c1 ) = 1 +C1 ) +C1 u,).1c1 Using he mehod of leas square, he values of unknown consans for = 5 are C1 =.3695,C = 696. Subsiuing he values of C1,C in equaion 39) one can obain he hree erms approimae analyical soluion via OHAM for advecion-diffusion equaion. Fig. 4 has been presened for comparison of OHAM soluion wih eac soluion of advecion-diffusion equaion whils in Fig. 5 we have shown he spaial-ime approimaion.

5 Inf. Sci. Le., No., ) / Conclusion A series soluion based on Opimal Homoopy Asympoic Mehod had been described in secion 3 and 4 for solving one-dimensional hea and advecion-diffusion equaions. The obained soluion using OHAM is hen compared wih he eac soluions. The resuls are in good agreemen wih he eising eac resuls and herefore elucidae he reliabiliy and efficiency of OHAM. The comparisons made sugges ha he OHAM could be a useful and effecive ool for solving one-dimensional hea and advecion-diffusion equaions accuraely. References [13] M. Idrees, S.l Haq, S. Islam, Applicaion of opimal homoopy asympoic mehod o Fourh Order Boundary Values Problems. World Applied Sciences Journal. 9, ). [14] M. Idrees, S. Haq, S. Islam, Applicaion of Opimal Homoopy Asympoic Mehod o special Sih Order Boundary Values Problems, World Applied Sciences Journal. 9, ). [15] F. Mabood, W. A. Khan, A. I. M. Ismail, Soluion of Fifh Order Boundary Values Problems via Opimal Homoopy Asympoic Mehod, Wulfenia Journal. 19, ). [16] F. Mabood, A.I.M. Ismail, I. Hashim. The applicaion of Opimal Homoopy Asympoic Mehod for he Approimae Soluion of Riccai Equaion, Sains Malaysiana. 4, 13) In-Press). [1] M. Dehghan, Weighed finie difference echniques for he one-dimensional advecion-diffusion equaion, Applied Mahemaics and Compuaion. 147, ). [] B.J. Noye, Numerical soluion of parial differenial equaions, Lecure Noes 199). [3] H. Caglar, M. Ozer and N. Caglar, The numerical soluion of he one-dimensional hea equaion by using hird degree B-spline funcions, Chaos, Solions and Fracals. 38, ). [4] A. Mohebbi and M. Dehghan, High-order compac soluion of he one-dimensional hea and advecion-diffusion equaions, Applied Mahemaical Modelling. 34, ). [5] J.Y. Parlarge, Waer ranspor in soils, Ann Rev Fluids Mech.,, ). [6] J. Goh, Ahmad Abd. Majid and Ahmad Izani Md Ismail, Cubic B-Spline Collocaion Mehod for One- Dimensional Hea and Advecion-Diffusion Equaions, Journal of Applied Mahemaics. Aricle ID 45871, 8 1). [7] V. Marinca and N. Herisanu, Applicaion of opimal homoopy asympoic mehod for solving nonlinear equaions arising in hea ransfer, In. Commun. Hea Mass Transfer, 35, ). [8] V. Marinca and N. Herisanu, Opimal homoopy perurbaion mehod for srongly nonlinear differenial equaions, Nonlinear Sci. Le. A, 1, ). [9] N. Herisanu and V. Marinca, Accurae analyical soluions o oscillaors wih disconinuiies and fracional-power resoring force by means of he opimal homoopy asympoic mehod, Compuers and Mahemaics wih Applicaions, 6, ). [1] V. Marinca, N. Herisanu and I. Nemes, Opimal homoopy asympoic mehod wih applicaion o hin film flow, Cen. Eur. J. Phys. 6, ). [11] S. Iqbal, M. Idrees, A.M. Siddiqui, A.R. Ansari, Some soluions of he linear and nonlinear Klein-Gordon equaions using he opimal homoopy asympoic mehod, Applied Mahemaics and Compuaion. 16, ). [1] S. Islam, R. A. Shah, I. Ali, Opimal homoopy asympoic soluions of Couee and Poiseuille flows of a hird grade fluid wih hea ransfer analysis, In. J. Nonlinear Sci. Numer. Simul. 11, ). c 13 NSP

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method Journal of Applied Mahemaics & Bioinformaics, vol., no., 01, 1-14 ISSN: 179-660 (prin), 179-699 (online) Scienpress Ld, 01 Improved Approimae Soluions for Nonlinear Evoluions Equaions in Mahemaical Physics

More information

J. Appl. Environ. Biol. Sci., 4(7S) , , TextRoad Publication

J. Appl. Environ. Biol. Sci., 4(7S) , , TextRoad Publication J Appl Environ Biol Sci, 4(7S)379-39, 4 4, TexRoad Publicaion ISSN: 9-474 Journal of Applied Environmenal and Biological Sciences wwwexroadcom Applicaion of Opimal Homoopy Asympoic Mehod o Convecive Radiaive

More information

Application of He s Variational Iteration Method for Solving Seventh Order Sawada-Kotera Equations

Application of He s Variational Iteration Method for Solving Seventh Order Sawada-Kotera Equations Applied Mahemaical Sciences, Vol. 2, 28, no. 1, 471-477 Applicaion of He s Variaional Ieraion Mehod for Solving Sevenh Order Sawada-Koera Equaions Hossein Jafari a,1, Allahbakhsh Yazdani a, Javad Vahidi

More information

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 1, Issue 6 Ver. II (Nov - Dec. 214), PP 48-54 Variaional Ieraion Mehod for Solving Sysem of Fracional Order Ordinary Differenial

More information

Homotopy Perturbation Method for Solving Some Initial Boundary Value Problems with Non Local Conditions

Homotopy Perturbation Method for Solving Some Initial Boundary Value Problems with Non Local Conditions Proceedings of he World Congress on Engineering and Compuer Science 23 Vol I WCECS 23, 23-25 Ocober, 23, San Francisco, USA Homoopy Perurbaion Mehod for Solving Some Iniial Boundary Value Problems wih

More information

APPLICATION OF CHEBYSHEV APPROXIMATION IN THE PROCESS OF VARIATIONAL ITERATION METHOD FOR SOLVING DIFFERENTIAL- ALGEBRAIC EQUATIONS

APPLICATION OF CHEBYSHEV APPROXIMATION IN THE PROCESS OF VARIATIONAL ITERATION METHOD FOR SOLVING DIFFERENTIAL- ALGEBRAIC EQUATIONS Mahemaical and Compuaional Applicaions, Vol., No. 4, pp. 99-978,. Associaion for Scienific Research APPLICATION OF CHEBYSHEV APPROXIMATION IN THE PROCESS OF VARIATIONAL ITERATION METHOD FOR SOLVING DIFFERENTIAL-

More information

Efficient Solution of Fractional Initial Value Problems Using Expanding Perturbation Approach

Efficient Solution of Fractional Initial Value Problems Using Expanding Perturbation Approach Journal of mahemaics and compuer Science 8 (214) 359-366 Efficien Soluion of Fracional Iniial Value Problems Using Expanding Perurbaion Approach Khosro Sayevand Deparmen of Mahemaics, Faculy of Science,

More information

A NEW TECHNOLOGY FOR SOLVING DIFFUSION AND HEAT EQUATIONS

A NEW TECHNOLOGY FOR SOLVING DIFFUSION AND HEAT EQUATIONS THERMAL SCIENCE: Year 7, Vol., No. A, pp. 33-4 33 A NEW TECHNOLOGY FOR SOLVING DIFFUSION AND HEAT EQUATIONS by Xiao-Jun YANG a and Feng GAO a,b * a School of Mechanics and Civil Engineering, China Universiy

More information

THE SOLUTION OF COUPLED MODIFIED KDV SYSTEM BY THE HOMOTOPY ANALYSIS METHOD

THE SOLUTION OF COUPLED MODIFIED KDV SYSTEM BY THE HOMOTOPY ANALYSIS METHOD TWMS Jour. Pure Appl. Mah., V.3, N.1, 1, pp.1-134 THE SOLUTION OF COUPLED MODIFIED KDV SYSTEM BY THE HOMOTOPY ANALYSIS METHOD M. GHOREISHI 1, A.I.B.MD. ISMAIL 1, A. RASHID Absrac. In his paper, he Homoopy

More information

THE FOURIER-YANG INTEGRAL TRANSFORM FOR SOLVING THE 1-D HEAT DIFFUSION EQUATION. Jian-Guo ZHANG a,b *

THE FOURIER-YANG INTEGRAL TRANSFORM FOR SOLVING THE 1-D HEAT DIFFUSION EQUATION. Jian-Guo ZHANG a,b * Zhang, J.-G., e al.: The Fourier-Yang Inegral Transform for Solving he -D... THERMAL SCIENCE: Year 07, Vol., Suppl., pp. S63-S69 S63 THE FOURIER-YANG INTEGRAL TRANSFORM FOR SOLVING THE -D HEAT DIFFUSION

More information

Fractional Method of Characteristics for Fractional Partial Differential Equations

Fractional Method of Characteristics for Fractional Partial Differential Equations Fracional Mehod of Characerisics for Fracional Parial Differenial Equaions Guo-cheng Wu* Modern Teile Insiue, Donghua Universiy, 188 Yan-an ilu Road, Shanghai 51, PR China Absrac The mehod of characerisics

More information

Ordinary Differential Equations

Ordinary Differential Equations Lecure 22 Ordinary Differenial Equaions Course Coordinaor: Dr. Suresh A. Karha, Associae Professor, Deparmen of Civil Engineering, IIT Guwahai. In naure, mos of he phenomena ha can be mahemaically described

More information

Solving a System of Nonlinear Functional Equations Using Revised New Iterative Method

Solving a System of Nonlinear Functional Equations Using Revised New Iterative Method Solving a Sysem of Nonlinear Funcional Equaions Using Revised New Ieraive Mehod Sachin Bhalekar and Varsha Dafardar-Gejji Absrac In he presen paper, we presen a modificaion of he New Ieraive Mehod (NIM

More information

Haar Wavelet Operational Matrix Method for Solving Fractional Partial Differential Equations

Haar Wavelet Operational Matrix Method for Solving Fractional Partial Differential Equations Copyrigh 22 Tech Science Press CMES, vol.88, no.3, pp.229-243, 22 Haar Wavele Operaional Mari Mehod for Solving Fracional Parial Differenial Equaions Mingu Yi and Yiming Chen Absrac: In his paper, Haar

More information

Symmetry and Numerical Solutions for Systems of Non-linear Reaction Diffusion Equations

Symmetry and Numerical Solutions for Systems of Non-linear Reaction Diffusion Equations Symmery and Numerical Soluions for Sysems of Non-linear Reacion Diffusion Equaions Sanjeev Kumar* and Ravendra Singh Deparmen of Mahemaics, (Dr. B. R. Ambedkar niversiy, Agra), I. B. S. Khandari, Agra-8

More information

Analytical Solutions of an Economic Model by the Homotopy Analysis Method

Analytical Solutions of an Economic Model by the Homotopy Analysis Method Applied Mahemaical Sciences, Vol., 26, no. 5, 2483-249 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/.2988/ams.26.6688 Analyical Soluions of an Economic Model by he Homoopy Analysis Mehod Jorge Duare ISEL-Engineering

More information

An Iterative Method for Solving Two Special Cases of Nonlinear PDEs

An Iterative Method for Solving Two Special Cases of Nonlinear PDEs Conemporary Engineering Sciences, Vol. 10, 2017, no. 11, 55-553 HIKARI Ld, www.m-hikari.com hps://doi.org/10.12988/ces.2017.7651 An Ieraive Mehod for Solving Two Special Cases of Nonlinear PDEs Carlos

More information

Iterative Laplace Transform Method for Solving Fractional Heat and Wave- Like Equations

Iterative Laplace Transform Method for Solving Fractional Heat and Wave- Like Equations Research Journal of Mahemaical and Saisical Sciences ISSN 3 647 Vol. 3(), 4-9, February (5) Res. J. Mahemaical and Saisical Sci. Ieraive aplace Transform Mehod for Solving Fracional Hea and Wave- ike Euaions

More information

IMPROVED HYPERBOLIC FUNCTION METHOD AND EXACT SOLUTIONS FOR VARIABLE COEFFICIENT BENJAMIN-BONA-MAHONY-BURGERS EQUATION

IMPROVED HYPERBOLIC FUNCTION METHOD AND EXACT SOLUTIONS FOR VARIABLE COEFFICIENT BENJAMIN-BONA-MAHONY-BURGERS EQUATION THERMAL SCIENCE, Year 015, Vol. 19, No. 4, pp. 1183-1187 1183 IMPROVED HYPERBOLIC FUNCTION METHOD AND EXACT SOLUTIONS FOR VARIABLE COEFFICIENT BENJAMIN-BONA-MAHONY-BURGERS EQUATION by Hong-Cai MA a,b*,

More information

Solitons Solutions to Nonlinear Partial Differential Equations by the Tanh Method

Solitons Solutions to Nonlinear Partial Differential Equations by the Tanh Method IOSR Journal of Mahemaics (IOSR-JM) e-issn: 7-7,p-ISSN: 319-7X, Volume, Issue (Sep. - Oc. 13), PP 1-19 Solions Soluions o Nonlinear Parial Differenial Equaions by he Tanh Mehod YusurSuhail Ali Compuer

More information

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

New Seven-Step Numerical Method for Direct Solution of Fourth Order Ordinary Differential Equations

New Seven-Step Numerical Method for Direct Solution of Fourth Order Ordinary Differential Equations 9 J. Mah. Fund. Sci., Vol. 8, No.,, 9-5 New Seven-Sep Numerical Mehod for Direc Soluion of Fourh Order Ordinary Differenial Equaions Zurni Omar & John Olusola Kuboye Deparmen of Mahemaics, School of Quaniaive

More information

Application of homotopy Analysis Method for Solving non linear Dynamical System

Application of homotopy Analysis Method for Solving non linear Dynamical System IOSR Journal of Mahemaics (IOSR-JM) e-issn: 78-578, p-issn: 319-765X. Volume 1, Issue 1 Ver. V (Jan. - Feb. 16), PP 6-1 www.iosrjournals.org Applicaion of homoopy Analysis Mehod for Solving non linear

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

Numerical Dispersion

Numerical Dispersion eview of Linear Numerical Sabiliy Numerical Dispersion n he previous lecure, we considered he linear numerical sabiliy of boh advecion and diffusion erms when approimaed wih several spaial and emporal

More information

Research Article Convergence of Variational Iteration Method for Second-Order Delay Differential Equations

Research Article Convergence of Variational Iteration Method for Second-Order Delay Differential Equations Applied Mahemaics Volume 23, Aricle ID 63467, 9 pages hp://dx.doi.org/.55/23/63467 Research Aricle Convergence of Variaional Ieraion Mehod for Second-Order Delay Differenial Equaions Hongliang Liu, Aiguo

More information

A Note on the Equivalence of Fractional Relaxation Equations to Differential Equations with Varying Coefficients

A Note on the Equivalence of Fractional Relaxation Equations to Differential Equations with Varying Coefficients mahemaics Aricle A Noe on he Equivalence of Fracional Relaxaion Equaions o Differenial Equaions wih Varying Coefficiens Francesco Mainardi Deparmen of Physics and Asronomy, Universiy of Bologna, and he

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

ItsApplication To Derivative Schrödinger Equation

ItsApplication To Derivative Schrödinger Equation IOSR Journal of Mahemaics (IOSR-JM) e-issn: 78-578, p-issn: 19-765X. Volume 1, Issue 5 Ver. II (Sep. - Oc.016), PP 41-54 www.iosrjournals.org The Generalized of cosh() Expansion Mehod And IsApplicaion

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

On the Solutions of First and Second Order Nonlinear Initial Value Problems

On the Solutions of First and Second Order Nonlinear Initial Value Problems Proceedings of he World Congress on Engineering 13 Vol I, WCE 13, July 3-5, 13, London, U.K. On he Soluions of Firs and Second Order Nonlinear Iniial Value Problems Sia Charkri Absrac In his paper, we

More information

The Optimal Stopping Time for Selling an Asset When It Is Uncertain Whether the Price Process Is Increasing or Decreasing When the Horizon Is Infinite

The Optimal Stopping Time for Selling an Asset When It Is Uncertain Whether the Price Process Is Increasing or Decreasing When the Horizon Is Infinite American Journal of Operaions Research, 08, 8, 8-9 hp://wwwscirporg/journal/ajor ISSN Online: 60-8849 ISSN Prin: 60-8830 The Opimal Sopping Time for Selling an Asse When I Is Uncerain Wheher he Price Process

More information

An Efficient Technique in Finding the Exact Solutions for Cauchy Problems

An Efficient Technique in Finding the Exact Solutions for Cauchy Problems Shiraz Universiy of Technology From he SelecedWorks of Habibolla Laifizadeh 1 An Efficien Technique in Finding he Eac Soluions for Cauchy Problems Habibolla Laifizadeh, Shiraz Universiy of Technology Available

More information

Exact travelling wave solutions for some important nonlinear physical models

Exact travelling wave solutions for some important nonlinear physical models PRAMANA c Indian Academy of Sciences Vol. 8, No. journal of May 3 physics pp. 77 769 Eac ravelling wave soluions for some imporan nonlinear physical models JONU LEE and RATHINASAMY SAKTHIVEL, School of

More information

Application of variational iteration method for solving the nonlinear generalized Ito system

Application of variational iteration method for solving the nonlinear generalized Ito system Applicaion of variaional ieraion mehod for solving he nonlinear generalized Io sysem A.M. Kawala *; Hassan A. Zedan ** *Deparmen of Mahemaics, Faculy of Science, Helwan Universiy, Cairo, Egyp **Deparmen

More information

arxiv: v1 [math.fa] 3 Jan 2019

arxiv: v1 [math.fa] 3 Jan 2019 DAMPED AND DIVERGENCE EXACT SOLUTIONS FOR THE DUFFING EQUATION USING LEAF FUNCTIONS AND HYPERBOLIC LEAF FUNCTIONS A PREPRINT arxiv:9.66v [mah.fa] Jan 9 Kazunori Shinohara Deparmen of Mechanical Sysems

More information

EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS

EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS Elecronic Journal of Differenial Equaions, Vol. 206 (206, No. 39, pp.. ISSN: 072-669. URL: hp://ejde.mah.xsae.edu or hp://ejde.mah.un.edu fp ejde.mah.xsae.edu EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO

More information

Undetermined coefficients for local fractional differential equations

Undetermined coefficients for local fractional differential equations Available online a www.isr-publicaions.com/jmcs J. Mah. Compuer Sci. 16 (2016), 140 146 Research Aricle Undeermined coefficiens for local fracional differenial equaions Roshdi Khalil a,, Mohammed Al Horani

More information

Evaluation of Mean Time to System Failure of a Repairable 3-out-of-4 System with Online Preventive Maintenance

Evaluation of Mean Time to System Failure of a Repairable 3-out-of-4 System with Online Preventive Maintenance American Journal of Applied Mahemaics and Saisics, 0, Vol., No., 9- Available online a hp://pubs.sciepub.com/ajams/// Science and Educaion Publishing DOI:0.69/ajams--- Evaluaion of Mean Time o Sysem Failure

More information

Research Article Multivariate Padé Approximation for Solving Nonlinear Partial Differential Equations of Fractional Order

Research Article Multivariate Padé Approximation for Solving Nonlinear Partial Differential Equations of Fractional Order Absrac and Applied Analysis Volume 23, Aricle ID 7464, 2 pages hp://ddoiorg/55/23/7464 Research Aricle Mulivariae Padé Approimaion for Solving Nonlinear Parial Differenial Equaions of Fracional Order Veyis

More information

Application of Homotopy Analysis Method for Solving various types of Problems of Partial Differential Equations

Application of Homotopy Analysis Method for Solving various types of Problems of Partial Differential Equations Applicaion of Hooopy Analysis Mehod for olving various ypes of Probles of Parial Differenial Equaions V.P.Gohil, Dr. G. A. anabha,assisan Professor, Deparen of Maheaics, Governen Engineering College, Bhavnagar,

More information

Research Article Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations

Research Article Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations Hindawi Publishing Corporaion Boundary Value Problems Volume 11, Aricle ID 19156, 11 pages doi:1.1155/11/19156 Research Aricle Exisence and Uniqueness of Periodic Soluion for Nonlinear Second-Order Ordinary

More information

STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS Elecronic Journal of Differenial Equaions, Vol. 217 217, No. 118, pp. 1 14. ISSN: 172-6691. URL: hp://ejde.mah.xsae.edu or hp://ejde.mah.un.edu STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS

More information

Y 0.4Y 0.45Y Y to a proper ARMA specification.

Y 0.4Y 0.45Y Y to a proper ARMA specification. HG Jan 04 ECON 50 Exercises II - 0 Feb 04 (wih answers Exercise. Read secion 8 in lecure noes 3 (LN3 on he common facor problem in ARMA-processes. Consider he following process Y 0.4Y 0.45Y 0.5 ( where

More information

Flow of Oldroyd-B Fluid between Two Inclined and Oscillating Plates

Flow of Oldroyd-B Fluid between Two Inclined and Oscillating Plates J. Appl. Environ. Biol. Sci., 5()59-67, 05 05, TexRoad Publicaion ISSN: 090-474 Journal of Applied Environmenal and Biological Sciences www.exroad.com Flow of Oldroyd-B Fluid beween Two Inclined and Oscillaing

More information

Solution of Integro-Differential Equations by Using ELzaki Transform

Solution of Integro-Differential Equations by Using ELzaki Transform Global Journal of Mahemaical Sciences: Theory and Pracical. Volume, Number (), pp. - Inernaional Research Publicaion House hp://www.irphouse.com Soluion of Inegro-Differenial Equaions by Using ELzaki Transform

More information

Sumudu Decomposition Method for Solving Fractional Delay Differential Equations

Sumudu Decomposition Method for Solving Fractional Delay Differential Equations vol. 1 (2017), Aricle ID 101268, 13 pages doi:10.11131/2017/101268 AgiAl Publishing House hp://www.agialpress.com/ Research Aricle Sumudu Decomposiion Mehod for Solving Fracional Delay Differenial Equaions

More information

ψ(t) = V x (0)V x (t)

ψ(t) = V x (0)V x (t) .93 Home Work Se No. (Professor Sow-Hsin Chen Spring Term 5. Due March 7, 5. This problem concerns calculaions of analyical expressions for he self-inermediae scaering funcion (ISF of he es paricle in

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

Variational Iteration Method for Solving Riccati Matrix Differential Equations

Variational Iteration Method for Solving Riccati Matrix Differential Equations Indonesian Journal of Elecrical Engineering and Compuer Science Vol. 5, No. 3, March 17, pp. 673 ~ 683 DOI: 1.11591/ijeecs.v5.i3.pp673-683 673 Variaional Ieraion Mehod for Solving Riccai Marix Differenial

More information

Positive continuous solution of a quadratic integral equation of fractional orders

Positive continuous solution of a quadratic integral equation of fractional orders Mah. Sci. Le., No., 9-7 (3) 9 Mahemaical Sciences Leers An Inernaional Journal @ 3 NSP Naural Sciences Publishing Cor. Posiive coninuous soluion of a quadraic inegral equaion of fracional orders A. M.

More information

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi Creep in Viscoelasic Subsances Numerical mehods o calculae he coefficiens of he Prony equaion using creep es daa and Herediary Inegrals Mehod Navnee Saini, Mayank Goyal, Vishal Bansal (23); Term Projec

More information

This is a repository copy of An inverse problem of finding the time-dependent thermal conductivity from boundary data.

This is a repository copy of An inverse problem of finding the time-dependent thermal conductivity from boundary data. This is a reposiory copy of An inverse problem of finding he ime-dependen hermal conduciviy from boundary daa. Whie Rose Research Online URL for his paper: hp://eprins.whierose.ac.uk/57/ Version: Acceped

More information

THE EFFECT OF SUCTION AND INJECTION ON UNSTEADY COUETTE FLOW WITH VARIABLE PROPERTIES

THE EFFECT OF SUCTION AND INJECTION ON UNSTEADY COUETTE FLOW WITH VARIABLE PROPERTIES Kragujevac J. Sci. 3 () 7-4. UDC 53.5:536. 4 THE EFFECT OF SUCTION AND INJECTION ON UNSTEADY COUETTE FLOW WITH VARIABLE PROPERTIES Hazem A. Aia Dep. of Mahemaics, College of Science,King Saud Universiy

More information

(1) (2) Differentiation of (1) and then substitution of (3) leads to. Therefore, we will simply consider the second-order linear system given by (4)

(1) (2) Differentiation of (1) and then substitution of (3) leads to. Therefore, we will simply consider the second-order linear system given by (4) Phase Plane Analysis of Linear Sysems Adaped from Applied Nonlinear Conrol by Sloine and Li The general form of a linear second-order sysem is a c b d From and b bc d a Differeniaion of and hen subsiuion

More information

Research Article Solving the Fractional Rosenau-Hyman Equation via Variational Iteration Method and Homotopy Perturbation Method

Research Article Solving the Fractional Rosenau-Hyman Equation via Variational Iteration Method and Homotopy Perturbation Method Inernaional Differenial Equaions Volume 22, Aricle ID 4723, 4 pages doi:.55/22/4723 Research Aricle Solving he Fracional Rosenau-Hyman Equaion via Variaional Ieraion Mehod and Homoopy Perurbaion Mehod

More information

Some New Uniqueness Results of Solutions to Nonlinear Fractional Integro-Differential Equations

Some New Uniqueness Results of Solutions to Nonlinear Fractional Integro-Differential Equations Annals of Pure and Applied Mahemaics Vol. 6, No. 2, 28, 345-352 ISSN: 2279-87X (P), 2279-888(online) Published on 22 February 28 www.researchmahsci.org DOI: hp://dx.doi.org/.22457/apam.v6n2a Annals of

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

GENERALIZATION OF THE FORMULA OF FAA DI BRUNO FOR A COMPOSITE FUNCTION WITH A VECTOR ARGUMENT

GENERALIZATION OF THE FORMULA OF FAA DI BRUNO FOR A COMPOSITE FUNCTION WITH A VECTOR ARGUMENT Inerna J Mah & Mah Sci Vol 4, No 7 000) 48 49 S0670000970 Hindawi Publishing Corp GENERALIZATION OF THE FORMULA OF FAA DI BRUNO FOR A COMPOSITE FUNCTION WITH A VECTOR ARGUMENT RUMEN L MISHKOV Received

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

An Invariance for (2+1)-Extension of Burgers Equation and Formulae to Obtain Solutions of KP Equation

An Invariance for (2+1)-Extension of Burgers Equation and Formulae to Obtain Solutions of KP Equation Commun Theor Phys Beijing, China 43 2005 pp 591 596 c Inernaional Academic Publishers Vol 43, No 4, April 15, 2005 An Invariance for 2+1-Eension of Burgers Equaion Formulae o Obain Soluions of KP Equaion

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

System of Linear Differential Equations

System of Linear Differential Equations Sysem of Linear Differenial Equaions In "Ordinary Differenial Equaions" we've learned how o solve a differenial equaion for a variable, such as: y'k5$e K2$x =0 solve DE yx = K 5 2 ek2 x C_C1 2$y''C7$y

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Exact travelling wave solutions for some important nonlinear physical models

Exact travelling wave solutions for some important nonlinear physical models Universiy of Wollongong Research Online Faculy of Engineering and Informaion Sciences - Papers: Par A Faculy of Engineering and Informaion Sciences 3 Eac ravelling wave soluions for some imporan nonlinear

More information

A novel solution for fractional chaotic Chen system

A novel solution for fractional chaotic Chen system Available online a www.jnsa.com J. Nonlinear Sci. Appl. 8 (2) 478 488 Research Aricle A novel soluion for fracional chaoic Chen sysem A. K. Alomari Deparmen of Mahemaics Faculy of Science Yarmouk Universiy

More information

6.2 Transforms of Derivatives and Integrals.

6.2 Transforms of Derivatives and Integrals. SEC. 6.2 Transforms of Derivaives and Inegrals. ODEs 2 3 33 39 23. Change of scale. If l( f ()) F(s) and c is any 33 45 APPLICATION OF s-shifting posiive consan, show ha l( f (c)) F(s>c)>c (Hin: In Probs.

More information

Directional Tubular Surfaces

Directional Tubular Surfaces Inernaional Journal of Algebra, Vol. 9, 015, no. 1, 57-535 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/10.1988/ija.015.5174 Direcional Tubular Surfaces Musafa Dede Deparmen of Mahemaics, Faculy of Ars

More information

A New Perturbative Approach in Nonlinear Singularity Analysis

A New Perturbative Approach in Nonlinear Singularity Analysis Journal of Mahemaics and Saisics 7 (: 49-54, ISSN 549-644 Science Publicaions A New Perurbaive Approach in Nonlinear Singulariy Analysis Ta-Leung Yee Deparmen of Mahemaics and Informaion Technology, The

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function Elecronic Journal of Qualiaive Theory of Differenial Equaions 13, No. 3, 1-11; hp://www.mah.u-szeged.hu/ejqde/ Exisence of posiive soluion for a hird-order hree-poin BVP wih sign-changing Green s funcion

More information

Conservation laws of a perturbed Kaup Newell equation

Conservation laws of a perturbed Kaup Newell equation Modern Physics Leers B Vol. 30, Nos. 32 & 33 (2016) 1650381 (6 pages) c World Scienific Publishing Company DOI: 10.1142/S0217984916503814 Conservaion laws of a perurbed Kaup Newell equaion Jing-Yun Yang

More information

Department of Mechanical Engineering, Salmas Branch, Islamic Azad University, Salmas, Iran

Department of Mechanical Engineering, Salmas Branch, Islamic Azad University, Salmas, Iran Inernaional Parial Differenial Equaions Volume 4, Aricle ID 6759, 6 pages hp://dx.doi.org/.55/4/6759 Research Aricle Improvemen of he Modified Decomposiion Mehod for Handling Third-Order Singular Nonlinear

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

Construction of Analytical Solutions to Fractional Differential Equations Using Homotopy Analysis Method

Construction of Analytical Solutions to Fractional Differential Equations Using Homotopy Analysis Method IAENG Inernaional Journal of Applied Mahemaics, 0:, IJAM_0 01 Consrucion of Analical Soluions o Fracional Differenial Equaions Using Homoop Analsis Mehod Ahmad El-Ajou 1, Zaid Odiba *, Shaher Momani 3,

More information

Enhanced (G /G)-Expansion Method to Find the Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics

Enhanced (G /G)-Expansion Method to Find the Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Inernaional Journal of Parial Differenial Equaions and Applicaions 013 Vol. 1 No. 1 6-1 Available online a hp://pubs.sciepub.com/ijpdea/1/1/ Science and Educaion Publishing DOI:10.1691/ijpdea-1-1- Enhanced

More information

Research Article On Perturbative Cubic Nonlinear Schrodinger Equations under Complex Nonhomogeneities and Complex Initial Conditions

Research Article On Perturbative Cubic Nonlinear Schrodinger Equations under Complex Nonhomogeneities and Complex Initial Conditions Hindawi Publishing Corporaion Differenial Equaions and Nonlinear Mechanics Volume 9, Aricle ID 959, 9 pages doi:.55/9/959 Research Aricle On Perurbaive Cubic Nonlinear Schrodinger Equaions under Complex

More information

Jianping Liu, Xia Li, and Limeng Wu. 1. Introduction

Jianping Liu, Xia Li, and Limeng Wu. 1. Introduction Mahemaical Problems in Engineering Volume 26, Aricle ID 7268, pages hp://dxdoiorg/55/26/7268 Research Aricle An Operaional Marix of Fracional Differeniaion of he Second Kind of Chebyshev Polynomial for

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

On the Fourier Transform for Heat Equation

On the Fourier Transform for Heat Equation Applied Mahemaical Sciences, Vol. 8, 24, no. 82, 463-467 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/.2988/ams.24.45355 On he Fourier Transform for Hea Equaion P. Haarsa and S. Poha 2 Deparmen of Mahemaics,

More information

Mathematical Theory and Modeling ISSN (Paper) ISSN (Online) Vol.2, No.4, 2012

Mathematical Theory and Modeling ISSN (Paper) ISSN (Online) Vol.2, No.4, 2012 Soluion of Telegraph quaion by Modified of Double Sumudu Transform "lzaki Transform" Tarig. M. lzaki * man M. A. Hilal. Mahemaics Deparmen, Faculy of Sciences and Ars-Alkamil, King Abdulaziz Uniersiy,

More information

THE SINE INTEGRAL. x dt t

THE SINE INTEGRAL. x dt t THE SINE INTEGRAL As one learns in elemenary calculus, he limi of sin(/ as vanishes is uniy. Furhermore he funcion is even and has an infinie number of zeros locaed a ±n for n1,,3 Is plo looks like his-

More information

On a Discrete-In-Time Order Level Inventory Model for Items with Random Deterioration

On a Discrete-In-Time Order Level Inventory Model for Items with Random Deterioration Journal of Agriculure and Life Sciences Vol., No. ; June 4 On a Discree-In-Time Order Level Invenory Model for Iems wih Random Deerioraion Dr Biswaranjan Mandal Associae Professor of Mahemaics Acharya

More information

Bifurcation Analysis of a Stage-Structured Prey-Predator System with Discrete and Continuous Delays

Bifurcation Analysis of a Stage-Structured Prey-Predator System with Discrete and Continuous Delays Applied Mahemaics 4 59-64 hp://dx.doi.org/.46/am..4744 Published Online July (hp://www.scirp.org/ournal/am) Bifurcaion Analysis of a Sage-Srucured Prey-Predaor Sysem wih Discree and Coninuous Delays Shunyi

More information

arxiv: v1 [math.ca] 15 Nov 2016

arxiv: v1 [math.ca] 15 Nov 2016 arxiv:6.599v [mah.ca] 5 Nov 26 Counerexamples on Jumarie s hree basic fracional calculus formulae for non-differeniable coninuous funcions Cheng-shi Liu Deparmen of Mahemaics Norheas Peroleum Universiy

More information

A Mathematical model to Solve Reaction Diffusion Equation using Differential Transformation Method

A Mathematical model to Solve Reaction Diffusion Equation using Differential Transformation Method Inernaional Jornal of Mahemaics Trends and Technology- Volme Isse- A Mahemaical model o Solve Reacion Diffsion Eqaion sing Differenial Transformaion Mehod Rahl Bhadaria # A.K. Singh * D.P Singh # #Deparmen

More information

Algorithm Analysis of Numerical Solutions to the Heat Equation

Algorithm Analysis of Numerical Solutions to the Heat Equation Inernaional Journal of Compuer Applicaions (97 8887) Volume 79 No, Ocober Algorihm Analysis of Numerical Soluions o he Hea Equaion Edmund Agyeman Deparmen of Mahemaics, Kwame Nkrumah Universiy of Science

More information

CONTRIBUTION TO IMPULSIVE EQUATIONS

CONTRIBUTION TO IMPULSIVE EQUATIONS European Scienific Journal Sepember 214 /SPECIAL/ ediion Vol.3 ISSN: 1857 7881 (Prin) e - ISSN 1857-7431 CONTRIBUTION TO IMPULSIVE EQUATIONS Berrabah Faima Zohra, MA Universiy of sidi bel abbes/ Algeria

More information

Numerical Solution of a Nonlinear Integro-Differential Equation

Numerical Solution of a Nonlinear Integro-Differential Equation EPJ Web of Conferences 18, 17 (16) DOI: 1.151/ epjconf/ 161817 C Owned by he auhors, published by EDP Sciences, 16 Numerical Soluion of a Nonlinear Inegro-Differenial Equaion Ján Buša 1,a, Michal Hnaič,3,4,b,

More information

6.003 Homework #8 Solutions

6.003 Homework #8 Solutions 6.003 Homework #8 Soluions Problems. Fourier Series Deermine he Fourier series coefficiens a k for x () shown below. x ()= x ( + 0) 0 a 0 = 0 a k = e /0 sin(/0) for k 0 a k = π x()e k d = 0 0 π e 0 k d

More information

A GENERALIZED COLE-HOPF TRANSFORMATION FOR A TWO-DIMENSIONAL BURGERS EQUATION WITH A VARIABLE COEFFICIENT

A GENERALIZED COLE-HOPF TRANSFORMATION FOR A TWO-DIMENSIONAL BURGERS EQUATION WITH A VARIABLE COEFFICIENT Indian J. Pure Appl. Mah., 43(6: 591-600, December 2012 c Indian Naional Science Academy A GENERALIZED COLE-HOPF TRANSFORMATION FOR A TWO-DIMENSIONAL BURGERS EQUATION WITH A VARIABLE COEFFICIENT B. Mayil

More information

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+ Review Eercise sin 5 cos sin an cos 5 5 an 5 9 co 0 a sinθ 6 + 4 6 + sin θ 4 6+ + 6 + 4 cos θ sin θ + 4 4 sin θ + an θ cos θ ( ) + + + + Since π π, < θ < anθ should be negaive. anθ ( + ) Pearson Educaion

More information

Exact solution of the(2+1)-dimensional hyperbolic nonlinear Schrödinger equation by Adomian decomposition method

Exact solution of the(2+1)-dimensional hyperbolic nonlinear Schrödinger equation by Adomian decomposition method Malaa J Ma ((014 160 164 Exac soluion of he(+1-dimensional hperbolic nonlinear Schrödinger equaion b Adomian decomposiion mehod Ifikhar Ahmed, a, Chunlai Mu b and Pan Zheng c a,b,c College of Mahemaics

More information

METHOD OF CHARACTERISTICS AND GLUON DISTRIBUTION FUNCTION

METHOD OF CHARACTERISTICS AND GLUON DISTRIBUTION FUNCTION METHOD OF CHARACTERISTICS AND GLUON DISTRIBUTION FUNCTION Saiful Islam and D. K. Choudhury Dep. Of Physics Gauhai Universiy, Guwahai, Assam, India. Email : saiful.66@rediffmail.com ; dkc_phys@yahoo.co.in

More information

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions MA 14 Calculus IV (Spring 016) Secion Homework Assignmen 1 Soluions 1 Boyce and DiPrima, p 40, Problem 10 (c) Soluion: In sandard form he given firs-order linear ODE is: An inegraing facor is given by

More information

arxiv: v1 [math.gm] 4 Nov 2018

arxiv: v1 [math.gm] 4 Nov 2018 Unpredicable Soluions of Linear Differenial Equaions Mara Akhme 1,, Mehme Onur Fen 2, Madina Tleubergenova 3,4, Akylbek Zhamanshin 3,4 1 Deparmen of Mahemaics, Middle Eas Technical Universiy, 06800, Ankara,

More information