Algorithm Analysis of Numerical Solutions to the Heat Equation

Size: px
Start display at page:

Download "Algorithm Analysis of Numerical Solutions to the Heat Equation"

Transcription

1 Inernaional Journal of Compuer Applicaions ( ) Volume 79 No, Ocober Algorihm Analysis of Numerical Soluions o he Hea Equaion Edmund Agyeman Deparmen of Mahemaics, Kwame Nkrumah Universiy of Science and Technology, Kumasi-Ghana. Derick Folson Deparmen of Mahemaics, Kwame Nkrumah Universiy of Science and Technology, Kumasi-Ghana. ABSTRACT The numerical algorihms employed in he soluion of Parabolic Parial Differenial Equaions are he subjec of his paper. In paricular, he Crank-Nicolson scheme, which is generally acceped as an improvemen of he Schmid scheme, is subjeced no only o sabiliy analysis, bu also absolue relaive error analysis o guide Mahemaicians and Engineers alike o know he rue performance of hese numerical soluion mehods. The Hea Equaion wih Dirichle condiions conducing hea is analysed by employing he analyical mehod of soluion where he mehod of Separaion of Variables is used. The same equaion is hen solved wih he Schmid scheme as well as he Crank-Nicolson scheme and he resuls compared o he analyical soluion. I is shown ha provided sabiliy condiions for boh numerical schemes are no compromised, he Schmid scheme is beer han he Crank-Nicolson scheme a he paricular poin 8% from he conducing end of he rod. Wih he rod discreized ino si poins, boh ends of he rod produce he same resuls for boh numerical schemes. Wih he remaining four poins, i is shown ha hree poins produced values which showed ha he Crank-Nicolson scheme is beer han he Schmid scheme a hose hree poins, bu no he fourh. General Terms Numerical Soluion, Finie Difference, Relaive Absolue Error, Parabolic PDEs, Separaion of Variables, Dirichle condiion, Crank-Nicolson scheme, Schmid scheme, Sabiliy Keywords Numerical Analysis, Algorihm, Hea Equaion. INTRODUCTION Numerical mahemaics has come o he aid of mahemaicians for cenuries and has made he soluion of oherwise unsolvable mahemaical problems quie easy. This has been fel in almos all branches of Science especially, mahemaics, engineering and medicine. When numerical mahemaics reached is peak in he mid h cenury, among hose who made heir names were he German scholar Erhard Schmid (forming he Schmid mehod), English Mahemaical mahemaicians John Crank and Phyllis Nicolson (ogeher forming he Crank-Nicolson mehod). These ousanding mahemaicians of old proposed algorihms for solving parial differenial equaions numerically. Even hough hese algorihms are used widely oday in almos all fields of Science, ime has come o pu hese algorihms under he lens for informed decision o be made on hem. Alhough quie some seps have been aken by various mahemaicians o analyse hese algorihms, all effor unforunaely focus only on heir sabiliy analysis.. OBJECTIVES This paper among oher hings seeks o: Apply analyical and numerical mehods o solve a parabolic parial differenial equaion. Compare he numerical soluions o he analyical soluion and draw informed conclusions abou he numerical algorihms. Compare and conras error analysis and sabiliy analysis.. METHODOLOGY A model problem for an aluminium rod of lengh L, iniially a room emperaure wih one end immersed in boiling waer and he oher insulaed is considered. The subsequen emperaure disribuion across he rod is compued analyically as well as numerically. Numerically, wo algorihms are employed o compare and conras heir performance in erms of efficiency and accuracy: Schmid Scheme Crank-Nicolson Scheme The soluions will be limied by he following condiions so as o achieve uniformiy in soluion. Compuer algebra sysems will be employed o minimize errors if no eradicae i compleely.. JUSTIFICATION Hea equaion has many applicaions in engines and srucural mechanics. I is also used eensively in Biology where i is known as diffusion equaion and models he diffusion of subsances such as drugs, bacerial, or viral spread in he human sysem. This research paper will pu o res he overreliance on sabiliy conceps alone in selecing appropriae numerical algorihms for predicing he behaviour of hea ransfer by he hea equaion. This will also help pharmaciss in predicing he behaviour of cerain drugs in he human body. I will also pu in rerospec which numerical scheme is bes for solving parabolic PDEs in general.. ANALYTI CAL SOLUTION Le be he emperaure in degrees Celsius a a disance from he ho end, minues afer he end a is immersed. Le c be he hermal diffusiviy of he rod. The emperaure is governed by he problem This problem is no correcly formulaed for he separaion of variables echnique because he boundary condiion a

2 Inernaional Journal of Compuer Applicaions ( ) Volume 79 No, Ocober is non-homogenous. Observe ha he emperaure profile as is easily deermined by seing equal o and ignoring he iniial condiion. The resul is he seady-sae emperaure problem where is he seady-sae emperaure. The soluion of his simple problem is he consan. Suppose we subrac from o obain a new emperaure variable, say The ime dependen equaion can really be solved a any ime, bu since is ye unknown, le s hold on. Now he spaial problem soluion is There are hree possible scenarios o deal wih here. wih in place of, he problem becomes CASE : In his case he soluion o he differenial equaion is The new problem has homogenous boundary condiions. Simplifying he problem by scaling, a new emperaure and ime is defined by Wih hese changes, he problem becomes Applying he firs boundary condiion gives Applying he second boundary condiion and using he immediae resul yields Going afer non-rivial soluions means To solve he above problem, he firs hing o do is o apply separaion of variables. Firs, assume ha he soluion akes he form Subsiuing Separaing he variables gives The only condiion ha will make he above equaion meaningful is when boh sides evaluae o a consan. ie where is called he separaion consan and is arbirary. The equaion above can be spli i ino he following wo ordinary differenial equaions The ne sep is o make sure ha he produc soluion,, saisfies he boundary condiions so i is plugged ino boh epressions If he firs equaion is considered, i is eiher or. However for every and, ie he rivial soluion, and a soluion o any linear homogeneous equaion, a non-rivial soluion is more desirable. Therefore i is assumed ha infac. Likewise from he second, soluion. In summary o avoid he rivial Noe ha c is no needed in he eigenfuncion as i will ge absorbed ino anoher consan ha will be picked up laer on. CASE : The soluion o he differenial equaion is Applying he boundary condiion gives So in his case he only soluion is he rivial soluion and so is no an eigenvalue for his boundary value problem. CASE : Here he soluion o he differenial equaion is Applying he firs homogenous condiion gives and applying he second gives Assuming and so and his means. Thus, is he only rivial soluion in his case. Therefore here will be no negaive eigenvalues for his boundary value problem. The complee lis of eigenvalues and eigenfuncions for his problem are hen Now solving he ime differenial equaion and noe ha because of simpliciy, is no subsiued. This is a simple linear (and separable for ha maer) s order differenial equaion and he soluion is and noe ha here is no a condiion for he ime differenial equaion and ha is no a problem. Now ha boh he ordinary and parial differenial equaions are solved a final soluion can be wrien. Noe however he

3 Inernaional Journal of Compuer Applicaions ( ) Volume 79 No, Ocober infiniely many soluions found since here are infiniely many soluions (ie eigenfuncions) o he spaial problem. The produc soluions are hen The produc soluion is denoed o acknowledge ha each value of n will yield a differen soluion. Also noe ha he h in he soluion o he ime problem is changed o o denoe he fac ha i will probably be differen for each value of n as well and because had he been kep wih he specific eigenfuncion i would have absorbed he c o ge a single consan in he soluion. The principle of Superposiion is no resriced o only wo soluions and so he following is also a soluion o he parial differenial equaion The soluion for he coefficien is given by where. By seing and evaluaing yields Hence Recovering he original soluion and compleely eliminaing L by subsiuion, Eending he soluion furher by aking yields Table. Soluion of he Hea Equaion Using he Analyical mehod

4 Inernaional Journal of Compuer Applicaions ( ) Volume 79 No, Ocober 8 Temperaure T (, ) o C Displacemen (f) Figure : A D-Plo of he daa produced in he Analyical soluion. NUMERICAL SOLUTION OF THE HEAT EQUATION To solve he hea equaion numerically, boh he and variables need o be discreized and proceed o deal wih he -variable employing finie difference approimaion. This concep according o hese grea schools of hough Schmid and Crank-Nicolson is presened in his paper.. Schmid Scheme When Dirichle boundary condiions are imposed, hose values mus be specified a he boundary poins. The firsorder forward-ime second-order cenred-space (FTSC) approimaion of he hea equaion is given by Wih he following rigonomeric ideniies Equaion () hen becomes For he original error no o grow, he amplificaion facor is resriced as As sine funcion has he range.. Sabiliy of Schmid Scheme Using Von Neumann/Fourier Mehod Bu ()-() Le Von Neumann considers he homogenous par of he difference equaion This confirms ha provided hen he Schmid scheme will be sable, oherwise i will be unsable. In oher words, he Schmid scheme is condiionally sable. For he purpose of his paper, r is se o. o achieve sabiliy. The able below shows he resuling compuaions using he Schmid scheme. Using Fourier series, he n-componen soluion of he difference scheme is Subsiuing () in () and simplifying yields

5 Table. Soluion of he Hea Equaion using he Schmid Scheme Inernaional Journal of Compuer Applicaions ( ) Volume 79 No, Ocober Temperaure T (, ) o C Displacemen (f) Figure : A D-Plo of he daa produced by he Schmid scheme wih r=.. Cranch Nicolson Scheme.. Sabiliy Analysis of he Crank-Nicolson Scheme Using Von Neumann/Fourier Mehod Using Fourier series, he n-componen soluion of he difference scheme is Subsiuing (d) in (c) and simplifying yields Wih he following rigonomeric ideniies Equaion (f) hen becomes Le Guided by he fac ha and

6 Inernaional Journal of Compuer Applicaions ( ) Volume 79 No, Ocober This shows ha he Crank-Nicolson scheme is uncondiionally sable bu for he sake of uniformiy and comparison, is chosen. The resul of he Crank- Nicolson scheme compuaion is shown in he able below: Table. Soluion of he Hea Equaion Using he Crank-Nicolson Scheme Temperaure T (, ) o C Displacemen (f) Figure : A D-Plo of he daa produced in he Crank-Nicolson scheme wih r =..

7 Inernaional Journal of Compuer Applicaions ( ) Volume 79 No, Ocober 7. DATA ANALYSIS Table. Relaive Errors in Numerical Approimaions Using he Schmid Scheme Temperaure T (, ) o C. Displacemen (f) Figure : A D-Plo of he absolue relaive error wih he Schmid scheme Table. Relaive Errors in Numerical Approimaions Using he Crank-Nicolson Scheme

8 Inernaional Journal of Compuer Applicaions ( ) Volume 79 No, Ocober. Temperaure T (, ) o C. Displacemen (f) Figure : A D Plo of he Absolue Relaive Error wih he Crank-Nicolson scheme. 8. DISCUSSION OF RESULTS For an aluminium rod a room emperaure whose one end is insulaed and he oher immersed in boiling waer, one would epec ha wih ime he emperaure will grow uniformly hrough he rod unil such a ime ha he emperaure disribuion is he same across he whole rod. Even hough, he rod was no given enough ime o undergo such a ransformaion, ha is, wih in a ime span of, i was sill evidenly clear ha he emperaure disribuion was acually growing across he rod. For he analyical soluion, he emperaure disribuion a, for, fell below he room emperaure of he rod, which was quie unusual. I begun o improve when, and only a when emperaure acually fell below room emperaure. For and somehing unusual was happening. All he emperaure a ha poin was acually less han he insulaed end of he rod. The aluminium rod begun o ehibi is rue conduciviy characerisics from, when here was ruly uniformiy in hea ransfer. The Schmid scheme conforms o iniial condiions of he rod perfecly. Hea only begins o flow a when he emperaure doubled a he poin while oher pars of he rod remained a room emperaure. The emperaure gradually increases hrough he rod unil when all pars of he rod had eperience emperaure rise. This ime conforms o he ime he rod ehibis is conduciviy properies. The iniial condiions of he rod is perfecly obeyed by he Crank-Nicolson mehod wih he ecepion ha. This defeas he fac ha. This iniial condiion is however saisfied from whiles eperiences a decrease in emperaure. This negaive phenomenon decreases in he range. The conduciviy propery of he rod hen sars from. Generally, he values obained wih he Schmid and he Crank-Nicolson schemes compare favourably wih values obained wih he analyical mehod of soluion. The rue value for he final soluion for he Analyical, Schmid, and Crank-Nicolson schemes is shown in Table ; 8

9 Inernaional Journal of Compuer Applicaions ( ) Volume 79 No, Ocober Table. True Values of he Various Mehods o he Hea Equaio Analyical Scheme Schmid Scheme Crank-Nicolson Scheme The above able clearly shows how close he numerical soluions wih boh he Schmid scheme and he Crank- Nicolson scheme are o he Analyical soluion. Shear observaion of he above able shows which numerical scheme is closer o he analyical scheme. Bu he bes guide is he resul from he absolue relaive errors of he wo numerical schemes, which is shown in able 7. Table 7. Absolue Relaive Error for he Final Soluion of he Hea Equaion. Schmid Scheme Crank-Nicolson Scheme Boh schemes absolue relaive error a he boundary poins, ha is, and are he same. In he range, he Crank-Nicolson scheme is he bes represenaion of he Analyical soluion. However for, he Schmid scheme seems o perform beer han he Crank-Nicolson scheme. However on a scale of, he Crank-Nicolson scheme will occupy 7 while he Schmid scheme will occupy. This alone canno however inform he choice of one over he oher because if one considers a paricular poin alone on he rod, he Schmid may be beer han he Crank-Nicolson scheme. 9. CONCLUSIONS A all discree poins of he rod a he given ime frame, he analyical soluion fails o conform o he iniial condiions of he problem. This is so because he emperaure of he rod a he insulaed end a ime is supposed o be whiles he remaining poins were supposed o be very close o he iniial emperaure wih he ecepion of he end immersed in boiling waer. Ironically, he emperaure a poin was somehow closer o he room emperaure han a he poin. This is surprising since hea ransferred from he immersed end of he rod acually reduces as i ges o he insulaed end. The analyical mehod however suggess ha wihin he range emperaure was rising insead of falling. There was however ecepion for he ime frame a poins on he rod where he behaviour conducing propery of he rod was obeyed. The Schmid scheme obeys and conforms perfecly wih he iniial condiions of he rod, mainaining he iniial emperaure of a all poins of he rod wih he ecepion of he immersed end which assumes he emperaure of he boiling waer. This presens he Schmid scheme as a huge improvemen of he analyical mehod. The Crank-Nicolson scheme complies well wih he iniial condiions ecep a he boundary when i is supposed o be bu he numerical soluion acually gives. Per he Analyical mehod, he rod s conduciviy drops in he range for he ime before i rises again. For he Crank-Nicolson scheme, he anomaly in hea conducion is seen a in he ime inerval where as he Schmid scheme had no anomaly. Wih r specially chosen such ha he sabiliy of boh he Schmid and Crank-Nicolson schemes is no compromised, he claim of superioriy of one scheme over he oher is far feched. Infac superioriy can only be claimed wih respec o a paricular discree poin in quesion. The Schmid scheme has shown o be more reliable han he Crank-Nicolson scheme which is srangely seen as an improvemen of he Schmid scheme.. REFERENCES [] Glenn Ledder.. Differenial Equaions: A Modeling Approach. McGraw-Hill. [] John H. Mahews and Kuris D. Fink. Numerical Mehods Using MATLAB. Pearson Educaion, Inc. [] Paul Dawkins. 7. Lecure Noes on Differenial Equaions. hp://uorial.mah.lamar.edu. [] David Richards and Adam Abrahamsen.. The One Dimensional Hea Equaion. [] Alfio Quareroni, Riccardo Sacco and Fauso Saleri.. Numerical Mahemaics. Springer-Verlag New York, Inc. [] Golub, Gene H., and James M. Orega. 99. Scienific Compuing and Differenial Equaion: An Inroducion o Numerical Mehods. San Diego: Academic Press. IJCA TM : 9

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Numerical Dispersion

Numerical Dispersion eview of Linear Numerical Sabiliy Numerical Dispersion n he previous lecure, we considered he linear numerical sabiliy of boh advecion and diffusion erms when approimaed wih several spaial and emporal

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information

Ordinary Differential Equations

Ordinary Differential Equations Lecure 22 Ordinary Differenial Equaions Course Coordinaor: Dr. Suresh A. Karha, Associae Professor, Deparmen of Civil Engineering, IIT Guwahai. In naure, mos of he phenomena ha can be mahemaically described

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively:

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively: XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15.

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15. SMT Calculus Tes Soluions February 5,. Le f() = and le g() =. Compue f ()g (). Answer: 5 Soluion: We noe ha f () = and g () = 6. Then f ()g () =. Plugging in = we ge f ()g () = 6 = 3 5 = 5.. There is a

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Robotics I. April 11, The kinematics of a 3R spatial robot is specified by the Denavit-Hartenberg parameters in Tab. 1.

Robotics I. April 11, The kinematics of a 3R spatial robot is specified by the Denavit-Hartenberg parameters in Tab. 1. Roboics I April 11, 017 Exercise 1 he kinemaics of a 3R spaial robo is specified by he Denavi-Harenberg parameers in ab 1 i α i d i a i θ i 1 π/ L 1 0 1 0 0 L 3 0 0 L 3 3 able 1: able of DH parameers of

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

= ( ) ) or a system of differential equations with continuous parametrization (T = R

= ( ) ) or a system of differential equations with continuous parametrization (T = R XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation Hea (iffusion) Equaion erivaion of iffusion Equaion The fundamenal mass balance equaion is I P O L A ( 1 ) where: I inpus P producion O oupus L losses A accumulaion Assume ha no chemical is produced or

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

APPLICATION OF CHEBYSHEV APPROXIMATION IN THE PROCESS OF VARIATIONAL ITERATION METHOD FOR SOLVING DIFFERENTIAL- ALGEBRAIC EQUATIONS

APPLICATION OF CHEBYSHEV APPROXIMATION IN THE PROCESS OF VARIATIONAL ITERATION METHOD FOR SOLVING DIFFERENTIAL- ALGEBRAIC EQUATIONS Mahemaical and Compuaional Applicaions, Vol., No. 4, pp. 99-978,. Associaion for Scienific Research APPLICATION OF CHEBYSHEV APPROXIMATION IN THE PROCESS OF VARIATIONAL ITERATION METHOD FOR SOLVING DIFFERENTIAL-

More information

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du.

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du. MATH 3B: MIDTERM REVIEW JOE HUGHES. Inegraion by Pars. Evaluae 3 e. Soluion: Firs make he subsiuion u =. Then =, hence 3 e = e = ue u Now inegrae by pars o ge ue u = ue u e u + C and subsiue he definiion

More information

ln 2 1 ln y x c y C x

ln 2 1 ln y x c y C x Lecure 14 Appendi B: Some sample problems from Boas Here are some soluions o he sample problems assigned for Chaper 8 8: 6 Soluion: We wan o find he soluion o he following firs order equaion using separaion

More information

Homotopy Perturbation Method for Solving Some Initial Boundary Value Problems with Non Local Conditions

Homotopy Perturbation Method for Solving Some Initial Boundary Value Problems with Non Local Conditions Proceedings of he World Congress on Engineering and Compuer Science 23 Vol I WCECS 23, 23-25 Ocober, 23, San Francisco, USA Homoopy Perurbaion Mehod for Solving Some Iniial Boundary Value Problems wih

More information

Math 23 Spring Differential Equations. Final Exam Due Date: Tuesday, June 6, 5pm

Math 23 Spring Differential Equations. Final Exam Due Date: Tuesday, June 6, 5pm Mah Spring 6 Differenial Equaions Final Exam Due Dae: Tuesday, June 6, 5pm Your name (please prin): Insrucions: This is an open book, open noes exam. You are free o use a calculaor or compuer o check your

More information

THE EFFECT OF SUCTION AND INJECTION ON UNSTEADY COUETTE FLOW WITH VARIABLE PROPERTIES

THE EFFECT OF SUCTION AND INJECTION ON UNSTEADY COUETTE FLOW WITH VARIABLE PROPERTIES Kragujevac J. Sci. 3 () 7-4. UDC 53.5:536. 4 THE EFFECT OF SUCTION AND INJECTION ON UNSTEADY COUETTE FLOW WITH VARIABLE PROPERTIES Hazem A. Aia Dep. of Mahemaics, College of Science,King Saud Universiy

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi Creep in Viscoelasic Subsances Numerical mehods o calculae he coefficiens of he Prony equaion using creep es daa and Herediary Inegrals Mehod Navnee Saini, Mayank Goyal, Vishal Bansal (23); Term Projec

More information

Sub Module 2.6. Measurement of transient temperature

Sub Module 2.6. Measurement of transient temperature Mechanical Measuremens Prof. S.P.Venkaeshan Sub Module 2.6 Measuremen of ransien emperaure Many processes of engineering relevance involve variaions wih respec o ime. The sysem properies like emperaure,

More information

Unsteady Flow Problems

Unsteady Flow Problems School of Mechanical Aerospace and Civil Engineering Unseady Flow Problems T. J. Craf George Begg Building, C41 TPFE MSc CFD-1 Reading: J. Ferziger, M. Peric, Compuaional Mehods for Fluid Dynamics H.K.

More information

) were both constant and we brought them from under the integral.

) were both constant and we brought them from under the integral. YIELD-PER-RECRUIT (coninued The yield-per-recrui model applies o a cohor, bu we saw in he Age Disribuions lecure ha he properies of a cohor do no apply in general o a collecion of cohors, which is wha

More information

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 1, Issue 6 Ver. II (Nov - Dec. 214), PP 48-54 Variaional Ieraion Mehod for Solving Sysem of Fracional Order Ordinary Differenial

More information

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k Challenge Problems DIS 03 and 0 March 6, 05 Choose one of he following problems, and work on i in your group. Your goal is o convince me ha your answer is correc. Even if your answer isn compleely correc,

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

Morning Time: 1 hour 30 minutes Additional materials (enclosed):

Morning Time: 1 hour 30 minutes Additional materials (enclosed): ADVANCED GCE 78/0 MATHEMATICS (MEI) Differenial Equaions THURSDAY JANUARY 008 Morning Time: hour 30 minues Addiional maerials (enclosed): None Addiional maerials (required): Answer Bookle (8 pages) Graph

More information

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION MATH 28A, SUMME 2009, FINAL EXAM SOLUTION BENJAMIN JOHNSON () (8 poins) [Lagrange Inerpolaion] (a) (4 poins) Le f be a funcion defined a some real numbers x 0,..., x n. Give a defining equaion for he Lagrange

More information

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x . 1 Mah 211 Homework #3 February 2, 2001 2.4.3. y + (2/x)y = (cos x)/x 2 Answer: Compare y + (2/x) y = (cos x)/x 2 wih y = a(x)x + f(x)and noe ha a(x) = 2/x. Consequenly, an inegraing facor is found wih

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum MEE Engineering Mechanics II Lecure 4 Lecure 4 Kineics of a paricle Par 3: Impulse and Momenum Linear impulse and momenum Saring from he equaion of moion for a paricle of mass m which is subjeced o an

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Math 36. Rumbos Spring Solutions to Assignment #6. 1. Suppose the growth of a population is governed by the differential equation.

Math 36. Rumbos Spring Solutions to Assignment #6. 1. Suppose the growth of a population is governed by the differential equation. Mah 36. Rumbos Spring 1 1 Soluions o Assignmen #6 1. Suppose he growh of a populaion is governed by he differenial equaion where k is a posiive consan. d d = k (a Explain why his model predics ha he populaion

More information

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis Chaper EEE83 EEE3 Chaper # EEE83 EEE3 Linear Conroller Design and Sae Space Analysis Ordinary Differenial Equaions.... Inroducion.... Firs Order ODEs... 3. Second Order ODEs... 7 3. General Maerial...

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

E β t log (C t ) + M t M t 1. = Y t + B t 1 P t. B t 0 (3) v t = P tc t M t Question 1. Find the FOC s for an optimum in the agent s problem.

E β t log (C t ) + M t M t 1. = Y t + B t 1 P t. B t 0 (3) v t = P tc t M t Question 1. Find the FOC s for an optimum in the agent s problem. Noes, M. Krause.. Problem Se 9: Exercise on FTPL Same model as in paper and lecure, only ha one-period govenmen bonds are replaced by consols, which are bonds ha pay one dollar forever. I has curren marke

More information

Echocardiography Project and Finite Fourier Series

Echocardiography Project and Finite Fourier Series Echocardiography Projec and Finie Fourier Series 1 U M An echocardiagram is a plo of how a porion of he hear moves as he funcion of ime over he one or more hearbea cycles If he hearbea repeas iself every

More information

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that ODEs, Homework #4 Soluions. Check ha y ( = is a soluion of he second-order ODE ( cos sin y + y sin y sin = 0 and hen use his fac o find all soluions of he ODE. When y =, we have y = and also y = 0, so

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

MOMENTUM CONSERVATION LAW

MOMENTUM CONSERVATION LAW 1 AAST/AEDT AP PHYSICS B: Impulse and Momenum Le us run an experimen: The ball is moving wih a velociy of V o and a force of F is applied on i for he ime inerval of. As he resul he ball s velociy changes

More information

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004 ODEs II, Lecure : Homogeneous Linear Sysems - I Mike Raugh March 8, 4 Inroducion. In he firs lecure we discussed a sysem of linear ODEs for modeling he excreion of lead from he human body, saw how o ransform

More information

Section 7.4 Modeling Changing Amplitude and Midline

Section 7.4 Modeling Changing Amplitude and Midline 488 Chaper 7 Secion 7.4 Modeling Changing Ampliude and Midline While sinusoidal funcions can model a variey of behaviors, i is ofen necessary o combine sinusoidal funcions wih linear and exponenial curves

More information

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence MATH 433/533, Fourier Analysis Secion 6, Proof of Fourier s Theorem for Poinwise Convergence Firs, some commens abou inegraing periodic funcions. If g is a periodic funcion, g(x + ) g(x) for all real x,

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

The Contradiction within Equations of Motion with Constant Acceleration

The Contradiction within Equations of Motion with Constant Acceleration The Conradicion wihin Equaions of Moion wih Consan Acceleraion Louai Hassan Elzein Basheir (Daed: July 7, 0 This paper is prepared o demonsrae he violaion of rules of mahemaics in he algebraic derivaion

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN Inernaional Journal of Scienific & Engineering Research, Volume 4, Issue 10, Ocober-2013 900 FUZZY MEAN RESIDUAL LIFE ORDERING OF FUZZY RANDOM VARIABLES J. EARNEST LAZARUS PIRIYAKUMAR 1, A. YAMUNA 2 1.

More information

Theory of! Partial Differential Equations!

Theory of! Partial Differential Equations! hp://www.nd.edu/~gryggva/cfd-course/! Ouline! Theory o! Parial Dierenial Equaions! Gréar Tryggvason! Spring 011! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures.

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures. HOMEWORK # 2: MATH 2, SPRING 25 TJ HITCHMAN Noe: This is he las soluion se where I will describe he MATLAB I used o make my picures.. Exercises from he ex.. Chaper 2.. Problem 6. We are o show ha y() =

More information

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions MA 14 Calculus IV (Spring 016) Secion Homework Assignmen 1 Soluions 1 Boyce and DiPrima, p 40, Problem 10 (c) Soluion: In sandard form he given firs-order linear ODE is: An inegraing facor is given by

More information

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method Journal of Applied Mahemaics & Bioinformaics, vol., no., 01, 1-14 ISSN: 179-660 (prin), 179-699 (online) Scienpress Ld, 01 Improved Approimae Soluions for Nonlinear Evoluions Equaions in Mahemaical Physics

More information

The Optimal Stopping Time for Selling an Asset When It Is Uncertain Whether the Price Process Is Increasing or Decreasing When the Horizon Is Infinite

The Optimal Stopping Time for Selling an Asset When It Is Uncertain Whether the Price Process Is Increasing or Decreasing When the Horizon Is Infinite American Journal of Operaions Research, 08, 8, 8-9 hp://wwwscirporg/journal/ajor ISSN Online: 60-8849 ISSN Prin: 60-8830 The Opimal Sopping Time for Selling an Asse When I Is Uncerain Wheher he Price Process

More information

Most Probable Phase Portraits of Stochastic Differential Equations and Its Numerical Simulation

Most Probable Phase Portraits of Stochastic Differential Equations and Its Numerical Simulation Mos Probable Phase Porrais of Sochasic Differenial Equaions and Is Numerical Simulaion Bing Yang, Zhu Zeng and Ling Wang 3 School of Mahemaics and Saisics, Huazhong Universiy of Science and Technology,

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of 4 Soluionbank Edexcel AS and A Level Modular Mahemaics Exercise A, Quesion Quesion: Skech he graphs of (a) y = e x + (b) y = 4e x (c) y = e x 3 (d) y = 4 e x (e) y = 6 + 0e x (f) y = 00e x + 0

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

Fishing limits and the Logistic Equation. 1

Fishing limits and the Logistic Equation. 1 Fishing limis and he Logisic Equaion. 1 1. The Logisic Equaion. The logisic equaion is an equaion governing populaion growh for populaions in an environmen wih a limied amoun of resources (for insance,

More information

Sliding Mode Controller for Unstable Systems

Sliding Mode Controller for Unstable Systems S. SIVARAMAKRISHNAN e al., Sliding Mode Conroller for Unsable Sysems, Chem. Biochem. Eng. Q. 22 (1) 41 47 (28) 41 Sliding Mode Conroller for Unsable Sysems S. Sivaramakrishnan, A. K. Tangirala, and M.

More information

Cash Flow Valuation Mode Lin Discrete Time

Cash Flow Valuation Mode Lin Discrete Time IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728,p-ISSN: 2319-765X, 6, Issue 6 (May. - Jun. 2013), PP 35-41 Cash Flow Valuaion Mode Lin Discree Time Olayiwola. M. A. and Oni, N. O. Deparmen of Mahemaics

More information

Instructor: Barry McQuarrie Page 1 of 5

Instructor: Barry McQuarrie Page 1 of 5 Procedure for Solving radical equaions 1. Algebraically isolae one radical by iself on one side of equal sign. 2. Raise each side of he equaion o an appropriae power o remove he radical. 3. Simplify. 4.

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

Lie Derivatives operator vector field flow push back Lie derivative of

Lie Derivatives operator vector field flow push back Lie derivative of Lie Derivaives The Lie derivaive is a mehod of compuing he direcional derivaive of a vecor field wih respec o anoher vecor field We already know how o make sense of a direcional derivaive of real valued

More information

Lecture Notes 2. The Hilbert Space Approach to Time Series

Lecture Notes 2. The Hilbert Space Approach to Time Series Time Series Seven N. Durlauf Universiy of Wisconsin. Basic ideas Lecure Noes. The Hilber Space Approach o Time Series The Hilber space framework provides a very powerful language for discussing he relaionship

More information

(1) (2) Differentiation of (1) and then substitution of (3) leads to. Therefore, we will simply consider the second-order linear system given by (4)

(1) (2) Differentiation of (1) and then substitution of (3) leads to. Therefore, we will simply consider the second-order linear system given by (4) Phase Plane Analysis of Linear Sysems Adaped from Applied Nonlinear Conrol by Sloine and Li The general form of a linear second-order sysem is a c b d From and b bc d a Differeniaion of and hen subsiuion

More information

5.2. The Natural Logarithm. Solution

5.2. The Natural Logarithm. Solution 5.2 The Naural Logarihm The number e is an irraional number, similar in naure o π. Is non-erminaing, non-repeaing value is e 2.718 281 828 59. Like π, e also occurs frequenly in naural phenomena. In fac,

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+ Review Eercise sin 5 cos sin an cos 5 5 an 5 9 co 0 a sinθ 6 + 4 6 + sin θ 4 6+ + 6 + 4 cos θ sin θ + 4 4 sin θ + an θ cos θ ( ) + + + + Since π π, < θ < anθ should be negaive. anθ ( + ) Pearson Educaion

More information

Online Appendix to Solution Methods for Models with Rare Disasters

Online Appendix to Solution Methods for Models with Rare Disasters Online Appendix o Soluion Mehods for Models wih Rare Disasers Jesús Fernández-Villaverde and Oren Levinal In his Online Appendix, we presen he Euler condiions of he model, we develop he pricing Calvo block,

More information

Seminar 4: Hotelling 2

Seminar 4: Hotelling 2 Seminar 4: Hoelling 2 November 3, 211 1 Exercise Par 1 Iso-elasic demand A non renewable resource of a known sock S can be exraced a zero cos. Demand for he resource is of he form: D(p ) = p ε ε > A a

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

Math 315: Linear Algebra Solutions to Assignment 6

Math 315: Linear Algebra Solutions to Assignment 6 Mah 35: Linear Algebra s o Assignmen 6 # Which of he following ses of vecors are bases for R 2? {2,, 3, }, {4,, 7, 8}, {,,, 3}, {3, 9, 4, 2}. Explain your answer. To generae he whole R 2, wo linearly independen

More information

Chapter 4. Truncation Errors

Chapter 4. Truncation Errors Chaper 4. Truncaion Errors and he Taylor Series Truncaion Errors and he Taylor Series Non-elemenary funcions such as rigonomeric, eponenial, and ohers are epressed in an approimae fashion using Taylor

More information

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws Chaper 5: Phenomena Phenomena: The reacion (aq) + B(aq) C(aq) was sudied a wo differen emperaures (98 K and 35 K). For each emperaure he reacion was sared by puing differen concenraions of he 3 species

More information

Decimal moved after first digit = 4.6 x Decimal moves five places left SCIENTIFIC > POSITIONAL. a) g) 5.31 x b) 0.

Decimal moved after first digit = 4.6 x Decimal moves five places left SCIENTIFIC > POSITIONAL. a) g) 5.31 x b) 0. PHYSICS 20 UNIT 1 SCIENCE MATH WORKSHEET NAME: A. Sandard Noaion Very large and very small numbers are easily wrien using scienific (or sandard) noaion, raher han decimal (or posiional) noaion. Sandard

More information

Undetermined coefficients for local fractional differential equations

Undetermined coefficients for local fractional differential equations Available online a www.isr-publicaions.com/jmcs J. Mah. Compuer Sci. 16 (2016), 140 146 Research Aricle Undeermined coefficiens for local fracional differenial equaions Roshdi Khalil a,, Mohammed Al Horani

More information

Stochastic Model for Cancer Cell Growth through Single Forward Mutation

Stochastic Model for Cancer Cell Growth through Single Forward Mutation Journal of Modern Applied Saisical Mehods Volume 16 Issue 1 Aricle 31 5-1-2017 Sochasic Model for Cancer Cell Growh hrough Single Forward Muaion Jayabharahiraj Jayabalan Pondicherry Universiy, jayabharahi8@gmail.com

More information

Solutions from Chapter 9.1 and 9.2

Solutions from Chapter 9.1 and 9.2 Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

More information

ENGI 9420 Engineering Analysis Assignment 2 Solutions

ENGI 9420 Engineering Analysis Assignment 2 Solutions ENGI 940 Engineering Analysis Assignmen Soluions 0 Fall [Second order ODEs, Laplace ransforms; Secions.0-.09]. Use Laplace ransforms o solve he iniial value problem [0] dy y, y( 0) 4 d + [This was Quesion

More information

MEI STRUCTURED MATHEMATICS 4758

MEI STRUCTURED MATHEMATICS 4758 OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary General Cerificae of Educaion Advanced General Cerificae of Educaion MEI STRUCTURED MATHEMATICS 4758 Differenial Equaions Thursday 5 JUNE 006 Afernoon

More information