Semiconducting nano-composites for solar energy conversion: insights from ab initio calculations. S. Wippermann, G. Galli

Size: px
Start display at page:

Download "Semiconducting nano-composites for solar energy conversion: insights from ab initio calculations. S. Wippermann, G. Galli"

Transcription

1 Semiconducting nano-composites for solar energy conversion: insights from ab initio calculations S. Wippermann, G. Galli ICAMP-12, 08/10/2012

2 Search for materials to harvest light: Desperately seeking silicon Nanoparticles (NPs): light emission and absorption Interplay between quantum confinement, defects and surface structure? Differences between colloidal and matrixprecipitated NPs? S. Huang et al., J. Appl. Phys. (2009) Light absorption in dots and rods Can we optimize absorption in functionalized Si-rods and use them as photo-cathodes for solar cells? Multiple exciton generation (MEG) More efficient in nanoparticles? Origin and dependence on preparation conditions? [1] Space-separated quantum cutting with Si nanocrystals for photovoltaic applications, D. Timmerman et al., Nature Photon 2, 105 (2008) [2] Multi-exciton generation in semiconductor quantum dots, A. J. Nozik et al., Chem. Phys. Lett. 457, 3 (2008) [3] Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes, S. Boettcher et al., Science 327, 185 (2010) Motivation embedded NPs advanced theory MEG 01/20

3 Realistic models of nanoparticles (NPs) SixO1-x Devise structural model Informed assumptions Realistic & complex environments Growth & kinetic processes T. Li (GWU) D. Donadio (MPI, Mainz) Precipitate nanoparticles in a matrix from the melt, following prescriptions borrowed from simulations of nucleation processes Forward Flux Sampling of rare events [R. J. Allen et al., 2005 & 2009], coupled to MD simulations with Langevin thermostat [2] T. Li, D. Donadio, L. Ghiringhelli, G. Galli, Nature Mat. (2009) & JCP (2009) [1] A. Puzder, A. J. Williamson, N. Zaitseva, G. Galli, L. Manna, A. P. Alivisatos, Nanoletters (2004) Motivation embedded NPs advanced theory MEG 02/20

4 Motivation embedded NPs advanced theory MEG 03/20 Si NPs embedded in nitride/oxide matrices We have used accelerated MD simulation techniques - similar to those employed to study nucleation in supercooled liquid Si - to precipitate Si nanoparticles in silicon nitride & oxide amorphous matrices - at present only possible with semi-empirical potentials We have investigated interfaces and computed electronic properties using ab initio techniques (semi-local DFT) T. Li (GWU) F. Gygi (UCD) QBox code: electrons, 800,910 basis functions for tens of picoseconds for several samples Si! SixO1-x [1] L. Dal Negro, J. H. Yi, J. Michael, L. C. Kimerling, S. Hamel, A. Williamson, G. Galli, IEEE Nanophotonics 12, 1151 (2006) [2] L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, G. Galli, Appl. Phys. Lett. 88, (2006)

5 !! Motivation embedded NPs advanced theory MEG 04/20 Electronic states of embedded nanoparticles matrix density type of nano-heterojunction ρ = ρ0 Si Si ρ > ρ0 SiO2 Si The relative position of the matrix and nanoparticle energy levels depends on the matrix density

6 !! Motivation embedded NPs advanced theory MEG 05/20 Electronic states of embedded nanoparticles matrix density type of nano-heterojunction size-dependence & localization of energy levels ρ = ρ0 ρ > ρ0 Si Si SiO2 Si!! Si-HOMO: size-dependent position and strain-induced localization Si-LUMO: size-insensitive & delocalized The relative position of the matrix and nanoparticle energy levels depends on the matrix density

7 Electronic states of embedded nanoparticles HOMO interface state; LUMO delocalized over cluster Control of optical properties not only through nanoparticle size but also through strain and matrix density T. Li, F. Gygi, G. Galli, Phys. Rev. Lett. (2011) T. Li (GWU) S. Wippermann (UCD) Motivation embedded NPs advanced theory MEG 06/20

8 Motivation embedded NPs advanced theory MEG 07/20 Si nanoparticles in ZnS: strong gap reduction In atomic layer deposition (ALD) processes, sulfides are used to embed NPs Our ab initio MD simulations show that S is drawn from the matrix and the Si surface is terminated by sulfur The electronic gap of the NP is substantially lowered Cause? S. Wippermann, G. Zimanyi (UCD)

9 Motivation embedded NPs advanced theory MEG 08/20 Si nanoparticles in ZnS: lone pairs at interface S atoms at NP surface are typically 3-fold coordinated, due to valence electronic structure: 1 S-Si bond, 2 Zn-S bonds => lone pairs at interface lone pairs fall energetically into NP gap NP-HOMO is now an interface state, involving the S lone pairs NP-HOMO sulfur lone pairs

10 Si nanoparticles in ZnS: spatial separation of states near band edges valence band edge: interface & matrix states conduction band edge: localized in NP extremely small Si-ZnS lattice mismatch (0.3%); type II interface at equilibrium density interface chemistry & matrix density dominate NP properties at small NP sizes Motivation embedded NPs advanced theory MEG 09/20

11 Motivation embedded NPs advanced theory MEG 10/20 Extract nanoparticles and use higher level of theory embedded extracted Surgery: NP extracted with a surface shell as determined in the matrix, exhibits very similar electronic properties Time-dependent density functional theory i (r,t)= is the theory good enough? apple 1 2 r2 + v H (r,t)+v xc (r,t)+v ext (r,t) i(r,t)

12 Semiconducting nanoparticles: light absorption and emission from many-body perturbation theory Comparison between many-body perturbation theory (BSE) and TD-DFT (LDA or PBE) Larger differences for smaller nano-dots Important qualitative differences in Si nanowires up to ~600 electrons D. Rocca, Y. Ping (UCD) strength of excitonic effect depends on surface structure ~1nm Si NW Motivation embedded NPs advanced theory MEG 11/20

13 Semiconducting nanoparticles: light absorption and emission from many-body perturbation theory Developed algorithms and codes to compute optical spectra of materials and nanostructures scalable to large systems: no calculation of empty states, no storage and inversion of dielectric matrices emission and absorption spectra C87H76 D. Rocca, H.-V. Nguyen, T. A. Pham (UCD) D. Rocca, D. Lu, G. Galli, JCP (2010); D. Rocca, Y. Ping, R. Gebauer, G. Galli, PRB (2012); Y. Ping, D. Rocca, D. Lu, G. Galli, PRB (2012); T. A. Pham, D. Rocca, G. Galli, PRB-RC (2012) Motivation embedded NPs advanced theory MEG 12/20

14 Motivation embedded NPs advanced theory MEG 13/20 Silicon great for MEG, but: gaps just don t match the solar spectrum hν > 2Eg hot exciton Multiple exciton generation (MEG) in Si NPs Single high energy photon creates several excitons Silicon: High carrier multiplication yield, low relative activation threshold Problem: quantum confinement increases gap! => MEG activation energy beyond solar spectrum same problem with other materials e - -phonon, Auger rec. MEG => Need to bring down the gap in Si NPs without sacrificing MEG efficiency single exciton multi-exciton

15 Motivation embedded NPs advanced theory MEG 14/20 Idea: look at silicon high pressure phases β-tin (Si-II) metal pressure (~12 GPa) R8 (Si-XII) slow pressure release (~8 GPa) fast pressure release (<100ms) Eg = 0.24 ev Si-XIII, Si-IX only incomplete structural information known ambient pressure semimetal hex. diam. (Si-IV) BC8 (Si-III) annealing (470 K) Si-I Eg = 1.1 ev BC8 is semimetal and stable at ambient conditions => strong candidate! Eg = 0.95 ev

16 Motivation embedded NPs advanced theory MEG 015/20 Si NPs with high pressure core structures Si34H36 (R8) Si34H38 (BC8) Si42H48 (Ibam) Si35H36 (cd) Si39H40 (hd) Si46H52 (ST12) Si44H48 (bct)

17 Motivation embedded NPs advanced theory MEG 16/20 Electronic properties Si-I ST12 BC8 BC8 NPs feature smallest electronic gaps of all Si NPs with high pressure cores ST12 has increased bulk gap, smaller increase by quantum confinement & by far highest EDOS of all Si phases

18 Motivation embedded NPs advanced theory MEG 16/20 Electronic properties Si-I ST12 BC8 BC8 NPs feature smallest electronic gaps of all Si NPs with high pressure cores ST12 has increased bulk gap, smaller increase by quantum confinement & by far highest EDOS of all Si phases

19 Optimum gap for MEG in 4-8nm BC8 NPs Si123H100 Si144H ev 1.1 ev 1.8 ev 0.5 ev GW calculations up to d=1.6nm (Si144H114) confirm trends observed in LDA Optimum gap for PV cells employing MEG (Eg = ev) [4] found for BC8 NPs within typical experimental size range of d = 4-8 nm (extrapolation of GW gaps) [4] M. Hanna, A. Nozik, J. Appl. Phys. 100, (2006) Motivation embedded NPs advanced theory MEG 17/20

20 MEG: Strong gain for BC8 on absolute scale impact ionization rate Impact ionization (II) is dominating contribution to MEG [5]; calculate II rates ab initio BC8 NPs feature lower activation threshold on absolute energy scale & order of magnitude higher impact ionization rate at same energies and same NP size! [5] A. Piryatinski et el., J. Chem. Phys. 133, (2010); K. Velizhanin et al., Phys. Rev. Lett. 106, (2011) Motivation embedded NPs advanced theory MEG 18/20

21 MEG: Strong gain for BC8 on absolute scale impact ionization rate Impact ionization (II) is dominating contribution to MEG [5]; calculate II rates ab initio BC8 NPs feature lower activation threshold on absolute energy scale & order of magnitude higher impact ionization rate at same energies and same NP size! [5] A. Piryatinski et el., J. Chem. Phys. 133, (2010); K. Velizhanin et al., Phys. Rev. Lett. 106, (2011) Motivation embedded NPs advanced theory MEG 18/20

22 BC8 NPs found in black silicon Black Silicon discovered by E. Mazur in 1999, very low reflectance, sub Si bandgap optical absorption fs-laser irradiation in SF6 or Se atmosphere creates nanopillars on Si surface laser-induced recoil pressure waves create BC8 & R8 Si NPs in a-si regions within core of nanopillars [6] (BC8) BC8 NPs can also be created by nanoindentation => Si high pressure NPs exist! [6] M. Smith, E. Mazur et al., J. Appl. Phys. 110, (2011) Motivation embedded NPs advanced theory MEG 19/20

23 Summary Embedded NPs in SiO2: tuning of optical & electronic properties not only by size, but also matrix density ZnS: strong gap reduction due to interface chemistry; at band edges electrons in NP core, holes at NP surface & inside matrix => possibly improved hole conductivity MEG in Si NPs with high pressure core structures Si-I: high carrier multiplication yields & low relative activation thresholds, but quantum confinement increases gap beyond solar spectrum Si NPs with BC8 core structures feature optimum gap range of Eg = ev at size range d = 4-8 nm Order of magnitude higher impact ionization rates for BC8 NPs compared to standard Si-I NPs at same size on absolute energy scale Si BC8 NPs can be created in amorphous Si ( black silicon, nanoindentation) S. Wippermann, M. Vörös, D. Rocca, A. Gali, G. Zimanyi, G. Galli (submitted) Motivation embedded NPs advanced theory MEG 20/20

24 Motivation embedded NPs advanced theory MEG 21/25 Additional Slides

25 Si nanoparticles embedded in solid matrices for solar energy conversion Interface between Si-nanoparticle and a-zns Si atoms 4-fold coordinated Zn/S atoms in matrix mostly 4-fold coordinated S atoms at interface mostly 3-fold coordinated => S lone pairs on NP-surface Occasional ZnS dimer/chain formation on Si-NP surface bond configurations 1/2 3/2 1/2 3/2 1/2 2 3/2 3/2 S Zn 1/ Si NP-surface Si => Look at electronic properties Motivation Si-NPs in a-zns Si high-pressure phases Summary 22/25

26 Motivation embedded NPs advanced theory MEG 23/25 Idea: silicon high pressure phases Ibam structure recently proposed as Si-IX (APS 2012 [2]) bct & ST12 phases predicted for Si, but not (yet) observed experimentally bct ST12 Ibam (Si-IX)?? [2] B. Malone, M. Cohen, Phys. Rev. B 85, (2012)

27 Motivation embedded NPs advanced theory MEG 24/25 Optical properties (TD-DFT RPA) red-shifted optical absorption onset for high density phases (BC8, R8, Ibam) less pronounced for ST12 and low density phases (bct, hd)

28 Motivation embedded NPs advanced theory MEG 25/25 cubic diamond vs. ST12 II i = 2 ~ X f = 2 ~ W i eff hx i W XX f i 2 (E i E f ) 2 TDOSi cubic diamond: NP size increase reduces Coulomb interaction Weff, trion DOS almost constant => impact ionization rate drops ST12: Weff reduced as for cubic diamond, but TDOS increases => impact ionization rate remains almost constant with increasing size

Si-nanoparticles embedded in solid matrices for solar energy conversion: electronic and optical properties from first principles

Si-nanoparticles embedded in solid matrices for solar energy conversion: electronic and optical properties from first principles Si-nanoparticles embedded in solid matrices for solar energy conversion: electronic and optical properties from first principles S. Wippermann, M. Vörös, D. Rocca, T. Li, A. Gali, G. Zimanyi, F. Gygi,

More information

High pressure core structures of Si nanoparticles for solar energy conversion

High pressure core structures of Si nanoparticles for solar energy conversion High pressure core structures of Si nanoparticles for solar energy conversion S. Wippermann, M. Vörös, D. Rocca, A. Gali, G. Zimanyi, G. Galli [Phys. Rev. Lett. 11, 4684 (213)] NSF/Solar DMR-135468 NISE-project

More information

Multiple Exciton Generation in Si and Ge Nanoparticles with High Pressure Core Structures

Multiple Exciton Generation in Si and Ge Nanoparticles with High Pressure Core Structures Multiple Exciton Generation in Si and Ge Nanoparticles with High Pressure Core Structures S. Wippermann, M. Vörös, D. Rocca, A. Gali, G. Zimanyi, G. Galli NanoMatFutur DPG-214, 4/3/214 Multiple Exciton

More information

Search for materials to harvest light

Search for materials to harvest light Solar nanocomposites with complementary charge extraction pathways for electrons and holes: Si embedded in ZnS S. Wippermann, M. Vörös, F. Gygi, A. Gali, G. Zimanyi, G. Galli NanoMatFutur DPG-2014, 04/03/2014

More information

Novel Silicon Phases and Nanostructures for Solar Energy Conversion

Novel Silicon Phases and Nanostructures for Solar Energy Conversion Novel Silicon Phases and Nanostructures for Solar Energy Conversion Stefan Wippermann, E. Scalise, M. Vörös, D. Rocca, A. Gali, F. Gygi, G. Zimanyi, G. Galli E-MRS Spring Meeting, 23.05.2017 NanoMatFutur

More information

Multiple Exciton Generation in Quantum Dots. James Rogers Materials 265 Professor Ram Seshadri

Multiple Exciton Generation in Quantum Dots. James Rogers Materials 265 Professor Ram Seshadri Multiple Exciton Generation in Quantum Dots James Rogers Materials 265 Professor Ram Seshadri Exciton Generation Single Exciton Generation in Bulk Semiconductors Multiple Exciton Generation in Bulk Semiconductors

More information

Optical properties of nano-silicon

Optical properties of nano-silicon Bull. Mater. Sci., Vol. 4, No. 3, June 001, pp. 85 89. Indian Academy of Sciences. Optical properties of nano-silicon S TRIPATHY, R K SONI*, S K GHOSHAL and K P JAIN Department of Physics, Indian Institute

More information

Nanostructured Semiconductor Crystals -- Building Blocks for Solar Cells: Shapes, Syntheses, Surface Chemistry, Quantum Confinement Effects

Nanostructured Semiconductor Crystals -- Building Blocks for Solar Cells: Shapes, Syntheses, Surface Chemistry, Quantum Confinement Effects Nanostructured Semiconductor Crystals -- Building Blocks for Solar Cells: Shapes, Syntheses, Surface Chemistry, Quantum Confinement Effects April 1,2014 The University of Toledo, Department of Physics

More information

Forming Gradient Multilayer (GML) Nano Films for Photovoltaic and Energy Storage Applications

Forming Gradient Multilayer (GML) Nano Films for Photovoltaic and Energy Storage Applications Forming Gradient Multilayer (GML) Nano Films for Photovoltaic and Energy Storage Applications ABSTRACT Boris Gilman and Igor Altman Coolsol R&C, Mountain View CA For successful implementation of the nanomaterial-based

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA.

PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA. SOLAR CELL AND ITS APPLICATION PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA. OUTLINE OF THE PRESENTATION Objective of the work. A brief introduction to Solar Cell

More information

André Schleife Department of Materials Science and Engineering

André Schleife Department of Materials Science and Engineering André Schleife Department of Materials Science and Engineering Yesterday you (should have) learned this: http://upload.wikimedia.org/wikipedia/commons/e/ea/ Simple_Harmonic_Motion_Orbit.gif 1. deterministic

More information

Electroluminescence from Silicon and Germanium Nanostructures

Electroluminescence from Silicon and Germanium Nanostructures Electroluminescence from silicon Silicon Getnet M. and Ghoshal S.K 35 ORIGINAL ARTICLE Electroluminescence from Silicon and Germanium Nanostructures Getnet Melese* and Ghoshal S. K.** Abstract Silicon

More information

Electronic structure and transport in silicon nanostructures with non-ideal bonding environments

Electronic structure and transport in silicon nanostructures with non-ideal bonding environments Purdue University Purdue e-pubs Other Nanotechnology Publications Birck Nanotechnology Center 9-15-2008 Electronic structure and transport in silicon nanostructures with non-ideal bonding environments

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

Excitation Dynamics in Quantum Dots. Oleg Prezhdo U. Washington, Seattle

Excitation Dynamics in Quantum Dots. Oleg Prezhdo U. Washington, Seattle Excitation Dynamics in Quantum Dots Oleg Prezhdo U. Washington, Seattle Warwick August 27, 2009 Outline Time-Domain Density Functional Theory & Nonadiabatic Molecular Dynamics Quantum backreaction, surface

More information

Semiconductor quantum dots

Semiconductor quantum dots Semiconductor quantum dots Quantum dots are spherical nanocrystals of semiconducting materials constituted from a few hundreds to a few thousands atoms, characterized by the quantum confinement of the

More information

Solar Cells Based on. Quantum Dots: Multiple Exciton Generation and Intermediate Bands Antonio Luque, Antonio Marti, and Arthur J.

Solar Cells Based on. Quantum Dots: Multiple Exciton Generation and Intermediate Bands Antonio Luque, Antonio Marti, and Arthur J. Solar Cells Based on Quantum Dots: Multiple Exciton Generation and Intermediate Bands Antonio Luque, Antonio Marti, and Arthur J. Nozik Student ID: 2004171039 Name: Yo-Han Choi Abstract Semiconductor quantum

More information

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications CH676 Physical Chemistry: Principles and Applications Crystal Structure and Chemistry Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity Na Tian

More information

Interface-Controlled Materials for Solar Energy Conversion: semiconducting nanocrystal-solids and solid-liquid interfaces

Interface-Controlled Materials for Solar Energy Conversion: semiconducting nanocrystal-solids and solid-liquid interfaces Interface-Controlled Materials for Solar Energy Conversion: semiconducting nanocrystal-solids and solid-liquid interfaces S. Wippermann Max-Planck-Institut für Eisenforschung, Düsseldorf NanoMatFutur 13N12972

More information

Supporting Information for Interfacial Effects on. the Band Edges of Functionalized Si Surfaces in. Liquid Water

Supporting Information for Interfacial Effects on. the Band Edges of Functionalized Si Surfaces in. Liquid Water Supporting Information for Interfacial Effects on the Band Edges of Functionalized Si Surfaces in Liquid Water Tuan Anh Pham,,, Donghwa Lee, Eric Schwegler, and Giulia Galli, Department of Chemistry, University

More information

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES 42 CHAPTER 3 OPTICAL STUDIES ON SnS NANOPARTICLES 3.1 INTRODUCTION In recent years, considerable interest has been shown on semiconducting nanostructures owing to their enhanced optical and electrical

More information

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Optical Properties of Semiconductors 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Light Matter Interaction Response to external electric

More information

CITY UNIVERSITY OF HONG KONG. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires

CITY UNIVERSITY OF HONG KONG. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires CITY UNIVERSITY OF HONG KONG Ë Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires u Ä öä ªqk u{ Submitted to Department of Physics and Materials Science gkö y in Partial Fulfillment

More information

Fundamentals of Nanoelectronics: Basic Concepts

Fundamentals of Nanoelectronics: Basic Concepts Fundamentals of Nanoelectronics: Basic Concepts Sławomir Prucnal FWIM Page 1 Introduction Outline Electronics in nanoscale Transport Ohms law Optoelectronic properties of semiconductors Optics in nanoscale

More information

Photovoltaics. Lecture 7 Organic Thin Film Solar Cells Photonics - Spring 2017 dr inż. Aleksander Urbaniak

Photovoltaics. Lecture 7 Organic Thin Film Solar Cells Photonics - Spring 2017 dr inż. Aleksander Urbaniak Photovoltaics Lecture 7 Organic Thin Film Solar Cells Photonics - Spring 2017 dr inż. Aleksander Urbaniak Barcelona, Spain Perpignan train station, France source: pinterest Why organic solar cells? 1.

More information

Quantum confined nanocrystals and nanostructures for high efficiency solar photoconversion Matthew C. Beard

Quantum confined nanocrystals and nanostructures for high efficiency solar photoconversion Matthew C. Beard Quantum confined nanocrystals and nanostructures for high efficiency solar photoconversion Matthew C. Beard NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Supplementary Information

Supplementary Information Supplementary Information Marco Govoni 1, Ivan Marri 2, and Stefano Ossicini 2,3 1 Department of Physics, University of Modena and Reggio Emilia, via Campi 213/A, 41125 Modena, Italy 2 Department of Science

More information

QUANTUM WELLS, WIRES AND DOTS

QUANTUM WELLS, WIRES AND DOTS QUANTUM WELLS, WIRES AND DOTS Theoretical and Computational Physics of Semiconductor Nanostructures Second Edition Paul Harrison The University of Leeds, UK /Cf}\WILEY~ ^INTERSCIENCE JOHN WILEY & SONS,

More information

Nanotechnology and Solar Energy. Solar Electricity Photovoltaics. Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells

Nanotechnology and Solar Energy. Solar Electricity Photovoltaics. Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells Nanotechnology and Solar Energy Solar Electricity Photovoltaics Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells Solar cell A photon from the Sun generates an electron-hole pair in a semiconductor.

More information

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states:

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states: CME 300 Properties of Materials ANSWERS: Homework 9 November 26, 2011 As atoms approach each other in the solid state the quantized energy states: are split. This splitting is associated with the wave

More information

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL February 9 and 14, 2012 The University of Toledo, Department

More information

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF Content Introduction to XEOL Application of XEOL Development and Application of XEOL in STXM

More information

More Efficient Solar Cells via Multi Exciton Generation

More Efficient Solar Cells via Multi Exciton Generation More Efficient Solar Cells via Multi Exciton Generation By: MIT Student Instructor: Gang Chen May 14, 2010 1 Introduction Sunlight is the most abundant source of energy available on Earth and if properly

More information

Optical Properties of Solid from DFT

Optical Properties of Solid from DFT Optical Properties of Solid from DFT 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University of Oslo, Norway http://folk.uio.no/ravi/cmt15

More information

smal band gap Saturday, April 9, 2011

smal band gap Saturday, April 9, 2011 small band gap upper (conduction) band empty small gap valence band filled 2s 2p 2s 2p hybrid (s+p)band 2p no gap 2s (depend on the crystallographic orientation) extrinsic semiconductor semi-metal electron

More information

Laser matter interaction

Laser matter interaction Laser matter interaction PH413 Lasers & Photonics Lecture 26 Why study laser matter interaction? Fundamental physics Chemical analysis Material processing Biomedical applications Deposition of novel structures

More information

Review of Optical Properties of Materials

Review of Optical Properties of Materials Review of Optical Properties of Materials Review of optics Absorption in semiconductors: qualitative discussion Derivation of Optical Absorption Coefficient in Direct Semiconductors Photons When dealing

More information

Self-Assembled InAs Quantum Dots

Self-Assembled InAs Quantum Dots Self-Assembled InAs Quantum Dots Steve Lyon Department of Electrical Engineering What are semiconductors What are semiconductor quantum dots How do we make (grow) InAs dots What are some of the properties

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature13734 1. Gate dependence of the negatively charged trion in WS 2 monolayer. We test the trion with both transport and optical measurements. The trion in our system is negatively charged,

More information

Nanomaterials for Photovoltaics (v11) 14. Intermediate-Band Solar Cells

Nanomaterials for Photovoltaics (v11) 14. Intermediate-Band Solar Cells 1 14. Intermediate-Band Solar Cells Intermediate (impurity) band solar cells (IBSCs) (I) Concept first proposed by A. Luque and A. Martí in 1997. Establish an additional electronic band within the band

More information

Ab Initio Calculations for Large Dielectric Matrices of Confined Systems Serdar Ö güt Department of Physics, University of Illinois at Chicago, 845 We

Ab Initio Calculations for Large Dielectric Matrices of Confined Systems Serdar Ö güt Department of Physics, University of Illinois at Chicago, 845 We Ab Initio Calculations for Large Dielectric Matrices of Confined Systems Serdar Ö güt Department of Physics, University of Illinois at Chicago, 845 West Taylor Street (M/C 273), Chicago, IL 60607 Russ

More information

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state. Photovoltaics Basic Steps the generation of light-generated carriers; the collection of the light-generated carriers to generate a current; the generation of a large voltage across the solar cell; and

More information

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a Matrix S. Kriechbaumer 1, T. Schwarzl 1, H. Groiss 1, W. Heiss 1, F. Schäffler 1,T. Wojtowicz 2, K. Koike 3,

More information

University of Chinese Academy of Sciences, Beijing , People s Republic of China,

University of Chinese Academy of Sciences, Beijing , People s Republic of China, SiC 2 Siligraphene and Nanotubes: Novel Donor Materials in Excitonic Solar Cell Liu-Jiang Zhou,, Yong-Fan Zhang, Li-Ming Wu *, State Key Laboratory of Structural Chemistry, Fujian Institute of Research

More information

Electronic and optical properties of graphene- and graphane-like SiC layers

Electronic and optical properties of graphene- and graphane-like SiC layers Electronic and optical properties of graphene- and graphane-like SiC layers Paola Gori, ISM, CNR, Rome, Italy Olivia Pulci, Margherita Marsili, Università di Tor Vergata, Rome, Italy Friedhelm Bechstedt,

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

Properties of Individual Nanoparticles

Properties of Individual Nanoparticles TIGP Introduction technology (I) October 15, 2007 Properties of Individual Nanoparticles Clusters 1. Very small -- difficult to image individual nanoparticles. 2. New physical and/or chemical properties

More information

Solar Cell Materials and Device Characterization

Solar Cell Materials and Device Characterization Solar Cell Materials and Device Characterization April 3, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals

More information

EECS143 Microfabrication Technology

EECS143 Microfabrication Technology EECS143 Microfabrication Technology Professor Ali Javey Introduction to Materials Lecture 1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) Why Semiconductors? Conductors e.g

More information

Luminescence basics. Slide # 1

Luminescence basics. Slide # 1 Luminescence basics Types of luminescence Cathodoluminescence: Luminescence due to recombination of EHPs created by energetic electrons. Example: CL mapping system Photoluminescence: Luminescence due to

More information

Nanoelectronics. Topics

Nanoelectronics. Topics Nanoelectronics Topics Moore s Law Inorganic nanoelectronic devices Resonant tunneling Quantum dots Single electron transistors Motivation for molecular electronics The review article Overview of Nanoelectronic

More information

Goal for next generation solar cells: Efficiencies greater than Si with low cost (low temperature) processing

Goal for next generation solar cells: Efficiencies greater than Si with low cost (low temperature) processing Multi-junction cells MBE growth > 40% efficient Expensive Single crystal Si >20% efficient expensive Thin film cells >10% efficient Less expensive Toxic materials Polymers

More information

Recap (so far) Low-Dimensional & Boundary Effects

Recap (so far) Low-Dimensional & Boundary Effects Recap (so far) Ohm s & Fourier s Laws Mobility & Thermal Conductivity Heat Capacity Wiedemann-Franz Relationship Size Effects and Breakdown of Classical Laws 1 Low-Dimensional & Boundary Effects Energy

More information

Supplementary documents

Supplementary documents Supplementary documents Low Threshold Amplified Spontaneous mission from Tin Oxide Quantum Dots: A Instantiation of Dipole Transition Silence Semiconductors Shu Sheng Pan,, Siu Fung Yu, Wen Fei Zhang,

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

Multi-Scale Modeling from First Principles

Multi-Scale Modeling from First Principles m mm Multi-Scale Modeling from First Principles μm nm m mm μm nm space space Predictive modeling and simulations must address all time and Continuum Equations, densityfunctional space scales Rate Equations

More information

Electron Emission from Diamondoids: a DMC Study. Neil D. Drummond Andrew J. Williamson Richard J. Needs and Giulia Galli

Electron Emission from Diamondoids: a DMC Study. Neil D. Drummond Andrew J. Williamson Richard J. Needs and Giulia Galli Electron Emission from Diamondoids: a DMC Study Neil D. Drummond Andrew J. Williamson Richard J. Needs and Giulia Galli October 18, 2005 1 Semiconductor Nanoparticles for Optoelectronic Devices (I) The

More information

Semiconductor physics I. The Crystal Structure of Solids

Semiconductor physics I. The Crystal Structure of Solids Lecture 3 Semiconductor physics I The Crystal Structure of Solids 1 Semiconductor materials Types of solids Space lattices Atomic Bonding Imperfection and doping in SOLIDS 2 Semiconductor Semiconductors

More information

Doctor of Philosophy

Doctor of Philosophy FEMTOSECOND TIME-DOMAIN SPECTROSCOPY AND NONLINEAR OPTICAL PROPERTIES OF IRON-PNICTIDE SUPERCONDUCTORS AND NANOSYSTEMS A Thesis Submitted for the degree of Doctor of Philosophy IN THE FACULTY OF SCIENCE

More information

Neutral Electronic Excitations:

Neutral Electronic Excitations: Neutral Electronic Excitations: a Many-body approach to the optical absorption spectra Claudio Attaccalite http://abineel.grenoble.cnrs.fr/ Second Les Houches school in computational physics: ab-initio

More information

Journal of Chemical and Pharmaceutical Research

Journal of Chemical and Pharmaceutical Research Available on line www.jocpr.com Journal of Chemical and Pharmaceutical Research ISSN No: 0975-7384 CODEN(USA): JCPRC5 J. Chem. Pharm. Res., 2011, 3(4): 589-595 Altering the electronic properties of adamantane

More information

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm Metals Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals 5 nm Course Info Next Week (Sept. 5 and 7) no classes First H/W is due Sept. 1 The Previous Lecture Origin frequency dependence

More information

ELECTRONIC STRUCTURE OF InAs/GaAs/GaAsSb QUANTUM DOTS

ELECTRONIC STRUCTURE OF InAs/GaAs/GaAsSb QUANTUM DOTS ELECTRONIC STRUCTURE OF InAs/GaAs/GaAsSb QUANTUM DOTS Josef HUMLÍČEK a,b, Petr KLENOVSKÝ a,b, Dominik MUNZAR a,b a DEPT. COND. MAT. PHYS., FACULTY OF SCIENCE, Kotlářská 2, 611 37 Brno, Czech Republic b

More information

Photodetector. Prof. Woo-Young Choi. Silicon Photonics (2012/2) Photodetection: Absorption => Current Generation. Currents

Photodetector. Prof. Woo-Young Choi. Silicon Photonics (2012/2) Photodetection: Absorption => Current Generation. Currents Photodetection: Absorption => Current Generation h Currents Materials for photodetection: E g < h Various methods for generating currents with photo-generated carriers: photoconductors, photodiodes, avalanche

More information

Third generation solar cells - How to use all the pretty colours?

Third generation solar cells - How to use all the pretty colours? Third generation solar cells - How to use all the pretty colours? Erik Stensrud Marstein Department for Solar Energy Overview The trouble with conventional solar cells Third generation solar cell concepts

More information

Supporting Information for: Heavy-Metal-Free Fluorescent ZnTe/ZnSe Nanodumbbells

Supporting Information for: Heavy-Metal-Free Fluorescent ZnTe/ZnSe Nanodumbbells Supporting Information for: Heavy-Metal-Free Fluorescent ZnTe/ZnSe Nanodumbbells Botao Ji, Yossef E. Panfil and Uri Banin * The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The

More information

Carrier Recombination

Carrier Recombination Notes for ECE-606: Spring 013 Carrier Recombination Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA lundstro@purdue.edu /19/13 1 carrier recombination-generation

More information

Two-dimensional lattice

Two-dimensional lattice 1 Two-dimensional lattice a 1 *, k x k x = 0, k y = 0 X M a 2, y a 1, x Γ X a 2 *, k y k x = 0.5 a 1 *, k y = 0 k x = 0, k y = 0.5 a 2 * Γ k x = 0.5 a 1 *, k y = 0.5 a 2 * X X M k x = 0.25 a 1 *, k y =

More information

Atomic Layer Deposition of Chalcogenide Thin Films

Atomic Layer Deposition of Chalcogenide Thin Films Atomic Layer Deposition of Chalcogenide Thin Films PUBLICATION REVIEW ON ULTRATECH ALD SYSTEMS 09.10.2015 1 Highlights Benefits of ALD for nano-manufacturing of chalcogenides Atomic level thickness control

More information

Luminescence Process

Luminescence Process Luminescence Process The absorption and the emission are related to each other and they are described by two terms which are complex conjugate of each other in the interaction Hamiltonian (H er ). In an

More information

Lecture 6: Individual nanoparticles, nanocrystals and quantum dots

Lecture 6: Individual nanoparticles, nanocrystals and quantum dots Lecture 6: Individual nanoparticles, nanocrystals and quantum dots Definition of nanoparticle: Size definition arbitrary More interesting: definition based on change in physical properties. Size smaller

More information

Simulation of organic solar cell with graphene transparent electrode

Simulation of organic solar cell with graphene transparent electrode Simulation of organic solar cell with graphene transparent electrode P. Paletti 1, R. Pawar 1, G. Ulisse 2, F. Brunetti 2, G. Iannaccone 1,3, G. Fiori 1,3 1, 2 University of Rome Tor Vergata, 3 Quantavis

More information

Solar Photovoltaics & Energy Systems

Solar Photovoltaics & Energy Systems Solar Photovoltaics & Energy Systems Lecture 5. III-V, Thin Film, and Organic Solar Cells ChE-600 Wolfgang Tress, May 2016 1 Summary Crystalline Silicon Solar Cells 35 efficiency [%] 30 25 20 15 10 J sc

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

Starting solution. Hydrolysis reaction under thermostatic conditions. Check of viscosity and deposition test SOL. Deposition by spin coating

Starting solution. Hydrolysis reaction under thermostatic conditions. Check of viscosity and deposition test SOL. Deposition by spin coating Supplementary Figures Tetramethyl orthosilicate (TMOS) Tetrahydrofuran anhydrous (THF) Trimethyl methoxy silane (TMMS) Trimethyl silil acetate (TMSA) Starting solution Hydrolysis reaction under thermostatic

More information

Lecture 1. Introduction to Electronic Materials. Reading: Pierret 1.1, 1.2, 1.4,

Lecture 1. Introduction to Electronic Materials. Reading: Pierret 1.1, 1.2, 1.4, Lecture 1 Introduction to Electronic Materials Reading: Pierret 1.1, 1.2, 1.4, 2.1-2.6 Atoms to Operational Amplifiers The goal of this course is to teach the fundamentals of non-linear circuit elements

More information

Optical spectroscopy of carrier dynamics in semiconductor nanostructures de Jong, E.M.L.D.

Optical spectroscopy of carrier dynamics in semiconductor nanostructures de Jong, E.M.L.D. UvA-DARE (Digital Academic Repository) Optical spectroscopy of carrier dynamics in semiconductor nanostructures de Jong, E.M.L.D. Link to publication Citation for published version (APA): de Jong, EM-LD.

More information

Challenges in to-electric Energy Conversion: an Introduction

Challenges in to-electric Energy Conversion: an Introduction Challenges in Solar-to to-electric Energy Conversion: an Introduction Eray S. Aydil Chemical Engineering and Materials Science Department Acknowledgements: National Science Foundation Minnesota Initiative

More information

Direct and Indirect Semiconductor

Direct and Indirect Semiconductor Direct and Indirect Semiconductor Allowed values of energy can be plotted vs. the propagation constant, k. Since the periodicity of most lattices is different in various direction, the E-k diagram must

More information

Chapter 1 Overview of Semiconductor Materials and Physics

Chapter 1 Overview of Semiconductor Materials and Physics Chapter 1 Overview of Semiconductor Materials and Physics Professor Paul K. Chu Conductivity / Resistivity of Insulators, Semiconductors, and Conductors Semiconductor Elements Period II III IV V VI 2 B

More information

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction Among the renewable energy sources that are called to satisfy the continuously increased

More information

Two-dimensional lattice

Two-dimensional lattice Two-dimensional lattice a 1 *, k x k x =0,k y =0 X M a 2, y Γ X a 2 *, k y a 1, x Reciprocal lattice Γ k x = 0.5 a 1 *, k y =0 k x = 0, k y = 0.5 a 2 * k x =0.5a 1 *, k y =0.5a 2 * X X M k x = 0.25 a 1

More information

University of Louisville - Department of Chemistry, Louisville, KY; 2. University of Louisville Conn Center for renewable energy, Louisville, KY; 3

University of Louisville - Department of Chemistry, Louisville, KY; 2. University of Louisville Conn Center for renewable energy, Louisville, KY; 3 Ultrafast transient absorption spectroscopy investigations of charge carrier dynamics of methyl ammonium lead bromide (CH 3 NH 3 PbBr 3 ) perovskite nanostructures Hamzeh Telfah 1 ; Abdelqader Jamhawi

More information

PHOTOVOLTAICS Fundamentals

PHOTOVOLTAICS Fundamentals PHOTOVOLTAICS Fundamentals PV FUNDAMENTALS Semiconductor basics pn junction Solar cell operation Design of silicon solar cell SEMICONDUCTOR BASICS Allowed energy bands Valence and conduction band Fermi

More information

J. Price, 1,2 Y. Q. An, 1 M. C. Downer 1 1 The university of Texas at Austin, Department of Physics, Austin, TX

J. Price, 1,2 Y. Q. An, 1 M. C. Downer 1 1 The university of Texas at Austin, Department of Physics, Austin, TX Understanding process-dependent oxygen vacancies in thin HfO 2 /SiO 2 stacked-films on Si (100) via competing electron-hole injection dynamic contributions to second harmonic generation. J. Price, 1,2

More information

Mesoporous titanium dioxide electrolyte bulk heterojunction

Mesoporous titanium dioxide electrolyte bulk heterojunction Mesoporous titanium dioxide electrolyte bulk heterojunction The term "bulk heterojunction" is used to describe a heterojunction composed of two different materials acting as electron- and a hole- transporters,

More information

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 Growth of III V semiconductor quantum dots C. Schneider, S. Höfling and A. Forchel 1.1 Introduction

More information

Photon Interaction. Spectroscopy

Photon Interaction. Spectroscopy Photon Interaction Incident photon interacts with electrons Core and Valence Cross Sections Photon is Adsorbed Elastic Scattered Inelastic Scattered Electron is Emitted Excitated Dexcitated Stöhr, NEXAPS

More information

Large scale GW calculations

Large scale GW calculations M. Govoni, UoC & ANL T.A. Pham, LLNL Nguyen H.-Viet, Vietnam Acad. of Sci.&Technology D. Rocca, U.Lorraine, France H. Wilson RMIT Univ., Australia I.Hamada, P. Scherpelz, NIMS, UoC Japan & UoC Large scale

More information

Electronic Properties of Strained Si/Ge Core-Shell Nanowires. Xihong Peng, 1* Paul Logan 2 ABSTRACT

Electronic Properties of Strained Si/Ge Core-Shell Nanowires. Xihong Peng, 1* Paul Logan 2 ABSTRACT Electronic Properties of Strained Si/Ge Core-Shell Nanowires Xihong Peng, * Paul Logan 2 Dept. of Applied Sciences and Mathematics, Arizona State University, Mesa, AZ 8522. 2 Dept. of Physics, Arizona

More information

New Perspective on structure and bonding in water using XAS and XRS

New Perspective on structure and bonding in water using XAS and XRS New Perspective on structure and bonding in water using XAS and XRS Anders Nilsson Stanford Synchrotron Radiation Laboratory (SSRL) and Stockholm University, Sweden R. Ludwig Angew. Chem. 40, 1808 (2001)

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 8/30/2007 Semiconductor Fundamentals Lecture 2 Read: Chapters 1 and 2 Last Lecture: Energy Band Diagram Conduction band E c E g Band gap E v Valence

More information

Nanoscience galore: hybrid and nanoscale photonics

Nanoscience galore: hybrid and nanoscale photonics Nanoscience galore: hybrid and nanoscale photonics Pavlos Lagoudakis SOLAB, 11 June 2013 Hybrid nanophotonics Nanostructures: light harvesting and light emitting devices 2 Hybrid nanophotonics Nanostructures:

More information

6. Computational Design of Energy-related Materials

6. Computational Design of Energy-related Materials 6. Computational Design of Energy-related Materials Contents 6.1 Atomistic Simulation Methods for Energy Materials 6.2 ab initio design of photovoltaic materials 6.3 Solid Ion Conductors for Fuel Cells

More information

Summary lecture VI. with the reduced mass and the dielectric background constant

Summary lecture VI. with the reduced mass and the dielectric background constant Summary lecture VI Excitonic binding energy reads with the reduced mass and the dielectric background constant Δ Statistical operator (density matrix) characterizes quantum systems in a mixed state and

More information

Black phosphorus: A new bandgap tuning knob

Black phosphorus: A new bandgap tuning knob Black phosphorus: A new bandgap tuning knob Rafael Roldán and Andres Castellanos-Gomez Modern electronics rely on devices whose functionality can be adjusted by the end-user with an external knob. A new

More information

Charge Excitation. Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi

Charge Excitation. Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi Charge Excitation Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi 1 2.626/2.627 Roadmap You Are Here 2 2.626/2.627: Fundamentals Every photovoltaic device

More information

Compression Algorithms for Electronic Structure Computations

Compression Algorithms for Electronic Structure Computations Compression Algorithms for Electronic Structure Computations François Gygi University of California, Davis fgygi@ucdavis.edu http://eslab.ucdavis.edu http://www.quantum-simulation.org IPAM Workshop, Computation

More information