Quantum confined nanocrystals and nanostructures for high efficiency solar photoconversion Matthew C. Beard

Size: px
Start display at page:

Download "Quantum confined nanocrystals and nanostructures for high efficiency solar photoconversion Matthew C. Beard"

Transcription

1 Quantum confined nanocrystals and nanostructures for high efficiency solar photoconversion Matthew C. Beard NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable

2 2 Technological Goal: Produce solar power at a cost equivalent to coal ($0.02/kWh) MC - $2.70/Wp SP - $3.80/Wp SIII c/kwh SI c/kwh Average US rate ~ 9 c/kwh Hillhouse and Beard, Solar Cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics, COCIS, 14,245,2009

3 Hot Carrier Utilization: Scientific Challenge 3 Hot charge carriers hv e - electron loses energy to phonons e - For Si (E g = 1.1 ev) at T = 300 K, AM1.5G h max = 32.9% Losses transmission = 18.7% heat = 46.8% radiative em. = 1.6% p-type n-type usable photovoltage (qv) h + hole loses energy to phonons 1 e - -h + pair/photon

4 Two ways to utilize hot carriers Hot Carrier Photoconversion (Higher PhotoVoltage) Impact Ionization in QDs (Higher Photocurrent) Lower ideal Bangap Ross & Nozik, J. Appl. Phys., 53, 3813 (1982) Nozik, Physica, E14 (2002), 115 4

5 Introduction to Quantum Dots When R a B, discrete, atomic-like electronic states and tunable band gap bulk Density of States n=1 n=2 n=3 n=4 QD Energy E 1 R 2 60 Å 5

6 6 Why study Quantum Confined Semiconductors for solar energy conversion? 1. Tunable and controllable properties: bandgap, engineered carrier relaxation, transport, catalytic activity, and doping 2. Nanoparticles as building blocks to function solids: added degrees of freedom in approaches to solar conversion, storage, and manipulation 3. New physics: MEG, phonon bottleneck, plasmonics, nanoscale charge-transfer

7 PbSe QDs are 2x more efficient than bulk PbSe 7 Comparing Multiple Exciton Generation in Quantum Dots To Impact Ionization in Bulk Semconductors: Implications for Enhancement of Solar Energy Conversion, Beard, M.C., Midgett, A.G., Hanna,M.C., Luther, J.M., Hughes, B.K., Nozik, A.J, NL, 10, 3019, 2010 Multiple Exciton Generation in Semiconductor Quantum Dots, Beard, M.C., JPCL, 2, 1282, 2011 PbSe NRs Nano Lett, 11, 3476, 2011 PbSe QDs (McGuire) Nano Lett, 10, 2049, 2010 PbSe bulk (M. Bonn) Nat. Phys. 5, 811, 2009

8 Strategies for Incorporating QDs into Solar Cells 8 QDs need to be active medium Architecture should not destroy Quantum size effects Excitons need to be separated prior to Auger recombination Excitons must be separated into free-charge carriers and transported to respective electrodes A.J. Nozik, Physica E, 14, 115, (2002) A.J. Nozik, Nano Lett 10, 2735, (2010) Nozik suggested three general strategies for incorporating QDs into Solar Cells

9 Incorporate QDs and QD-layers in tranditional solar cell configuration such as p-i-n, p-n, or Schottky-Junctions 9 The QDs must be electronically coupled to each other to promote electron and hole transport Ideally miniband formation, but not necessary y Major focus of NREL efforts

10 Device Configuration 10

11 NREL Certified QD Solar Cells Voc = 588 mv Jsc = 8.93 ma/cm 2 FF = 56% PCE = 2.94% J. Luther, J. Gao, et al., Adv. Mat. 22,3704(2010). 1 st all QD certified device. High V oc confirms QD11 confinement effect. 11

12 Stability test J. Luther, J. Gao, et al., Adv. Mat. 22,3704(2010). Test under ambient air for 1000 hours 12

13 13

14 14 Peak EQE values greater than 100% O. Semonin, et al., Science, 334, 1530 (2011).

15 15 Peak EQE values greater than 100% O. Semonin, et al., Science, 334, 1530 (2011).

16 16 Peak EQE values greater than 100% O. Semonin, et al., Science, 334, 1530 (2011).

17 17 Peak EQE values greater than 100% O. Semonin, et al., Science, 334, 1530 (2011).

18 18 Peak EQE values greater than 100% O. Semonin, et al., Science, 334, 1530 (2011).

19 19 Peak EQE values greater than 100% O. Semonin, et al., Science, 334, 1530 (2011).

20 20 Compare to Best Solar Cells 7 E g (160 nm Si photodetectors: Canfield L.R., et. al., Metrologia, 35, 329, (1998)

21 Quantum Efficiency (%) Sun (a.u.) Spectral Photocurrent (ma cm -2 ev -1 ) Benefit to Photocurrent EQE EQE/A MEG Region (~1 ma/cm 2 ) Solar Intensity Photons s -1 m -2 ev ~4% boost to photocurrent Compared to < 1% in an optimized Si Solar cell Extra Current (ma cm -2 ev -1 ) Photon Energy To achieve maximum benefit need to further increase MEG efficiency 21

22 22 Conclusions and Summary MEG is a potential way to increase solar energy conversion in QD solar cells QD solar cells can be constructed with high photocurrent and high IQE s MEG is at least 2X as efficient as II in bulk materials MEG has been observed in photocurrent measurements

23 23 Quantum Dot Team Members Justin Johnson (NREL) Tavi Semonin (CU/Physics) Aaron Midget (CU/Chemistry) Barbara Hughes (CU/Chemistry) Jianbo Gao (NREL) Hugh Hillhouse (U of Washington) Matt Bergren (CSM/Physics) Hsiang Yu Chen (NREL) Joey Luther (NREL) Center for Advanced Solar Photophysics Victor Klimov (Los Alamos) Art Nozik (CU/NREL) Sasha Efros (NRL) Matt Law (UC - Irvine) Danielle Smith (NREL) Jayson Stewart (LANL) Funding: DOE Office of Basic Energy Sciences Solar Photochemistry Program (Isolated Colloidal Quantum Dots) and Center for Advanced Photophysics (Quantum Dot Solar Cells) -- EFRC

24 Questions?

Multiple Exciton Generation in Quantum Dots. James Rogers Materials 265 Professor Ram Seshadri

Multiple Exciton Generation in Quantum Dots. James Rogers Materials 265 Professor Ram Seshadri Multiple Exciton Generation in Quantum Dots James Rogers Materials 265 Professor Ram Seshadri Exciton Generation Single Exciton Generation in Bulk Semiconductors Multiple Exciton Generation in Bulk Semiconductors

More information

Nanostructured Semiconductor Crystals -- Building Blocks for Solar Cells: Shapes, Syntheses, Surface Chemistry, Quantum Confinement Effects

Nanostructured Semiconductor Crystals -- Building Blocks for Solar Cells: Shapes, Syntheses, Surface Chemistry, Quantum Confinement Effects Nanostructured Semiconductor Crystals -- Building Blocks for Solar Cells: Shapes, Syntheses, Surface Chemistry, Quantum Confinement Effects April 1,2014 The University of Toledo, Department of Physics

More information

PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA.

PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA. SOLAR CELL AND ITS APPLICATION PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA. OUTLINE OF THE PRESENTATION Objective of the work. A brief introduction to Solar Cell

More information

Solar Cells Based on. Quantum Dots: Multiple Exciton Generation and Intermediate Bands Antonio Luque, Antonio Marti, and Arthur J.

Solar Cells Based on. Quantum Dots: Multiple Exciton Generation and Intermediate Bands Antonio Luque, Antonio Marti, and Arthur J. Solar Cells Based on Quantum Dots: Multiple Exciton Generation and Intermediate Bands Antonio Luque, Antonio Marti, and Arthur J. Nozik Student ID: 2004171039 Name: Yo-Han Choi Abstract Semiconductor quantum

More information

Perovskite quantum dots: a new absorber technology with unique phase stability for high voltage solar cells

Perovskite quantum dots: a new absorber technology with unique phase stability for high voltage solar cells Perovskite quantum dots: a new absorber technology with unique phase stability for high voltage solar cells Joseph M. Luther National Renewable Energy Laboratory, Golden, CO NREL PV Systems: South Table

More information

February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC

February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC FUNDAMENTAL PROPERTIES OF SOLAR CELLS February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals of

More information

More Efficient Solar Cells via Multi Exciton Generation

More Efficient Solar Cells via Multi Exciton Generation More Efficient Solar Cells via Multi Exciton Generation By: MIT Student Instructor: Gang Chen May 14, 2010 1 Introduction Sunlight is the most abundant source of energy available on Earth and if properly

More information

Photon Extraction: the key physics for approaching solar cell efficiency limits

Photon Extraction: the key physics for approaching solar cell efficiency limits Photon Extraction: the key physics for approaching solar cell efficiency limits Owen Miller*: Post-doc, MIT Math Eli Yablonovitch: UC Berkeley, LBNL Slides/Codes/Relevant Papers: math.mit.edu/~odmiller/publications

More information

A REVIEW OF THE NOVEL CONCEPTS IN PHOTOVOLTAICS THROUGH THEIR EXPERIMENTAL ACHIEVEMENTS. Iñigo Ramiro Antonio Martí Elisa Antolin and Antonio Luque

A REVIEW OF THE NOVEL CONCEPTS IN PHOTOVOLTAICS THROUGH THEIR EXPERIMENTAL ACHIEVEMENTS. Iñigo Ramiro Antonio Martí Elisa Antolin and Antonio Luque A REVIEW OF THE NOVEL CONCEPTS IN PHOTOVOLTAICS THROUGH THEIR EXPERIMENTAL ACHIEVEMENTS Iñigo Ramiro Antonio Martí Elisa Antolin and Antonio Luque ABSTRACT: The intermediate band solar cell (IBSC), the

More information

Electrochemical Potentials (Quasi-Fermi Levels) and the Operation of Hot-Carrier, Impact-Ionization, and Intermediate-Band Solar Cells

Electrochemical Potentials (Quasi-Fermi Levels) and the Operation of Hot-Carrier, Impact-Ionization, and Intermediate-Band Solar Cells Electrochemical Potentials (Quasi-Fermi Levels) and the Operation of Hot-Carrier, Impact-Ionization, and Intermediate-Band Solar Cells A. Marti and A. Luque Abstract In the framework of the so-called third

More information

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013 High-efficiency thin film nano-structured multi-junction solar James S. cells Harris (PI) (Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University GCEP Research Symposium 2013 Stanford, CA October

More information

Solar Cell Materials and Device Characterization

Solar Cell Materials and Device Characterization Solar Cell Materials and Device Characterization April 3, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/33/66/153/dc1 Supporting Online Material for Peak External Photocurrent Quantum Efficiency Exceeding 1% via MEG in a Quantum Dot Solar Cell Octavi E. Semonin, Joseph

More information

Multiple exciton generation in semiconductor nanocrystals: Toward efficient solar energy conversion

Multiple exciton generation in semiconductor nanocrystals: Toward efficient solar energy conversion Early View publication on www.interscience.wiley.com (issue and page numbers not yet assigned; citable using Digital Object Identifier DOI) Laser & Photon. Rev., 1 23 (2008) / DOI 10.1002/lpor.200810013

More information

Challenges in to-electric Energy Conversion: an Introduction

Challenges in to-electric Energy Conversion: an Introduction Challenges in Solar-to to-electric Energy Conversion: an Introduction Eray S. Aydil Chemical Engineering and Materials Science Department Acknowledgements: National Science Foundation Minnesota Initiative

More information

Lab #5 Current/Voltage Curves, Efficiency Measurements and Quantum Efficiency

Lab #5 Current/Voltage Curves, Efficiency Measurements and Quantum Efficiency Lab #5 Current/Voltage Curves, Efficiency Measurements and Quantum Efficiency R.J. Ellingson and M.J. Heben November 4, 2014 PHYS 4580, 6280, and 7280 Simple solar cell structure The Diode Equation Ideal

More information

Impact Ionization Can Explain Carrier Multiplication in PbSe Quantum Dots

Impact Ionization Can Explain Carrier Multiplication in PbSe Quantum Dots Impact Ionization Can Explain Carrier Multiplication in PbSe Quantum Dots A. Franceschetti,* J. M. An, and A. Zunger National Renewable Energy Laboratory, Golden, Colorado 8040 Received May 3, 2006; Revised

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Title: Colloidal Quantum Dots Intraband Photodetectors

Title: Colloidal Quantum Dots Intraband Photodetectors Title: Colloidal Quantum Dots Intraband Photodetectors Authors: Zhiyou Deng, Kwang Seob Jeong, and Philippe Guyot-Sionnest* Supporting Information: I. Considerations on the optimal detectivity of interband

More information

The Use of Quantum Dots for Solar Energy Conversion: A Brief Review

The Use of Quantum Dots for Solar Energy Conversion: A Brief Review JUST, Vol. IV, No. 1, 2016 Trent University The Use of Quantum Dots for Solar Energy Conversion: A Brief Review Hamza Khattak Abstract One of the more rapidly growing fields in science today is solar energy

More information

Excitation Dynamics in Quantum Dots. Oleg Prezhdo U. Washington, Seattle

Excitation Dynamics in Quantum Dots. Oleg Prezhdo U. Washington, Seattle Excitation Dynamics in Quantum Dots Oleg Prezhdo U. Washington, Seattle Warwick August 27, 2009 Outline Time-Domain Density Functional Theory & Nonadiabatic Molecular Dynamics Quantum backreaction, surface

More information

EE 5611 Introduction to Microelectronic Technologies Fall Tuesday, September 23, 2014 Lecture 07

EE 5611 Introduction to Microelectronic Technologies Fall Tuesday, September 23, 2014 Lecture 07 EE 5611 Introduction to Microelectronic Technologies Fall 2014 Tuesday, September 23, 2014 Lecture 07 1 Introduction to Solar Cells Topics to be covered: Solar cells and sun light Review on semiconductor

More information

Si-nanoparticles embedded in solid matrices for solar energy conversion: electronic and optical properties from first principles

Si-nanoparticles embedded in solid matrices for solar energy conversion: electronic and optical properties from first principles Si-nanoparticles embedded in solid matrices for solar energy conversion: electronic and optical properties from first principles S. Wippermann, M. Vörös, D. Rocca, T. Li, A. Gali, G. Zimanyi, F. Gygi,

More information

High pressure core structures of Si nanoparticles for solar energy conversion

High pressure core structures of Si nanoparticles for solar energy conversion High pressure core structures of Si nanoparticles for solar energy conversion S. Wippermann, M. Vörös, D. Rocca, A. Gali, G. Zimanyi, G. Galli [Phys. Rev. Lett. 11, 4684 (213)] NSF/Solar DMR-135468 NISE-project

More information

Optoelectronics and. Colloidal Quantum Dot. Photovoltaics. Cambridge GERASIMOS KONSTANTATOS EDWARD H. SARGENT. University of Toronto.

Optoelectronics and. Colloidal Quantum Dot. Photovoltaics. Cambridge GERASIMOS KONSTANTATOS EDWARD H. SARGENT. University of Toronto. Colloidal Quantum Dot Optoelectronics and Photovoltaics Edited by GERASIMOS KONSTANTATOS ICFO The Institute of Photonic Sciences, Barcelona EDWARD H. SARGENT University of Toronto Cambridge UNIVERSITY

More information

Modified Mott-Schottky Analysis of Nanocrystal Solar Cells

Modified Mott-Schottky Analysis of Nanocrystal Solar Cells Modified Mott-Schottky Analysis of Nanocrystal Solar Cells S. M. Willis, C. Cheng, H. E. Assender and A. A. R. Watt Department of Materials, University of Oxford, Parks Road, Oxford. OX1 3PH. United Kingdom

More information

Simulation of Type II Solar Cell by SILVACO ATLAS Software

Simulation of Type II Solar Cell by SILVACO ATLAS Software American Journal of Materials Research 2018; 5(2): 30-34 http://www.aascit.org/journal/ajmr ISSN: 2375-3919 Simulation of core@shell Type II Solar Cell by SILVACO ATLAS Software Masood Mehrabian 1, *,

More information

PHOTOVOLTAICS Fundamentals

PHOTOVOLTAICS Fundamentals PHOTOVOLTAICS Fundamentals PV FUNDAMENTALS Semiconductor basics pn junction Solar cell operation Design of silicon solar cell SEMICONDUCTOR BASICS Allowed energy bands Valence and conduction band Fermi

More information

Role of Surface Chemistry on Charge Carrier Transport in Quantum Dot Solids

Role of Surface Chemistry on Charge Carrier Transport in Quantum Dot Solids Role of Surface Chemistry on Charge Carrier Transport in Quantum Dot Solids Cherie R. Kagan, University of Pennsylvania in collaboration with the Murray group Density of Electronic States in Quantum Dot

More information

Nanomaterials for Photovoltaics (v11) 14. Intermediate-Band Solar Cells

Nanomaterials for Photovoltaics (v11) 14. Intermediate-Band Solar Cells 1 14. Intermediate-Band Solar Cells Intermediate (impurity) band solar cells (IBSCs) (I) Concept first proposed by A. Luque and A. Martí in 1997. Establish an additional electronic band within the band

More information

Optical spectroscopy of carrier dynamics in semiconductor nanostructures de Jong, E.M.L.D.

Optical spectroscopy of carrier dynamics in semiconductor nanostructures de Jong, E.M.L.D. UvA-DARE (Digital Academic Repository) Optical spectroscopy of carrier dynamics in semiconductor nanostructures de Jong, E.M.L.D. Link to publication Citation for published version (APA): de Jong, EM-LD.

More information

Photovoltaic Energy Conversion. Frank Zimmermann

Photovoltaic Energy Conversion. Frank Zimmermann Photovoltaic Energy Conversion Frank Zimmermann Solar Electricity Generation Consumes no fuel No pollution No greenhouse gases No moving parts, little or no maintenance Sunlight is plentiful & inexhaustible

More information

Nanostructured Semiconductor Crystals Building Blocks for Solar Cells: Shapes, Syntheses, Surface Chemistry, Quantum Confinement Effects

Nanostructured Semiconductor Crystals Building Blocks for Solar Cells: Shapes, Syntheses, Surface Chemistry, Quantum Confinement Effects Nanostructured Semiconductor Crystals Building Blocks for Solar Cells: Shapes, Syntheses, Surface Chemistry, Quantum Confinement Effects March 1, 2011 The University of Toledo, Department of Physics and

More information

Luminescence basics. Slide # 1

Luminescence basics. Slide # 1 Luminescence basics Types of luminescence Cathodoluminescence: Luminescence due to recombination of EHPs created by energetic electrons. Example: CL mapping system Photoluminescence: Luminescence due to

More information

Opto-electronic Characterization of Perovskite Thin Films & Solar Cells

Opto-electronic Characterization of Perovskite Thin Films & Solar Cells Opto-electronic Characterization of Perovskite Thin Films & Solar Cells Arman Mahboubi Soufiani Supervisors: Prof. Martin Green Prof. Gavin Conibeer Dr. Anita Ho-Baillie Dr. Murad Tayebjee 22 nd June 2017

More information

Multiple Exciton Generation in Si and Ge Nanoparticles with High Pressure Core Structures

Multiple Exciton Generation in Si and Ge Nanoparticles with High Pressure Core Structures Multiple Exciton Generation in Si and Ge Nanoparticles with High Pressure Core Structures S. Wippermann, M. Vörös, D. Rocca, A. Gali, G. Zimanyi, G. Galli NanoMatFutur DPG-214, 4/3/214 Multiple Exciton

More information

Forming Gradient Multilayer (GML) Nano Films for Photovoltaic and Energy Storage Applications

Forming Gradient Multilayer (GML) Nano Films for Photovoltaic and Energy Storage Applications Forming Gradient Multilayer (GML) Nano Films for Photovoltaic and Energy Storage Applications ABSTRACT Boris Gilman and Igor Altman Coolsol R&C, Mountain View CA For successful implementation of the nanomaterial-based

More information

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee 1. Depleted heterojunction solar cells 2. Deposition of semiconductor layers with solution process June 7, 2016 Yonghui Lee Outline 1. Solar cells - P-N junction solar cell - Schottky barrier solar cell

More information

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state. Photovoltaics Basic Steps the generation of light-generated carriers; the collection of the light-generated carriers to generate a current; the generation of a large voltage across the solar cell; and

More information

Theoretical Study on Graphene Silicon Heterojunction Solar Cell

Theoretical Study on Graphene Silicon Heterojunction Solar Cell Copyright 2015 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Nanoelectronics and Optoelectronics Vol. 10, 1 5, 2015 Theoretical Study on Graphene

More information

Perspectives with Hot Carrier solar cell

Perspectives with Hot Carrier solar cell In Se Cu AFP PHOTO Perspectives with Hot Carrier solar cell J.F. Guillemoles, G.J. Conibeer,, M.A. Green 24/09/2006, Nice IRDEP Institute of Research and Development of Energy from Photovoltaics UMR CNRS

More information

Simulation of Quantum Dot p-i-n Junction Solar Cell using Modified Drift Diffusion Model

Simulation of Quantum Dot p-i-n Junction Solar Cell using Modified Drift Diffusion Model International Journal of Pure and Applied Physics. ISSN 0973-1776 Volume 13, Number 1 (017), pp. 59-66 Research India Publications http://www.ripublication.com Simulation of Quantum Dot p-i-n Junction

More information

Supplementary Figure S1 TEM images of a synthesis batch of PbS and Bi-doped PbS QDs (Bi/Pb=3.2%) and corresponding size distribution histograms (100

Supplementary Figure S1 TEM images of a synthesis batch of PbS and Bi-doped PbS QDs (Bi/Pb=3.2%) and corresponding size distribution histograms (100 Supplementary Figure S1 TEM images of a synthesis batch of PbS and Bi-doped PbS QDs (Bi/Pb=3.2%) and corresponding size distribution histograms (100 QDs population in each sample) yielding average diameters

More information

Towards a deeper understanding of polymer solar cells

Towards a deeper understanding of polymer solar cells Towards a deeper understanding of polymer solar cells Jan Anton Koster Valentin Mihailetchi Prof. Paul Blom Molecular Electronics Zernike Institute for Advanced Materials and DPI University of Groningen

More information

The role of surface passivation for efficient and photostable PbS quantum dot solar cells

The role of surface passivation for efficient and photostable PbS quantum dot solar cells ARTICLE NUMBER: 16035 DOI: 10.1038/NENERGY.2016.35 The role of surface passivation for efficient and photostable PbS quantum dot solar cells Yiming Cao 1,+, Alexandros Stavrinadis 1,+, Tania Lasanta 1,

More information

Semiconductor. Byungwoo Park. Department of Materials Science and Engineering Seoul National University.

Semiconductor. Byungwoo Park.   Department of Materials Science and Engineering Seoul National University. Semiconductor Byungwoo Park Department of Materials Science and Engineering Seoul National University http://bp.snu.ac.kr http://bp.snu.ac.kr Semiconductors Kittel, Solid State Physics (Chapters 7 and

More information

Fundamental Limitations of Solar Cells

Fundamental Limitations of Solar Cells 2018 Lecture 2 Fundamental Limitations of Solar Cells Dr Kieran Cheetham MPhys (hons) CPhys MInstP MIET L3 Key Question Why can't a solar cell have a 100% efficiency? (Or even close to 100%?) Can you answer

More information

CIGS und Perowskit Solarzellenforschung an der Empa

CIGS und Perowskit Solarzellenforschung an der Empa CIGS und Perowskit Solarzellenforschung an der Empa Dr. Stephan Buecheler Contact: stephan.buecheler@empa.ch Direct: +4158 765 61 07 Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories

More information

The Opto-Electronic Physics That Just Broke the Efficiency Record in Solar Cells

The Opto-Electronic Physics That Just Broke the Efficiency Record in Solar Cells The Opto-Electronic Physics That Just Broke the Efficiency Record in Solar Cells Solar Energy Mini-Series Jen-Hsun Huang Engineering Center Stanford, California Sept. 26, 2011 Owen D. Miller & Eli Yablonovitch

More information

The Current Status of Perovskite Solar Cell Research at UCLA

The Current Status of Perovskite Solar Cell Research at UCLA The Current Status of Perovskite Solar Cell Research at UCLA Lijian Zuo, Sanghoon Bae, Lei Meng, Yaowen Li, and Yang Yang* Department of Materials Science and Engineering University of California, Los

More information

Organic Electronic Devices

Organic Electronic Devices Organic Electronic Devices Week 4: Organic Photovoltaic Devices Lecture 4.1: Overview of Organic Photovoltaic Devices Bryan W. Boudouris Chemical Engineering Purdue University 1 Lecture Overview and Learning

More information

CHARGE CARRIERS PHOTOGENERATION. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015

CHARGE CARRIERS PHOTOGENERATION. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015 CHARGE CARRIERS PHOTOGENERATION Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015 Charge carriers photogeneration: what does it mean? Light stimulus

More information

Prediction of a Shape-Induced Enhancement in the Hole Relaxation in Nanocrystals

Prediction of a Shape-Induced Enhancement in the Hole Relaxation in Nanocrystals Prediction of a Shape-Induced Enhancement in the Hole Relaxation in Nanocrystals NANO LETTERS 2003 Vol. 3, No. 9 1197-1202 Marco Califano,* Gabriel Bester, and Alex Zunger National Renewable Energy Laboratory,

More information

Charge Excitation. Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi

Charge Excitation. Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi Charge Excitation Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi 1 2.626/2.627 Roadmap You Are Here 2 2.626/2.627: Fundamentals Every photovoltaic device

More information

Quantum Dots for Advanced Research and Devices

Quantum Dots for Advanced Research and Devices Quantum Dots for Advanced Research and Devices spectral region from 450 to 630 nm Zero-D Perovskite Emit light at 520 nm ABOUT QUANTUM SOLUTIONS QUANTUM SOLUTIONS company is an expert in the synthesis

More information

Semiconductor Quantum Structures And Energy Conversion. Itaru Kamiya Toyota Technological Institute

Semiconductor Quantum Structures And Energy Conversion. Itaru Kamiya Toyota Technological Institute Semiconductor Quantum Structures And nergy Conversion April 011, TTI&NCHU Graduate, Special Lectures Itaru Kamiya kamiya@toyota-ti.ac.jp Toyota Technological Institute Outline 1. Introduction. Principle

More information

MODELING THE FUNDAMENTAL LIMIT ON CONVERSION EFFICIENCY OF QD SOLAR CELLS

MODELING THE FUNDAMENTAL LIMIT ON CONVERSION EFFICIENCY OF QD SOLAR CELLS MODELING THE FUNDAMENTAL LIMIT ON CONVERSION EFFICIENCY OF QD SOLAR CELLS Ա.Մ.Կեչիյանց Ara Kechiantz Institute of Radiophysics and Electronics (IRPhE), National Academy of Sciences (Yerevan, Armenia) Marseille

More information

Semiconducting nano-composites for solar energy conversion: insights from ab initio calculations. S. Wippermann, G. Galli

Semiconducting nano-composites for solar energy conversion: insights from ab initio calculations. S. Wippermann, G. Galli Semiconducting nano-composites for solar energy conversion: insights from ab initio calculations S. Wippermann, G. Galli ICAMP-12, 08/10/2012 Search for materials to harvest light: Desperately seeking

More information

Solar cells operation

Solar cells operation Solar cells operation photovoltaic effect light and dark V characteristics effect of intensity effect of temperature efficiency efficency losses reflection recombination carrier collection and quantum

More information

Luminescence Process

Luminescence Process Luminescence Process The absorption and the emission are related to each other and they are described by two terms which are complex conjugate of each other in the interaction Hamiltonian (H er ). In an

More information

Toward a 1D Device Model Part 2: Material Fundamentals

Toward a 1D Device Model Part 2: Material Fundamentals Toward a 1D Device Model Part 2: Material Fundamentals Lecture 8 10/4/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi 1 2.626/2.627 Roadmap You Are Here 2 2.626/2.627:

More information

Supplementary Figure S1. The maximum possible short circuit current (J sc ) from a solar cell versus the absorber band-gap calculated assuming 100%

Supplementary Figure S1. The maximum possible short circuit current (J sc ) from a solar cell versus the absorber band-gap calculated assuming 100% Supplementary Figure S1. The maximum possible short circuit current (J sc ) from a solar cell versus the absorber band-gap calculated assuming 100% (black) and 80% (red) external quantum efficiency (EQE)

More information

Novel Inorganic-Organic Perovskites for Solution Processed Photovoltaics. PIs: Mike McGehee and Hema Karunadasa

Novel Inorganic-Organic Perovskites for Solution Processed Photovoltaics. PIs: Mike McGehee and Hema Karunadasa Novel Inorganic-Organic Perovskites for Solution Processed Photovoltaics PIs: Mike McGehee and Hema Karunadasa 1 Perovskite Solar Cells are Soaring Jul 2013 Grätzel, EPFL 15% Nov 2014 KRICT 20.1%! Seok,

More information

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL February 9 and 14, 2012 The University of Toledo, Department

More information

Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%

Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120% Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120% Marcus L. Böhm, Tom C. Jellicoe, Maxim Tabachnyk, Nathaniel J. L. K. Davis, Florencia Wisnivesky- Rocca-Rivarola,

More information

Fabrication and characterization of surfactant-free PbSe quantum dot films and PbSe-polymer hybrid structures

Fabrication and characterization of surfactant-free PbSe quantum dot films and PbSe-polymer hybrid structures University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2010 Fabrication and characterization of surfactant-free PbSe quantum dot films and PbSe-polymer hybrid structures

More information

Vikram Kuppa School of Energy, Environmental, Biological and Medical Engineering College of Engineering and Applied Science University of Cincinnati

Vikram Kuppa School of Energy, Environmental, Biological and Medical Engineering College of Engineering and Applied Science University of Cincinnati Vikram Kuppa School of Energy, Environmental, Biological and Medical Engineering College of Engineering and Applied Science University of Cincinnati vikram.kuppa@uc.edu Fei Yu Yan Jin Andrew Mulderig Greg

More information

Solar Photovoltaics & Energy Systems

Solar Photovoltaics & Energy Systems Solar Photovoltaics & Energy Systems Lecture 5. III-V, Thin Film, and Organic Solar Cells ChE-600 Wolfgang Tress, May 2016 1 Summary Crystalline Silicon Solar Cells 35 efficiency [%] 30 25 20 15 10 J sc

More information

Introduction. Katarzyna Skorupska. Silicon will be used as the model material however presented knowledge applies to other semiconducting materials

Introduction. Katarzyna Skorupska. Silicon will be used as the model material however presented knowledge applies to other semiconducting materials Introduction Katarzyna Skorupska Silicon will be used as the model material however presented knowledge applies to other semiconducting materials 2 June 26 Intrinsic and Doped Semiconductors 3 July 3 Optical

More information

AN ELABORATION OF QUANTUM DOTS AND ITS APPLICATIONS

AN ELABORATION OF QUANTUM DOTS AND ITS APPLICATIONS AN ELABORATION OF QUANTUM DOTS AND ITS APPLICATIONS Sambeet Mishra 1, Bhagabat Panda 2, Suman Saurav Rout 3 1,3 School of Electrical Engineering, KIIT University, Bhubaneswar, India 2 Asst. Professor,

More information

Research Article Effect of Mn Doping on Properties of CdS Quantum Dot-Sensitized Solar Cells

Research Article Effect of Mn Doping on Properties of CdS Quantum Dot-Sensitized Solar Cells Photoenergy, Article ID 569763, 6 pages http://dx.doi.org/10.1155/2014/569763 Research Article Effect of Doping on Properties of S Quantum Dot-Sensitized Solar Cells Tianxing Li, Xiaoping Zou, and Hongquan

More information

Nanotechnology and Solar Energy. Solar Electricity Photovoltaics. Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells

Nanotechnology and Solar Energy. Solar Electricity Photovoltaics. Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells Nanotechnology and Solar Energy Solar Electricity Photovoltaics Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells Solar cell A photon from the Sun generates an electron-hole pair in a semiconductor.

More information

Third generation solar cells - How to use all the pretty colours?

Third generation solar cells - How to use all the pretty colours? Third generation solar cells - How to use all the pretty colours? Erik Stensrud Marstein Department for Solar Energy Overview The trouble with conventional solar cells Third generation solar cell concepts

More information

Basic Limitations to Third generation PV performance

Basic Limitations to Third generation PV performance Basic Limitations to Third generation PV performance Pabitra K. Nayak Weizmann Institute of Science, Rehovot, Israel THANKS to my COLLEAGUES Lee Barnea and David Cahen. Weizmann Institute of Science Juan

More information

Photovoltaic Efficiency Improvement: Limits and Possibilities

Photovoltaic Efficiency Improvement: Limits and Possibilities Photovoltaic Efficiency Improvement: Limits and Possibilities Alexander Axelevitch * Faculty of Engineering, Holon Institute of Technology (HIT), Israel * Corresponding author: Alexander Axelevitch, Faculty

More information

Improved performance and stability in quantum dot solar cells through band alignment engineering

Improved performance and stability in quantum dot solar cells through band alignment engineering Improved performance and stability in quantum dot solar cells through band alignment engineering The MIT Faculty has made this article openly available. Please share how this access benefits you. Your

More information

CdS quantum dot sensitized zinc oxide based solar cell with aluminum counter electrode

CdS quantum dot sensitized zinc oxide based solar cell with aluminum counter electrode NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2017, 8 (6), P. 782 786 CdS quantum dot sensitized zinc oxide based solar cell with aluminum counter electrode A. Ganguly 1, S. S. Nath 2, G. Gope 2, M. Choudhury

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-

Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi- Supporting Information Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi- Two-Dimensional Core/Shell Nanoplatelets Xuedan Ma, Benjamin T. Diroll, Wooje Cho, Igor Fedin, Richard D. Schaller,

More information

in core-shell semiconductor nanocrystals

in core-shell semiconductor nanocrystals Z Axis 6000 5000 4000 3000 2000 1000 0 0 2 4 6 X Axis 8 10 0 2 4 6 Y Axis 8 10 Single and multi-excitons in core-shell semiconductor nanocrystals Prof. Efrat Lifshitz Dept. of Chemistry, Solid State Institute

More information

What will it take for organic solar cells to be competitive?

What will it take for organic solar cells to be competitive? What will it take for organic solar cells to be competitive? Michael D. McGehee Stanford University Director of the Center for Advanced Molecular Photovoltaics Efficiency (%) We will need 20-25 % efficiency

More information

1 Introduction. Review article

1 Introduction. Review article Nanophotonics 2018; 7(1): 111 126 Review article Heaer Goodwin, Tom C. Jellicoe, Naaniel J.L.K. Davis and Marcus L. Böhm* Multiple exciton generation in quantum dot-based solar cells https://doi.org/10.1515/nanoph-2017-0034

More information

Optically-Pumped Ge-on-Si Gain Media: Lasing and Broader Impact

Optically-Pumped Ge-on-Si Gain Media: Lasing and Broader Impact Optically-Pumped Ge-on-Si Gain Media: Lasing and Broader Impact J. Liu 1, R. Camacho 2, X. Sun 2, J. Bessette 2, Y. Cai 2, X. X. Wang 1, L. C. Kimerling 2 and J. Michel 2 1 Thayer School, Dartmouth College;

More information

Fundamentals of Nanoelectronics: Basic Concepts

Fundamentals of Nanoelectronics: Basic Concepts Fundamentals of Nanoelectronics: Basic Concepts Sławomir Prucnal FWIM Page 1 Introduction Outline Electronics in nanoscale Transport Ohms law Optoelectronic properties of semiconductors Optics in nanoscale

More information

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Luminescence Spectroscopy of Semiconductors IVAN PELANT Institute ofphysics, v.v.i. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Department of Chemical Physics and Optics Charles University,

More information

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube PN junction photodiodes Authors: Nathaniel. M. Gabor 1,*, Zhaohui Zhong 2, Ken Bosnick 3, Paul L.

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

Nanomaterials for Plasmonic Devices. Lih J. Chen

Nanomaterials for Plasmonic Devices. Lih J. Chen Nanomaterials for Plasmonic Devices Lih J. Chen Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan Papers on Plasmon: 75,000 (6/25/2018) Papers on Plasmonics:

More information

Nanoscience and New Materials

Nanoscience and New Materials Advanced Characterization of Intermediate Band Solar Cells Antonio Luque, A Martí Instituto de Energía Solar Universidad Politécnica de Madrid Spain-Japan Joint Workshop on Nanoscience and New Materials

More information

Solar Photovoltaics & Energy Systems

Solar Photovoltaics & Energy Systems Solar Photovoltaics & Energy Systems Lecture 4. Crystalline Semiconductor Based Solar Cells ChE-600 Wolfgang Tress, May 2016 1 Photovoltaic Solar Energy Conversion 2 Semiconductor vs. Heat Engine spectral

More information

Carrier Recombination

Carrier Recombination Notes for ECE-606: Spring 013 Carrier Recombination Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA lundstro@purdue.edu /19/13 1 carrier recombination-generation

More information

Organic Electronic Devices

Organic Electronic Devices Organic Electronic Devices Week 5: Organic Light-Emitting Devices and Emerging Technologies Lecture 5.5: Course Review and Summary Bryan W. Boudouris Chemical Engineering Purdue University 1 Understanding

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Efficiency Improvement of Dye-sensitized Solar Cells

More information

Thermal Properties of TiO2/PbS Nanoparticle Solar Cells

Thermal Properties of TiO2/PbS Nanoparticle Solar Cells ARTICLE Nanomaterials and Nanotechnology Thermal Properties of TiO2/PbS Nanoparticle Solar Cells Regular Paper Derek Padilla1, Guangmei Zhai2, Alison J. Breeze3, Daoli Zhang2, Glenn B. Alers1 and Sue A.

More information

Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots

Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots NANO LETTERS 2005 Vol. 5, No. 5 865-871 Randy J. Ellingson,*,, Matthew C. Beard,*,, Justin C. Johnson, Pingrong Yu, Olga

More information

Electroluminescence from Silicon and Germanium Nanostructures

Electroluminescence from Silicon and Germanium Nanostructures Electroluminescence from silicon Silicon Getnet M. and Ghoshal S.K 35 ORIGINAL ARTICLE Electroluminescence from Silicon and Germanium Nanostructures Getnet Melese* and Ghoshal S. K.** Abstract Silicon

More information

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology Surface plasmon polaritons and localized surface plasmons Plasmon propagation and absorption at metal-semiconductor interfaces

More information

Future Technology Pathways of Terrestrial III-V Multijunction Solar Cells for Concentrator Photovoltaic Systems

Future Technology Pathways of Terrestrial III-V Multijunction Solar Cells for Concentrator Photovoltaic Systems Future Technology Pathways of Terrestrial III-V Multijunction Solar Cells for Concentrator Photovoltaic Systems Daniel C. Law 1,*, R.R. King 1, H. Yoon 1, M.J. Archer 2, A. Boca 1, C.M. Fetzer 1, S. Mesropian

More information

Colloidal quantum dot based solar cells: from materials to devices

Colloidal quantum dot based solar cells: from materials to devices DOI 10.1186/s40580-017-0115-0 REVIEW Open Access Colloidal quantum dot based solar cells: from materials to devices Jung Hoon Song 1 and Sohee Jeong 1,2* Abstract Colloidal quantum dots (CQDs) have attracted

More information

Nanophotonics: solar and thermal applications

Nanophotonics: solar and thermal applications Nanophotonics: solar and thermal applications Shanhui Fan Ginzton Laboratory and Department of Electrical Engineering Stanford University http://www.stanford.edu/~shanhui Nanophotonic Structures Photonic

More information