Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-

Size: px
Start display at page:

Download "Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-"

Transcription

1 Supporting Information Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi- Two-Dimensional Core/Shell Nanoplatelets Xuedan Ma, Benjamin T. Diroll, Wooje Cho, Igor Fedin, Richard D. Schaller, Dmitri V. Talapin, Stephen K. Gray, Gary P. Wiederrecht, David J. Gosztola S1. Absorption and PL spectra of CdSe core NPLs Figure S1: Absorption and PL spectra of CdSe core NPLs. S2. Carrier wave function calculations of the NPLs The additional 2ML CdS shells in sample NPL5 can lead to carrier wave functions delocalized further into the additional shell layers mainly in the thickness direction because excitons in quasi-2d NPLs are strongly confined in this direction. To evaluate the influence of this carrier wave function delocalization on the NPL radiative lifetime, we calculate the electron/hole wave functions in the thickness direction using an effective mass model. 1 We assume that the thickness of the CdSe core is 1.2 nm, each CdS monolayer (ML) shell is 0.35 nm thick, the bulk band gaps of CdSe and CdS are 1.74 ev and 2.40 ev, the valence band offset between CdSe and CdS is

2 0.42 ev, the effective masses m e (CdSe) = 0.13 m 0, m hh (CdSe) = 0.90 m 0, m e (CdS) = 0.20 m 0, m hh (CdS) = 0.70 m 0, respectively. 2-6 The surrounding ligands are assumed to have an offset of 3.5 ev, and an effective mass of 1.0 m 0. Figure S2(a) below shows the calculated radial electron (top) and hole (bottom, inverted) wave functions R e,h (r) for the lowest energy states. It can be seen that coating the CdSe cores with CdS shells causes delocalization of the electron/hole wave functions into the shells. The radiative decay rate k r of a strongly confined system is directly proportional to the electron-hole wave function overlap integral Θ e-h, which is defined as Θ e-h = R e (r) R h (r)r 2 dr 2. Figure S2(b) shows the calculated shell-thickness dependent Θ e-h values. From 0ML to 2ML and eventually to 4ML CdS shells, the corresponding values of Θ e-h decreases from 0.91 to 0.88, and finally to Therefore, for sample NPL5, the additional two monolayer CdS shells cause only ~2.3% difference in the corresponding radiative lifetimes. Figure S2: (a) Calculated radial electron (top) and hole (bottom, inverted) wave functions R e,h (r) for the lowest energy states of a 1.2 nm thick CdSe core coated with different CdS shell thicknesses (core only: black; 2ML CdS: red; 4ML CdS: blue). (b) CdS shell-thickness dependent electron-hole wave function overlap integral Θ e-h values of 1.2 nm thick CdSe cores. S3. Determination of average absorbed photons per pulse N The absorption cross section of the NPL sample with the largest lateral size and shell thickness (NPL5, 33.4 ± 3.8 nm by 13.0 ± 2.8 nm, 4ML CdS) was assumed to be 1.4 x cm 2 according to Ref. 7 and 8. The laser wavelength and repetition rate are 400 nm and 1MHz, respectively. At the excitation power of ~ 1 nw and emission wavelength of 656 nm, we get from 9

3 C abs power N = photon energy spot size laser repetition rate that N ~0.14. Since the smaller NPLs have smaller absorption cross sections than that of sample NPL5 and the laser excitation power was kept below 1 nw during the study, we conclude that N was kept below ~0.14 for all the single NPL measurements. S4. Contribution of biexciton emission at low excitation powers A Poissonian absorption process with an average absorbed photons per pulse of N can be presented as: P(n, N ) = N n e N. n! The spectrally integrated single exciton and biexciton emission of a single NPL can be written as: 10 I 2X = Respectively. Therefore, I X = n=2 n=1 P(n, N )Q 1X = Q 1X (1 P(0, N )) P(n, N ) Q 2X = Q 2X (1 P(1, N ) P(0, N )) I 2X I X = Q 2X 1 P(1, N ) P(0, N ) Q 1X 1 P(0, N ) We define η = 1 P(1, N ) P(0, N ). Figure S3 shows N dependent η values. When N 0, the 1 P(0, N ) value of η, and consequently I 2X becomes negligible. In this experiment, N is kept below Therefore, η is below 0.1.

4 Figure S3: N dependent η values. S5. Pump-dependent g (2) (τ) measurements Figure S4: Pump-dependent g (2) (τ) traces at excitation powers corresponding to N = 0.14 (top curve) and N = (middle curve). No apparent change in the R value is observed from the two excitation powers, indicating our predication of N 1 is valid. The bottom curve is obtained by time gating the top curve at a gate delay time of 80 ns. The disappearance of the center peak suggests that only a single NPL is studied. S6. Size-dependent Q 2X /Q 1X values

5 PL intensity (a.u.) Figure S5: Figure 5(a) from the main text only showing the data points corresponding to samples NPL2 to NPL4. S7. Pump-power-dependent PL measurements 10 2 NPL1 NPL2 NPL NPL4 NPL <N> Figure S6: Pump-power-dependent PL intensities of NPL thin films. For clarity, all the curves are normalized to the PL intensities at N = 1. S8. Maximum PL intensity decay curves

6 Figure S7: PL decay curves of the small (blue) and large (black) NPLs mentioned in the main text. The decay curves are constructed from photons emitted during the maximum PL intensity periods. The red curves are single exponential fittings to the decay curves. The gray curve is the instrument response function. S9. PL intensity dependent lifetime analysis Figure S8. (a, e) PL timetraces of a small NPL from sample NPL1 (a) and a large NPL from sample NPL4 (e) with the background subtracted. The time bin is set to 100 ms. (b, f) PL intensity distributions extracted from (a) and (e). (c, g) PL intensity dependent decay lifetimes τ s determined by fitting the corresponding PL decay curves with stretched exponential functions. Here the y-axis is the corresponding bin center. Uncertainties in the fitted lifetime

7 values are plotted in orange. (d, h) g (2) (τ) traces of the small (d) and large (h) NPLs, respectively. The corresponding Q 2X /Q 1X values are 0.05 and 0.79, respectively. Figure S9. (a, e, i) PL timetraces of individual NPLs from sample NPL2 (a), NPL3 (e), and NPL5 (i) with the background subtracted. The time bin is set to 100 ms. (b, f, j) PL intensity distributions extracted from (a), (e), and (i). (c, g, k) PL intensity dependent decay lifetimes τ s determined by fitting the corresponding PL decay curves with stretched exponential functions. Here the y-axis is the corresponding bin center. Uncertainties in the fitted lifetime values are plotted in orange. (d, h, l) Decay rate distributions of the NPLs constructed from the stretched exponential fitting results in (c), (g), and (k). The color coding of the rate distribution curves are consistent with the colored circles in (c), (g), and (k). S10. Probability densities of on- and off-state duration times

8 Figure S10. Probability densities of on (left) and off (right) time intervals of the timetraces shown in Figure S8(a) and (e) of the Supporting Information plotted on a log-log scale. The red lines are linear fittings to the data. S11. Influence of defects on the effective exciton coherent motion area In principle, defects can serve as local traps of excitons. As a consequence, in the presence of defects, the effective exciton coherent motion area can be reduced and the effective radiative decay rate (k r ) can deviate from the electric dipole approximation, i.e., k r A c,eff with A c,eff being the effective exciton coherent motion area that is smaller than the real NPL size A. If we assume that defects are the sole reason for the deviation of radiative lifetime from the electric dipole approximation, in a simple assumption, we can define that the number of defects N defect is proportional to A A c,eff, i.e. N defect A A c,eff. From Figure 5(b), we observe that from NPL2 to NPL5, although there is an increase in the NPL size A, no significant change in the radiative lifetime is observed, indicating that k r and A c,eff remain mostly unchanged. Therefore, we can derive that the number of defects N defect increases with size, and this leads to an increase in the nonradiative decay rate k nr. Since Q 1x = k r /(k r +k nr ) and no significant change in k r is observed from Figure 5(b), we can derive that Q 1x should decrease with the NPL size. However, from Figure 5(c) we can clearly observe that this is not the case. Therefore, we can conclude that

9 defects, even if they play a role, are not the sole reason for the deviation of radiative lifetime from the electric dipole approximation. References 1. Schooss, D.; Mews, A.; Eychmueller, A.; Weller, H. Quantum-Dot Quantum Well CdS/HgS/CdS: Theory and Experiment. Phys. Rev. B 1994, 49, Wei, S.-H.; Zunger, A. Calculated Natural Band Offsets of All II VI and III V Semiconductors: Chemical Trends and the Role of Cation d Orbitals. Appl. Phys. Lett. 1998, 72, Kittel, C. Introduction to Solid State Physics. John Wiley: New York, Sattler, K. D. Handbook of Nanophysics: Nanoparticles and Quantum Dots. CRC Press Inc.: Boca Raton, FL, Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, Al. L. Colloidal Nanoplatelets with Two Dimensional Electronic Structure. Nat. Mater. 2011, 10, Ma, X.; Mews, A.; Kipp, T. Determination of Electronic Energy Levels in Type-II CdTe-Core/CdSe- Shell and CdSe-Core/CdTe-Shell Nanocrystals by Cyclic Voltammetry and Optical Spectroscopy. J. Phys. Chem. C. 2013, 117, Yeltik, A.; Delikanli, S.; Olutas, M.; Kelestemur, Y.; Guzelturk, B.; Demir, H. V. Experimental Determination of the Absorption Cross-Section and Molar Extinction Coefficient of Colloidal CdSe Nanoplatelets. J. Phys. Chem. C. 2015, 119, She, C.; Fedin, I.; Dolzhnikov, D. S.; Demortie re, A.; Schaller, R. D.; Pelton, M.; Talapin, D. V. Low- Threshold Stimulated Emission Using Colloidal Quantum Wells. Nano Lett. 2014, 14, Zhao J.; Chen, O.; Strasfeld, D. B.; Bawendi, M. G. Biexciton Quantum Yield Heterogeneities in Single CdSe (CdS) Core (Shell) Nanocrystals and Its Correlation to Exciton Blinking. Nano Lett. 2012, 12, Park, Y.-S.; Malko, A.V.; Vela, J.; Chen, Y.; Ghosh, Y.; García-Santamaría, F.; Hollingsworth, J. A.; Klimov, V. I.; Htoon, H. Near-Unity Quantum Yields of Biexciton Emission from CdSe/CdS Nanocrystals Measured Using Single-Particle Spectroscopy. Phys. Rev. Lett. 2011, 106,

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

Influence of Morphology on Blinking Mechanisms. and Excitonic Fine Structure of Single Colloidal

Influence of Morphology on Blinking Mechanisms. and Excitonic Fine Structure of Single Colloidal Influence of Morphology on Blinking Mechanisms and Excitonic Fine Structure of Single Colloidal Nanoplatelets Zhongjian Hu 1,, Ajay Singh 1,, Serguei V. Goupalov 2,3, Jennifer A. Hollingsworth 1 & Han

More information

Semiconductor quantum dots

Semiconductor quantum dots Semiconductor quantum dots Quantum dots are spherical nanocrystals of semiconducting materials constituted from a few hundreds to a few thousands atoms, characterized by the quantum confinement of the

More information

Tianle Guo, 1 Siddharth Sampat, 1 Kehao Zhang, 2 Joshua A. Robinson, 2 Sara M. Rupich, 3 Yves J. Chabal, 3 Yuri N. Gartstein, 1 and Anton V.

Tianle Guo, 1 Siddharth Sampat, 1 Kehao Zhang, 2 Joshua A. Robinson, 2 Sara M. Rupich, 3 Yves J. Chabal, 3 Yuri N. Gartstein, 1 and Anton V. SUPPLEMENTARY INFORMATION for Order of magnitude enhancement of monolayer MoS photoluminescence due to near-field energy influx from nanocrystal films Tianle Guo, Siddharth Sampat, Kehao Zhang, Joshua

More information

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures Intensity / a.u. Supplementary figures 110 MAPbI 3 1:1 MaPbI 3-x Cl x 3:1 220 330 0 10 15 20 25 30 35 40 45 2 theta / deg Supplementary Fig. 1 X-ray Diffraction (XRD) patterns of MAPbI3 and MAPbI 3-x Cl

More information

Light Amplification in the Single-Exciton Regime Using Exciton-Exciton Repulsion in Type-II Nanocrystal Quantum Dots

Light Amplification in the Single-Exciton Regime Using Exciton-Exciton Repulsion in Type-II Nanocrystal Quantum Dots 1538 J. Phys. Chem. C 007, 111, 1538-15390 Light Amplification in the Single-Exciton Regime Using Exciton-Exciton Repulsion in Type-II Nanocrystal Quantum Dots Jagjit Nanda, Sergei A. Ivanov, Marc Achermann,

More information

Multi-Color Emission in Quantum-Dot Quantum-Well Semiconductor Heteronanocrystals

Multi-Color Emission in Quantum-Dot Quantum-Well Semiconductor Heteronanocrystals Vol. 116 (2009) ACTA PHYSICA POLONICA A No. 4 Proceedings of the International School and Conference on Photonics, PHOTONICA09 Multi-Color Emission in Quantum-Dot Quantum-Well Semiconductor Heteronanocrystals

More information

Excitation Wavelength Dependent Photon Antibunching/Bunching

Excitation Wavelength Dependent Photon Antibunching/Bunching Electronic Supplementary Material (ESI) for anoscale. This journal is The Royal Society of Chemistry 2017 Supporting Information Excitation Wavelength Dependent Photon Antibunching/Bunching from Single

More information

Nanoscience galore: hybrid and nanoscale photonics

Nanoscience galore: hybrid and nanoscale photonics Nanoscience galore: hybrid and nanoscale photonics Pavlos Lagoudakis SOLAB, 11 June 2013 Hybrid nanophotonics Nanostructures: light harvesting and light emitting devices 2 Hybrid nanophotonics Nanostructures:

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 17 Sep 1997

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 17 Sep 1997 Multiband theory of quantum-dot quantum wells: Dark excitons, bright excitons, and charge separation in heteronanostructures arxiv:cond-mat/9709193v1 [cond-mat.mes-hall] 17 Sep 1997 W. Jaskólski and Garnett

More information

Ultrafast single photon emitting quantum photonic structures. based on a nano-obelisk

Ultrafast single photon emitting quantum photonic structures. based on a nano-obelisk Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk Je-Hyung Kim, Young-Ho Ko, Su-Hyun Gong, Suk-Min Ko, Yong-Hoon Cho Department of Physics, Graduate School of Nanoscience

More information

Electronic structure of nanocrystal quantum-dot quantum wells

Electronic structure of nanocrystal quantum-dot quantum wells Electronic structure of nanocrystal quantum-dot quantum wells Joshua Schrier and Lin-Wang Wang Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Received

More information

Supporting Information for: Heavy-Metal-Free Fluorescent ZnTe/ZnSe Nanodumbbells

Supporting Information for: Heavy-Metal-Free Fluorescent ZnTe/ZnSe Nanodumbbells Supporting Information for: Heavy-Metal-Free Fluorescent ZnTe/ZnSe Nanodumbbells Botao Ji, Yossef E. Panfil and Uri Banin * The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The

More information

Revisited Wurtzite CdSe Synthesis : a Gateway for the Versatile Flash Synthesis of Multi-Shell Quantum Dots and Rods

Revisited Wurtzite CdSe Synthesis : a Gateway for the Versatile Flash Synthesis of Multi-Shell Quantum Dots and Rods Supporting Information for Revisited Wurtzite CdSe Synthesis : a Gateway for the Versatile Flash Synthesis of Multi-Shell Quantum Dots and Rods Emile Drijvers, 1,3 Jonathan De Roo, 2 Pieter Geiregat, 1,3

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2012.63 Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control Liangfeng Sun, Joshua J. Choi, David Stachnik, Adam C. Bartnik,

More information

Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime

Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime J. Phys. Chem. B 2004, 108, 10625-10630 10625 Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime Sergei A. Ivanov, Jagjit Nanda, Andrei Piryatinski,

More information

Colloidal Single-Layer Quantum Dots with Lateral Confinement Effects on 2D Exciton

Colloidal Single-Layer Quantum Dots with Lateral Confinement Effects on 2D Exciton Supporting Information Colloidal Single-Layer Quantum Dots with Lateral Confinement Effects on 2D Exciton Ho Jin,, Minji Ahn,,,, Sohee Jeong,,, Jae Hyo Han,,, Dongwon Yoo,, Dong Hee Son, *, and Jinwoo

More information

Unravelling the Origin of Operational Instability of Quantum Dot based Light- Emitting Diodes

Unravelling the Origin of Operational Instability of Quantum Dot based Light- Emitting Diodes Supporting Information Unravelling the Origin of Operational Instability of Quantum Dot based Light- Emitting Diodes Jun Hyuk Chang, 1 Philip Park, 2 Heeyoung Jung, 3 Byeong Guk Jeong, 4 Donghyo Hahm,

More information

Supplementary documents

Supplementary documents Supplementary documents Low Threshold Amplified Spontaneous mission from Tin Oxide Quantum Dots: A Instantiation of Dipole Transition Silence Semiconductors Shu Sheng Pan,, Siu Fung Yu, Wen Fei Zhang,

More information

Distribution of Delay Times in Laser Excited CdSe-ZnS Core-Shell Quantum Dots

Distribution of Delay Times in Laser Excited CdSe-ZnS Core-Shell Quantum Dots Distribution of Delay Times in Laser Excited CdSe-ZnS Core-Shell Quantum Dots Andrei Vajiac Indiana University South Bend Mathematics, Computer Science Advisor: Pavel Frantsuzov, Physics Abstract This

More information

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF Content Introduction to XEOL Application of XEOL Development and Application of XEOL in STXM

More information

Impact Ionization Can Explain Carrier Multiplication in PbSe Quantum Dots

Impact Ionization Can Explain Carrier Multiplication in PbSe Quantum Dots Impact Ionization Can Explain Carrier Multiplication in PbSe Quantum Dots A. Franceschetti,* J. M. An, and A. Zunger National Renewable Energy Laboratory, Golden, Colorado 8040 Received May 3, 2006; Revised

More information

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in quantum wells Atomic wavefunction of carriers in

More information

Debjit Roy, Saptarshi Mandal, Chayan K. De, Kaushalendra Kumar and Prasun K. Mandal*

Debjit Roy, Saptarshi Mandal, Chayan K. De, Kaushalendra Kumar and Prasun K. Mandal* Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 Nearly Suppressed Photoluminescence Blinking of Small Sized, Blue-Green-Orange-Red

More information

Interfacial alloying in CdSe/CdS heteronanocrystals, a Raman spectroscopy analysis

Interfacial alloying in CdSe/CdS heteronanocrystals, a Raman spectroscopy analysis Interfacial alloying in CdSe/CdS heteronanocrystals, a Raman spectroscopy analysis Norman Tschirner,, Holger Lange, Andrei Schliwa, Amelie Biermann, Christian Thomsen, Karel Lambert,, Raquel Gomes,, and

More information

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates:

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: a, Photoluminescence (PL) spectrum of localized excitons in a WSe 2 monolayer, exfoliated onto a SiO 2 /Si substrate

More information

Colloidal CdSe Quantum Rings

Colloidal CdSe Quantum Rings Supporting Information Colloidal CdSe Quantum Rings Igor Fedin and Dmitri V. Talapin *,, Department of Chemistry and James Franck Institute, the University of Chicago, IL 60637, USA Center for Nanoscale

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supporting online material SUPPLEMENTARY INFORMATION doi: 0.038/nPHYS8 A: Derivation of the measured initial degree of circular polarization. Under steady state conditions, prior to the emission of the

More information

Supporting Information. Material Dimensionality Effects on Electron Transfer Rates between CsPbBr 3 and CdSe Nanoparticles

Supporting Information. Material Dimensionality Effects on Electron Transfer Rates between CsPbBr 3 and CdSe Nanoparticles Supporting Information Material Dimensionality Effects on Electron Transfer Rates between CsPbBr 3 and CdSe Nanoparticles Alexandra Brumberg, 1 Benjamin T. Diroll, 2 Georgian Nedelcu, 3,4 Matthew E. Sykes,

More information

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube PN junction photodiodes Authors: Nathaniel. M. Gabor 1,*, Zhaohui Zhong 2, Ken Bosnick 3, Paul L.

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Auger Processes in Nanosize Semiconductor Crystals

Auger Processes in Nanosize Semiconductor Crystals Auger Process by Alexander Efros 04//02 Auger Processes in Nanosize Semiconductor Crystals Alexander Efros Nanostructure Optics Section Naval Research Laboratory, Washington D.C. Introduction In this chapter

More information

Luminescence Process

Luminescence Process Luminescence Process The absorption and the emission are related to each other and they are described by two terms which are complex conjugate of each other in the interaction Hamiltonian (H er ). In an

More information

Carrier dynamics in highly-excited TlInS 2 : Evidence of 2D electron-hole charge separation at parallel layers. Supporting information

Carrier dynamics in highly-excited TlInS 2 : Evidence of 2D electron-hole charge separation at parallel layers. Supporting information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 18 Carrier dynamics in highly-excited : Evidence of D electron-hole charge separation

More information

what happens if we make materials smaller?

what happens if we make materials smaller? what happens if we make materials smaller? IAP VI/10 ummer chool 2007 Couvin Prof. ns outline Introduction making materials smaller? ynthesis how do you make nanomaterials? Properties why would you make

More information

Electroluminescence from Silicon and Germanium Nanostructures

Electroluminescence from Silicon and Germanium Nanostructures Electroluminescence from silicon Silicon Getnet M. and Ghoshal S.K 35 ORIGINAL ARTICLE Electroluminescence from Silicon and Germanium Nanostructures Getnet Melese* and Ghoshal S. K.** Abstract Silicon

More information

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Frank Ceballos 1, Ming-Gang Ju 2 Samuel D. Lane 1, Xiao Cheng Zeng 2 & Hui Zhao 1 1 Department of Physics and Astronomy,

More information

Prediction of a Shape-Induced Enhancement in the Hole Relaxation in Nanocrystals

Prediction of a Shape-Induced Enhancement in the Hole Relaxation in Nanocrystals Prediction of a Shape-Induced Enhancement in the Hole Relaxation in Nanocrystals NANO LETTERS 2003 Vol. 3, No. 9 1197-1202 Marco Califano,* Gabriel Bester, and Alex Zunger National Renewable Energy Laboratory,

More information

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree) Supplementary Figures. (002)(110) Tetragonal I4/mcm Intensity (a.u) (004)(220) 10 (112) (211) (202) 20 Supplementary Figure 1. X-ray diffraction (XRD) pattern of the sample. The XRD characterization indicates

More information

Charge Transfer from n-doped Nanocrystals: Mimicking Intermediate Events in Multielectron Photocatalysis

Charge Transfer from n-doped Nanocrystals: Mimicking Intermediate Events in Multielectron Photocatalysis Supporting Information for: Charge Transfer from n-doped Nanocrystals: Mimicking Intermediate Events in Multielectron Photocatalysis Junhui Wang, Tao Ding and Kaifeng Wu * State Key Laboratory of Molecular

More information

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications CH676 Physical Chemistry: Principles and Applications Crystal Structure and Chemistry Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity Na Tian

More information

Solar Cell Materials and Device Characterization

Solar Cell Materials and Device Characterization Solar Cell Materials and Device Characterization April 3, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals

More information

Supporting Information for: Enhancing the Performance of CdSe/CdS Dot-in- Rod Light Emitting Diodes via Surface Ligand.

Supporting Information for: Enhancing the Performance of CdSe/CdS Dot-in- Rod Light Emitting Diodes via Surface Ligand. Supporting Information for: Enhancing the Performance of CdSe/CdS Dot-in- Rod Light Emitting Diodes via Surface Ligand Modification Prachi Rastogi a,b, Francisco Palazon a, Mirko Prato c, Francesco Di

More information

Supporting Information. Rubidium Doping for Enhanced Performance of Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes

Supporting Information. Rubidium Doping for Enhanced Performance of Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes Supporting Information Rubidium Doping for Enhanced Performance of Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes Yifei Shi, Jun Xi,, Ting Lei, Fang Yuan, Jinfei Dai, Chenxin Ran,

More information

Fluorescence Spectroscopy

Fluorescence Spectroscopy Fluorescence Spectroscopy Frequency and time dependent emission Emission and Excitation fluorescence spectra Stokes Shift: influence of molecular vibrations and solvent Time resolved fluorescence measurements

More information

Q. Shen 1,2) and T. Toyoda 1,2)

Q. Shen 1,2) and T. Toyoda 1,2) Photosensitization of nanostructured TiO 2 electrodes with CdSe quntum dots: effects of microstructure in substrates Q. Shen 1,2) and T. Toyoda 1,2) Department of Applied Physics and Chemistry 1), and

More information

ULTRAFAST SPECTROSCOPY OF CHEMICALLY SYNTHESIZED SEMICONDUCTOR NANOPARTICLES

ULTRAFAST SPECTROSCOPY OF CHEMICALLY SYNTHESIZED SEMICONDUCTOR NANOPARTICLES Summerschool on SEMICONDUCTOR QUANTUM DOTS: PHYSICS AND DEVICES Monte Verità, Ascona, Switzerland Sunday September 5, to Friday September 10, 2004 ULTRAFAST SPECTROSCOPY OF CHEMICALLY SYNTHESIZED SEMICONDUCTOR

More information

dots) and max max without energies

dots) and max max without energies Supplementary Figure 1 Light-polarization-dependent the crystal b-axis. Scale bar, 25 m. (b) Polarization-dependent absorption spectra of bilayer ReS 2. (c) Corresponding spectral weights of Lorentzian

More information

Supporting Information: Trap States and Their Dynamics in Organometal Halide Perovskite Nanoparticles and Bulk Crystals

Supporting Information: Trap States and Their Dynamics in Organometal Halide Perovskite Nanoparticles and Bulk Crystals Supporting Information: Trap States and Their Dynamics in Organometal Halide Perovskite Nanoparticles and Bulk Crystals Kaibo Zheng,,, * Karel Žídek, Mohamed Abdellah,,# Maria E Messing, Mohammed J. Al-

More information

Quantum Dots for Advanced Research and Devices

Quantum Dots for Advanced Research and Devices Quantum Dots for Advanced Research and Devices spectral region from 450 to 630 nm Zero-D Perovskite Emit light at 520 nm ABOUT QUANTUM SOLUTIONS QUANTUM SOLUTIONS company is an expert in the synthesis

More information

University of Louisville - Department of Chemistry, Louisville, KY; 2. University of Louisville Conn Center for renewable energy, Louisville, KY; 3

University of Louisville - Department of Chemistry, Louisville, KY; 2. University of Louisville Conn Center for renewable energy, Louisville, KY; 3 Ultrafast transient absorption spectroscopy investigations of charge carrier dynamics of methyl ammonium lead bromide (CH 3 NH 3 PbBr 3 ) perovskite nanostructures Hamzeh Telfah 1 ; Abdelqader Jamhawi

More information

THE DEVELOPMENT OF SIMULATION MODEL OF CARRIER INJECTION IN QUANTUM DOT LASER SYSTEM

THE DEVELOPMENT OF SIMULATION MODEL OF CARRIER INJECTION IN QUANTUM DOT LASER SYSTEM THE DEVELOPMENT OF SIMULATION MODEL OF CARRIER INJECTION IN QUANTUM DOT LASER SYSTEM Norbaizura Nordin 1 and Shahidan Radiman 2 1 Centre for Diploma Studies Universiti Tun Hussein Onn Malaysia 1,2 School

More information

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for six WSe 2 -MoSe 2 heterostructures under cw laser excitation

More information

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots R. Heitz et al.: PL Study of Self-Organized InGaAs/GaAs Quantum Dots 65 phys. stat. sol. b) 221, 65 2000) Subject classification: 73.61.Ey; 78.47.+p; 78.55.Cr; 78.66.Fd; S7.12 Resonantly Excited Time-Resolved

More information

Biexciton Quantum Yield of Single Semiconductor Nanocrystals from Photon Statistics

Biexciton Quantum Yield of Single Semiconductor Nanocrystals from Photon Statistics Biexciton Quantum Yield of Single Semiconductor Nanocrystals from Photon Statistics The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Supporting information for Metal-semiconductor. nanoparticle hybrids formed by self-organization: a platform to address exciton-plasmon coupling

Supporting information for Metal-semiconductor. nanoparticle hybrids formed by self-organization: a platform to address exciton-plasmon coupling Supporting information for Metal-semiconductor nanoparticle hybrids formed by self-organization: a platform to address exciton-plasmon coupling Christian Strelow, T. Sverre Theuerholz, Christian Schmidtke,

More information

Fabrication / Synthesis Techniques

Fabrication / Synthesis Techniques Quantum Dots Physical properties Fabrication / Synthesis Techniques Applications Handbook of Nanoscience, Engineering, and Technology Ch.13.3 L. Kouwenhoven and C. Marcus, Physics World, June 1998, p.35

More information

Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules

Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules OPTI 500 DEF, Spring 2012, Lecture 2 Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules Energy Levels Every atom or molecule

More information

Bright and dark exciton transfer in quantum dot arrays Anna Rodina

Bright and dark exciton transfer in quantum dot arrays Anna Rodina Bright and dark exciton transfer in quantum dot arrays Anna Rodina Ioffe Institute, St. Petersburg, Russia Collaboration and publications: [1] A. N. Poddubny, A. V. Rodina, Nonradiative and radiative Förster

More information

Quantum effects in colloidal nanoparticles. From the beauty of single quantum dot physics to ensemble applications...

Quantum effects in colloidal nanoparticles. From the beauty of single quantum dot physics to ensemble applications... Quantum effects in colloidal nanoparticles From the beauty of single quantum dot physics to ensemble applications... Prof Pavlos Lagoudakis Ioffe 10/06/2013 Colloidal nanocrystals: nano-engineering low

More information

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Luminescence Spectroscopy of Semiconductors IVAN PELANT Institute ofphysics, v.v.i. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Department of Chemical Physics and Optics Charles University,

More information

Synthesis of ternary chalcogenide colloidal nanocrystals in aqueous medium

Synthesis of ternary chalcogenide colloidal nanocrystals in aqueous medium Journal of Physics: Conference Series PAPER OPEN ACCESS Synthesis of ternary chalcogenide colloidal nanocrystals in aqueous medium To cite this article: D S Mazing et al 28 J. Phys.: Conf. Ser. 38 25 View

More information

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators Chapter 6 Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators 6.1 Introduction Researchers have devoted considerable effort to enhancing light emission from semiconductors

More information

Signal regeneration - optical amplifiers

Signal regeneration - optical amplifiers Signal regeneration - optical amplifiers In any atom or solid, the state of the electrons can change by: 1) Stimulated absorption - in the presence of a light wave, a photon is absorbed, the electron is

More information

Photonics applications II. Ion-doped ChGs

Photonics applications II. Ion-doped ChGs Photonics applications II Ion-doped ChGs 1 ChG as a host for doping; pros and cons - Important - Condensed summary Low phonon energy; Enabling emission at longer wavelengths Reduced nonradiative multiphonon

More information

Supporting Information. Femtosecond Time-Resolved Transient Absorption. Passivation Effect of PbI 2

Supporting Information. Femtosecond Time-Resolved Transient Absorption. Passivation Effect of PbI 2 Supporting Information Femtosecond Time-Resolved Transient Absorption Spectroscopy of CH 3 NH 3 PbI 3 -Perovskite Films: Evidence for Passivation Effect of PbI 2 Lili Wang a, Christopher McCleese a, Anton

More information

Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr 3 Films

Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr 3 Films Supporting information Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr 3 Films Li Song,, Xiaoyang Guo, *, Yongsheng Hu, Ying Lv, Jie Lin, Zheqin

More information

The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods

The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods MARC ACHERMANN, ANDREW P. BARTKO, JENNIFER A. HOLLINGSWORTH AND VICTOR I. KLIMOV* Chemistry Division, C-PCS, MS-J567,

More information

Femtosecond nonlinear coherence spectroscopy of carrier dynamics in porous silicon

Femtosecond nonlinear coherence spectroscopy of carrier dynamics in porous silicon JOURNAL OF APPLIED PHYSICS 98, 083508 2005 Femtosecond nonlinear coherence spectroscopy of carrier dynamics in porous silicon Lap Van Dao a and Peter Hannaford Centre for Atom Optics and Ultrafast Spectroscopy,

More information

LUMINESCENCE SPECTRA OF QUANTUM-SIZED CdS AND PbI 2 PARTICLES IN STATIC ELECTRIC FIELD

LUMINESCENCE SPECTRA OF QUANTUM-SIZED CdS AND PbI 2 PARTICLES IN STATIC ELECTRIC FIELD Vol. 87 (1995) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXIII International School of Semiconducting Compounds, Jaszowiec 1994 LUMINESCENCE SPECTRA OF QUANTUM-SIZED CdS AND PbI 2 PARTICLES IN STATIC

More information

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Information for Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Figure 1. Simulated from pristine graphene gratings at different Fermi energy

More information

Charge Excitation. Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi

Charge Excitation. Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi Charge Excitation Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi 1 2.626/2.627 Roadmap You Are Here 2 2.626/2.627: Fundamentals Every photovoltaic device

More information

Supporting Information

Supporting Information Supporting Information Temperature Dependence of Emission Linewidths from Semiconductor Nanocrystals Reveals Vibronic Contributions to Line Broadening Processes Timothy G. Mack, Lakshay Jethi, Patanjali

More information

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample.

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample. Luminescence Topics Radiative transitions between electronic states Absorption and Light emission (spontaneous, stimulated) Excitons (singlets and triplets) Franck-Condon shift(stokes shift) and vibrational

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Multi-quantum well nanowire heterostructures for wavelength-controlled lasers Fang Qian 1, Yat Li 1 *, Silvija Gradečak 1, Hong-Gyu Park 1, Yajie Dong 1, Yong Ding 2, Zhong

More information

Photoluminescence Intermittency from Single Quantum Dots to Organic Molecules: Emerging Themes

Photoluminescence Intermittency from Single Quantum Dots to Organic Molecules: Emerging Themes Int. J. Mol. Sci. 2012, 13, 12487-12518; doi:10.3390/ijms131012487 Review OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Photoluminescence Intermittency

More information

Excitonic luminescence upconversion in a two-dimensional semiconductor

Excitonic luminescence upconversion in a two-dimensional semiconductor Excitonic luminescence upconversion in a two-dimensional semiconductor Authors: Aaron M. Jones 1, Hongyi Yu 2, John R. Schaibley 1, Jiaqiang Yan 3,4, David G. Mandrus 3-5, Takashi Taniguchi 6, Kenji Watanabe

More information

Chapter 5. Semiconductor Laser

Chapter 5. Semiconductor Laser Chapter 5 Semiconductor Laser 5.0 Introduction Laser is an acronym for light amplification by stimulated emission of radiation. Albert Einstein in 1917 showed that the process of stimulated emission must

More information

Multiple Exciton Generation in Quantum Dots. James Rogers Materials 265 Professor Ram Seshadri

Multiple Exciton Generation in Quantum Dots. James Rogers Materials 265 Professor Ram Seshadri Multiple Exciton Generation in Quantum Dots James Rogers Materials 265 Professor Ram Seshadri Exciton Generation Single Exciton Generation in Bulk Semiconductors Multiple Exciton Generation in Bulk Semiconductors

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

Materials as particle in a box models: Synthesis & optical study of CdSe quantum dots

Materials as particle in a box models: Synthesis & optical study of CdSe quantum dots Lab Week 3 Module α 2 Materials as particle in a box models: Synthesis & optical study of CdSe quantum dots Instructor: Francesco Stellacci OBJECTIVES Introduce the particle-wave duality principle Introduce

More information

single-molecule fluorescence resonance energy transfer

single-molecule fluorescence resonance energy transfer single-molecule fluorescence resonance energy transfer (2) determing the Förster radius: quantum yield, donor lifetime, spectral overlap, anisotropy michael börsch 26/05/2004 1 fluorescence (1) absorbance

More information

Supplementary Information. Efficient Biexciton Interaction in Perovskite. Quantum Dots Under Weak and Strong. Confinement

Supplementary Information. Efficient Biexciton Interaction in Perovskite. Quantum Dots Under Weak and Strong. Confinement Supplementary Information Efficient Biexciton Interaction in Perovskite Quantum Dots Under Weak and Strong Confinement Juan A. Castañeda, Gabriel Nagamine, Emre Yassitepe, Luiz G. Bonato, Oleksandr Voznyy,

More information

Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy

Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy Ryusuke Matsunaga 1, Kazunari Matsuda 1, and Yoshihiko Kanemitsu 1,2 1 Institute for Chemical

More information

Mechanisms of Visible Photoluminescence from Size-Controlled Silicon Nanoparticles

Mechanisms of Visible Photoluminescence from Size-Controlled Silicon Nanoparticles Mat. Res. Soc. Symp. Proc. Vol. 737 23 Materials Research Society F1.5.1 Mechanisms of Visible Photoluminescence from Size-Controlled Silicon Nanoparticles Toshiharu Makino *, Nobuyasu Suzuki, Yuka Yamada,

More information

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour Supplementary Figure 1 Raman spectrum of monolayer MoS 2 grown by chemical vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour deposition (S-CVD) are peak which is at 385 cm

More information

In a metal, how does the probability distribution of an electron look like at absolute zero?

In a metal, how does the probability distribution of an electron look like at absolute zero? 1 Lecture 6 Laser 2 In a metal, how does the probability distribution of an electron look like at absolute zero? 3 (Atom) Energy Levels For atoms, I draw a lower horizontal to indicate its lowest energy

More information

Saturation Absorption Spectroscopy of Rubidium Atom

Saturation Absorption Spectroscopy of Rubidium Atom Saturation Absorption Spectroscopy of Rubidium Atom Jayash Panigrahi August 17, 2013 Abstract Saturated absorption spectroscopy has various application in laser cooling which have many relevant uses in

More information

Role of the Inner Shell Architecture on the Various Blinking States and Decay Dynamics of Core-Shell and Core-Multishell Quantum Dots

Role of the Inner Shell Architecture on the Various Blinking States and Decay Dynamics of Core-Shell and Core-Multishell Quantum Dots University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2016 Role of the Inner Shell Architecture on the Various Blinking States and Decay Dynamics of Core-Shell and Core-Multishell

More information

Stable and Low-Threshold Optical Gain in CdSe/CdS Quantum Dots: An All-Colloidal Frequency Up-Converted Laser

Stable and Low-Threshold Optical Gain in CdSe/CdS Quantum Dots: An All-Colloidal Frequency Up-Converted Laser www.materialsviews.com www.advmat.de Stable and Low-Threshold Optical Gain in CdSe/CdS Quantum Dots: An All-Colloidal Frequency Up-Converted Laser Burak Guzelturk, Yusuf Kelestemur, Kivanc Gungor, Aydan

More information

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Linda M. Casson, Francis Ndi and Eric Teboul HORIBA Scientific, 3880 Park Avenue, Edison,

More information

Characterization of Group (II-VI) Semiconductor Nanoparticles by UV-visible Spectroscopy *

Characterization of Group (II-VI) Semiconductor Nanoparticles by UV-visible Spectroscopy * OpenStax-CNX module: m34601 1 Characterization of Group 12-16 (II-VI) Semiconductor Nanoparticles by UV-visible Spectroscopy * Sravani Gullapalli Andrew R. Barron This work is produced by OpenStax-CNX

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013097 TITLE: Optically Detected Magnetic Resonance of Semiconductor Quantum Dots DISTRIBUTION: Approved for public release,

More information

Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells

Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells CORRECTION NOTICE Continuous-wave bieciton lasing at room temperature using solution-processed quantum wells Joel Q. Grim, Sotirios Christodoulou, Francesco Di Stasio, Roman Krahne, Roberto Cingolani,

More information

Infrared Fluorescence of Lead Selenide Colloidal Quantum Dots

Infrared Fluorescence of Lead Selenide Colloidal Quantum Dots Infrared Fluorescence of Lead Selenide Colloidal Quantum Dots Heng Liu Email: liuh@uchicago.edu Advisor: Philippe Guyot-Sionnest The photoluminescence (PL) of PbSe colloidal quantum dots (QD) is investigated.

More information

LASER. Light Amplification by Stimulated Emission of Radiation

LASER. Light Amplification by Stimulated Emission of Radiation LASER Light Amplification by Stimulated Emission of Radiation Laser Fundamentals The light emitted from a laser is monochromatic, that is, it is of one color/wavelength. In contrast, ordinary white light

More information

Photoluminescence properties of CdTe/CdSe core-shell type-ii

Photoluminescence properties of CdTe/CdSe core-shell type-ii Photoluminescence properties of CdTe/CdSe core-shell type-ii quantum dots C. H. Wang, T. T. Chen, K. W. Tan, and Y. F. Chen * Department of Physics, National Taiwan University, Taipei 106, Taiwan Abstract

More information

in core-shell semiconductor nanocrystals

in core-shell semiconductor nanocrystals Z Axis 6000 5000 4000 3000 2000 1000 0 0 2 4 6 X Axis 8 10 0 2 4 6 Y Axis 8 10 Single and multi-excitons in core-shell semiconductor nanocrystals Prof. Efrat Lifshitz Dept. of Chemistry, Solid State Institute

More information

High-density femtosecond transient absorption spectroscopy of semiconductor nanoparticles. A tool to investigate surface quality*

High-density femtosecond transient absorption spectroscopy of semiconductor nanoparticles. A tool to investigate surface quality* Pure Appl. Chem., Vol. 72, Nos. 1 2, pp. 165 177, 2000. 2000 IUPAC High-density femtosecond transient absorption spectroscopy of semiconductor nanoparticles. A tool to investigate surface quality* C. Burda

More information

Supplementary information for the paper

Supplementary information for the paper Supplementary information for the paper Structural correlations in the generation of polaron pairs in lowbandgap polymers for photovoltaics Supplementary figures Chemically induced OD 0,1 0,0-0,1 0,1 0,0-0,1

More information