Register Allocation and Binding for Low Power. Jui-Ming Chang and Massoud Pedram. function of signal statistics and correlations, and hence is

Size: px
Start display at page:

Download "Register Allocation and Binding for Low Power. Jui-Ming Chang and Massoud Pedram. function of signal statistics and correlations, and hence is"

Transcription

1 Rgistr Allotion n ining or Low Powr Jui-Ming hng n Mssou Prm Dprtmnt o Eltril Enginring-Systms Univrsity o Southrn liorni Los Angls, A 989 Astrt This ppr sris thniqu or lulting th swithing tivity o st o rgistrs shr y irnt t vlus s on th ssumption tht th joint p (proility nsity untion) o th primry input rnom vrils is known or tht suintly lrg numr o input vtors hs n givn, th rgistr ssignmnt prolm or minimum powr onsumption is ormult s minimum ost liqu ovring o n ppropritly n omptiility grph (whih is shown to trnsitivly orintl) Th prolm is thn solv optimlly (in polynomil tim) using mx-ost ow lgorithm Exprimntl rsults on- rm th viility n usulnss o th pproh in minimizing powr onsumption uring th rgistr ssignmnt phs o th hviorl synthsis pross Introution On riving tor hin th push or low powr sign is th growing lss o prsonl omputing vis s wll s wirlss ommunitions n imging systms tht mn high-sp omputtions n omplx untionlitis with low powr onsumption Anothr riving tor is tht xssiv powr onsumption is oming th limiting tor in intgrting mor trnsistors on singl hip or on multipl-hip moul Unlss powr onsumption is rmtilly ru, th rsulting ht will limit th sil pking n prormn o VLSI iruits n systms Th hviorl synthsis pross onsists o thr phss: llotion, ssignmnt n shuling Ths prosss trmin how mny instns o h rsour r n (llotion), on wht rsour omputtionl oprtion will prorm (ssignmnt) n whn it will xut (shuling) Tritionlly, hviorl synthsis ims to minimiz th numr o rsours rquir to prorm tsk in givn tim or to minimiz th xution tim or givn st o rsours It hs om nssry to vlop hviorl synthsis thniqus tht lso ount or powr issiption in th iruit This rsrh ws support in prt y th NSF's Young Invstigtor Awr unr ontrt No MIP n grnt rom th Intl orp 32n AM/IEEE Dsign Automtion onrn Prmission to opy without ll or prt o this mtril is grnt, provi tht th opis r not m or istriut or irt ommril vntg, th AM opyright noti n th titl o th pulition n its t ppr, n noti is givn tht opying is y prmission o th Assoition or omputing Mhinry To opy othrwis, or to rpulish, rquirs n/or spii prmission 995 AM /95/6 $35 This xtns th two-imnsionl optimiztion prolm to thir imnsion Th thr phss o th hviorl synthsis pross must thus moi to prou low powr iruits Unortuntly, powr issiption is strong untion o signl sttistis n orrltions, n hn is non-trministi Automti thniqus tht minimiz th swithing tivity on glolly shr usss n rgistr ls, tht slt low powr mros tht stisy th timing onstrints, tht shul oprtions to minimiz th swithing tivity rom on yl stp to nxt, t must vlop This ppr onsirs rgistr ssignmnt or low powr Most o th high-lvl synthsis systms prorm shuling o th ontrol n t ow grph (DFG) or llotion o th rgistrs n mouls n synthsis o th intronnt [][8][7] s this pproh provis timing inormtion or th llotion n ssignmnt tsks Othr systms prorm th rsour llotion n ining or shuling, in orr to provi mor pris timing inormtion vill uring th shuling [9] Eithr pproh hs its own vntgs n shortomings Th prsnt work ssums tht th shuling o th DFG hs n on n prorms th rgistr llotion or th llotion o mouls n intronntion During th rgistr llotion n ssignmnt, t vlus (rs in th t ow grph) n shr th sm physil rgistr i thir li tims o not ovrlp In th pst, rsrhrs hv propos vrious thniqus to ru th totl numr o th rgistrs us Th xisting pprohs inlu rul-s [6], gry or itrtiv [], rnh n oun [3], linr progrmming [], n grph thorti, s in th Ft systm [8], th HAL systm [6] n th EASY systm [7] Powr onsumption o wll sign rgistr sts pns minly on th totl swithing tivity o th rgistrs In mny pplitions, th t strms whih r input to th iruit hv rtin proility istriutions Vrious wys o shring rgistrs mong irnt t vlus thus prou irnt swithing tivitis in ths rgistrs This work prsnts novl wy olulting this swithing tivity s on th ssumption tht th joint p (proility nsity untion) o primry input rnom vrils is known or suintly lrg numr o input vtors hs n givn In th lttr s, th joint p n otin y sttistil mthos Atr otining th joint p o primry input vrils, th p o ny intrnl r (t vlu) in th t ow grph n th joint p o ny pir o rs (t vlus) in th t ow grph r lult y mtho tht will sri in til in th ollow-

2 ing stions Th swithing tivity on pir o rs is thn ormult in trms o th joint p o ths rs, or ltrntivly, in trms o untion o th joint p o ll primry input vrils Th li tim o h r (t vlu) in shul t ow grph is th tim uring whih th t vlu is tiv (vli) n is n y n intrvl [irth tim; th tim] A omptility grph G(V,A) or ths rs (t vlus) is thn onstrut, whr vrtis orrspon to t vlus, n thr is irt r (u,v) twn two vrtis i n only i thir orrsponing li tims o not ovrlp n th u oms or v W will show tht th unorint omptility grph or th rs (t vlus) in shul t ow grph without yls n rnhs is omprility grph (or trnsitivly orintl grph) whih isprt grph [5] This is vry usul proprty, s mny grph prolms (g mximum liqu; mximum wight k-liqu ovring, t) n solv in polynomil tim or prt grphs whil thy r NP-omplt or gnrl grphs Hving lult th swithing tivity twn pirs o rs tht oul potntilly shr th sm rgistr n givn th numr o rgistrs tht r to us, th rgistr ssignmnt prolm or minimum powr onsumption is ormult s minimum ost liqu ovring o th omptiility grph Th prolm is thn solv optimlly (in polynomil tim) using mx-ost ow lgorithm Th two prolms, lultion o th ross-r swithing tivitis (whih must prorm O(j E j) tims, whr j E j is th numr o gs in th omptiility grph) n powr minimiztion uring rgistr ssignmnt, r inpnnt Th lultion o th ross-r swithing tivitis n prorm y ny mns W prsnt on suh thniqu ltr Othr thniqus my howvr us Th powr optimiztion is prorm on th rossr swithing tivitis r known Th rminr o this ppr is orgniz s ollows: Stion 2 shows th mtho to lult th swithing tivity twn pirs o t vlus (rs) Stion 3 shows th mtho to optimiz th powr onsumption o rgistrs in th rgistr llotion phs in hviorl synthsis Stion 4 r som xmpls to monstrt th mthoology 2 Swithing Ativity lultion 2 lultion o vrious ps In mny instns, th input t strms r somwht known, n n thus sri y som proilisti istriutions (Our propos mtho pplis not only to th wll known proility istriutions, suh s joint Gussin istriution, ut lso to ritrry proility istriutions) Givn suint numr o input vtors, it is possil to n th symoli xprssions or th p's n th joint p o ll inputs using mthos in sttistis For xmpl, on wy to o this is to lult th rquny o th ourn or h vtor mong th st o input vtors, n thn prorm th intrpoltion on th sts o isrt points to otin th symoli xprssion o th joint p Altrntivly, on n work irtly with th input vtors without hving to n th symoli xprssion o th joint p, tht is, or suintly lrg numr o th input vtors, th rquny o ourn or h input vtor n srv s th vlu o th joint p or tht pttrn I w r givn th joint p o th input rnom vrils o t ow grph, thn th joint p o ny pir o vlus (rs in th t ow grph) n lult [5] W wnt to n th joint p o ny two rs Suppos tht th two rs r y = u (x ;x 2;:::;x n) n y 2 = u 2(x ;x 2;:::;x n) W n nothr (n 2) r untions y 3;y 4;:::;y n n orm systm o n qutions in n input vrils Lt's not th joint p o th n input vrils s (x ;x 2;:::;x n) I th invrs solution x = w (y ;y 2;:::;y n);x 2 = w 2(y ;y 2;:::;y n);:::;x n = w n(y ;y 2;:::;y n) n otin symolilly, thn th joint p o y ;y 2;:::;y n whih is not y (y ;y 2;:::;y n) is: whr J J (y ;y 2;:::;y n)= jj j [w (y ;y 2;:::;y n); w 2(y ;y 2;:::;y n);:::; w n(y ;y 2;:::;y n)] is th nxn invrs Join: (y ;y 2;:::;y n)= x x y x 2 x 2 y xn y yn y 2 x y 2 x 2 yn xn y 2 xn yn On w hv th (y ;y 2;:::;y n),w n lult th pirwis p o y n y 2, y y 2 (y ;y 2), s Z Z Z y y 2 (y ;y 2)= (y ;y 2;:::;y n) y 3y 4 :::y n: Th intgrtion n prorm ithr symolilly or numrilly Th numril intgrtion ovr (n 2) vrils involvs muh mor omputtion, ut is n ltrntiv pproh whih is lwys possil whnvr th symoli intgrtion ovr th (n 2) vrils is not possil In ition to th lultion o pirwis joint ps, th p o ny intrnl r is n to lult th totl swithing tivity o th st o rgistrs Suppos untion y = w(x ;x 2;:::;x n) is som r (t vlu) in th t ow grph pning on n input rnom vrils x ;x 2;:::;x n Th (umult istriution untion) o th nw rnom vril y is n s G(y) = pro(y y), whih is qul to pro(w(x ;x2;:::;x n) y) Th ov proility n vlut s: G(y) = ZZ Z A (x ;x 2;:::;x n) whr (x ;x 2;:::;x n) is th joint p o th n input rnom vrils x ;x 2;:::;x n, n A = (x ;x 2;:::;x n) j w(x ;x2;:::;x n) yg Th p o y s g(y) is thn otin y g(y) = G(y) y

3 i j k ontrol ontrol x y Mux R DMux out,mux in,r in,dmux out, R Figur : Our rgistr shring mol 22 Th powr onsumption mol Swith pitn rrs to th prout o th lo pitn n th swithing tivity o th rivr Th powr onsumption o rgistr is proportionl to th swith pitn on its input n output (s Fig ) Suppos rgistr R n shr twn thr t vlus i; j n k: W ssum tht n input multiplxor piks th vlu tht is writtn into R whil n output multiplxor ispths th stor vlu to its propr stintion Now, P (R ) / swithing(x) ( out;mux in;r )swithing(y) ( out;r in;dmux) Sin swithing(x) =swithing(y), P (R )=swithing(y) totl Not tht totl is x or givn lirry In ny s, minimizing th swithing tivity t th output o th rgistrs will minimiz th powr onsumption rgrlss o th spi lo sn t th output o th rgistrs Hr w ignor th powr onsumption intrnl to rgistrs n only onsir th xtrnl powr onsumption In th rgistr llotion phs, i svrl omptil rs r ssign to th sm rgistr R, th swithing on R will our whnvr on stor t vlu is rpl y nothr t vlu For xmpl, suppos,y,z n W r our omptil t vlus tht shr rgistr R n th rs (; Y ); (Y;Z);(Z;W) 2 A Suppos tht in th ginning, th rgistr ws rst to som unknown vlu W ssum th swithing tivity rom th unknown vlu to is som onstnt vlu Thn th ollowing is th hin o th t trnsitions! Y! Z! W I th input vril vlus r known, thn th xt swithing tivity is lult s onstnt H(; Y )H(Y; Z) whr H(i; j) is th Hmming istn twn two numrs i n j I, howvr, th iruit hs vn on input rnom vril, th whol systm hs to sri in proilisti wy s sri nxt Assum tht th n primry input rnom vrils r ; 2;:::; n n st A = ( ; 2;:::; n)g is th st ontining ll possil omintions o input tupls Lt st = (x; y) j x = x( ; 2;:::; n); y = y( ; 2;:::; n); 8( ; 2;:::; n) 2Ag Th swithing tivity twn th two onsutiv t vlus n Y is thn givn y: swithing(; Y ) = (x;y)2 i j k xy(x; y) H(x; y) () whr th summtion is ovr ll possil pttrns o (x; y) 2, n th untion H(x; y) is th Hmming istn twn two numrs x n y whih r rprsnt in rtin numr systm in inry orm Eqution ( ) rquirs tht th isrt typ joint p or x; y known Th mtho or lulting th joint p o two rnom vrils sri in stion 2 is minly suitl or th s whn th vrils in th systm r o ontinuous typ Whn howvr th prision us to rprsnt th isrt numrs is high nough or th vrin o th unrlying istriution is not too lrg, th ontinuous typ p g xy(x; y) n us s goo pproximtion or th isrt typ p P xy(x; y) tr ing multipli y th sling tor ( (x;y)2 gxy(x; y)) Th symoli omputtion mtho is howvr not vry prtil us it involvs th tsks o ning th symoli invrs solution o th systm o nonlinr qutions n symoli or numril intgrtion o omplit xprssions ovr th rgion n y omintion o inqulitis n/or qulitis Fortuntly, th sm swithing tivity or pir o isrt rnom vrils x n y n otin muh mor sily y th ollowing: swithing(;y ) = 2 n ( ; 2;:::; n) H(x( ; 2;:::; n);y( ; 2;:::; n)) (2) whr ( ; 2;:::; n) is th joint p o th input vrils ; 2;:::; n oth qution ( ) n qution ( 2) strt rom th ssumption tht th joint p ( ; 2;:::; n) is otin or known This is nssry onition in orr to prisly lult th ross-r swithing tivitis Furthrmor, qution ( 2) n us irtly on th input vtors r givn without otining th symoli xprssion or ( ; 2;:::; n) Hr w ssum tht th it with o rgistr is nit, so th totl numr o th pttrns tht n stor in rgistr is lso nit I w ssum ll o th numrs in our systm r intgrs (positiv or ngtiv), thn th totl numr o irnt (x; y) pirs involv in qution ( ) is t most 2 2it with In gnrl, qution ( 2) involvs multiimnsionl nst summtions ovr intrvls o intgrl vlus Whn th joint p o primry input vrils is n-limit (g Gussin), w n nrrow own th intrvl o summtion in h imnsion n thry signintly sp up th omputtion Lt's not th st A = ( ; 2;:::; n)g, st = (x; y) j x = x( ; 2;:::; n); y = y( ; 2;:::; n); 8( ; 2;:::; n) 2Ag, = (y; z) j y = y( ; 2;:::; n); z = z( ; 2;:::; n); 8( ; 2;:::; n) 2Ag, n D = (z;w) j z = z( ; 2;:::; n); w = w( ; 2;:::; n); 8( ; 2;:::; n) 2Ag Th totl swithing tivity in th ov xmpl with rgistr R shr y our rs (t vlus) is ormult s ollows: onstnt onstnt (x;y)2 (y;z)2 (z;w)2d xy(x; y) H(x; y) yz(y; z) H(y; z) zw(z;w) H(z;w) = ( ; 2;:::; n)(h(x; y) 2 n H(y; z)h(z;w)) (3) Th totl swithing tivity or rgistr n lult tr th th st o vrils tht shr tht rgistr

4 r oun Not tht th squn o t trnsitions r known t tht tim 3 Powr Optimiztion 3 Mx-ost ow ormultion Dnition 3 A irt grph G = (V,A) is ll th omptiility grph or rgistr llotion prolm i th it is onstrut y th ollowing prour Eh r (t vlu) i in th t ow grph hs n intrvl (irth tim i; th tim i) ssoit with it Eh opn intrvl i orrspons to vrtx i in G = (V,A) Thr is irt r(u; v) 2 A i n only i intrvl u \ intrvl v = ; n th tim u < irth tim v All proos n oun in [2] Thorm 3 Givn t ow grph without loops n rnhs, th omptiility grph G = G(V,A) or rgistr llotion prolm is yli Dnition 32 [5]An unirt grph G =(V,E) is omprility grph i thr xists n orinttion (V,F) o G stisying F \ F = ;; F F = E; F 2 F whr F 2 = (; ) j (; ); (; ) 2 F or som vrtx g omprility grphs r lso known s trnsitivly orintl grphs n prtilly orl grphs Dnition 33 Th unorint omptiility grph G = (V; E) is otin y rmoving th g orinttions o G =(V; A) Thorm 32 Givn t ow grph without loops n rnhs, th unorint omptiility grph G = (V,E) or rgistr llotion prolm is omprility grph To minimiz th totl powr onsumption on th rgistrs, ntwork N G = (s; t; V n;e n;;k) is onstrut rom th omptiility grph G = G(V; A) This is similr onstrution to th on us in [7] to solv th wight moul llotion prolm whih simultnously minimizs th numr o mouls n th mount o intronntion n to onnt ll mouls onptully, N G = (s; t; V n;e n;;k) is onstrut rom G = G(V;A) with two xtr vrtis, th sour vrtx s n th sink vrtx t Th itionl rs r th rs rom s to vry vrtx in V o G(V;A), n rom vry vrtx in V o G(V; A) tot W us th Mx-ost Flow lgorithm on N G to n mximum ost st o liqus tht ovr th G = G(V; A) Th ntwork on whih th ow is onut hs th ost untion n th pitis K - n on h r in E n Assuming tht h rgistr hs n unknown vlu t tim t,w us onstnt sw to rprsnt th swithing(unknown; v) or h vrtx v Mor ormlly, th ntwork N G = (s; t; V n;e n;;k) is n s th ollowing: V n = V [s; tg E n = A [(s; v); (v; t) j v 2 V g w(s; v) = L sw M (4) w(u; v) = L = L (u;v)2 2 uv(u; v) H(u; v) M ( ; 2;:::; n) H(u( ; 2;:::; n);v( ; 2;:::; n)) (5) w(v; t) = L; 8 v 2 V; w(t; s) = L: (6) whr A = ( ; 2;:::; n)g, = (u; v) j u = u( ; 2;:::; n); v = v( ; 2;:::; n); 8( ; 2;:::; n) 2Ag, L = mx swithing(u; v)g M ovr ll possil u,v 2 V [sg, n M is lrg onstnt us to sl up th smllst swithing tivity vlu to n intgr For h r 2 E n, ost untion : E n! N is n, whih ssigns non-ngtiv intgr ost to h r Th ost untion or ntwork N G is : (u; v) = w(u; v) or ll (u; v) 2 E n Th ost untion is n to init th powr svings on th r For h r 2 E n, pity untion K: E n! N, is n tht ssigns to h r non-ngtiv numr Th pity o ll th rs is on, xpt or th rturn r rom t to s whih hs pity k, whr k is usr-spi ow vlu n K(u; v) = ; 8(u; v) 2 E n n(t; s)g K(t; s) = k For h r 2 E n,ow untion : E n! N is n whih ssigns to h r non-ngtiv numr Th ow () on h r 2 E n must oy th ollowing: () K() n th ow onhvrtx v 2 V n must stisy th ow onsrvtion rul Thorm 33 A ow : E n! N with j j =, in th ntwork N G orrspons to liqu in th unorint omptiility grph G Thorm 34 A ow : E n! N, with j j = k, inth ntwork N G orrspons to st o liqus ; 2;:::; k in th unorint omptiility grph G Th gnrt liqus my not vrtx isjoint us th k pths in th N G my not vrtx isjoint On wy to nsur tht th rsulting liqus r vrtx isjoint is to mploy no-splitting thniqu This thniqu uplits vry vrtx v 2 V in th grph G = G(V;A) into nothr no v Thr is n r rom v to v or h v 2 V I thr is n r (u; v) 2 A in th grph G = G(V; A), thr is n r (u ;v) in th nw ntwork NG Thr is lso n r rom th sour vrtx s to vry vrtx v 2 V n rom vry uplit vrtx v to th sink vrtx t Mor ormlly, th no splitting thniqu gnrts th ollowing ntwork NG = (s; t; Vn;E n; ;K ) whr: Vn = V n [ V thr is vrtx v = (v) 2 V or h vrtx v 2 V En = A [(s; v); ((v);t);v 2 V g[(t; s)g [(v; (v) j v 2 V g

5 Dt Folw Grph / * s Ntwork Atr Vrtx Splitting t omptiility Grph s t Ntwork or Vrtx Splitting Figur 2: From t ow grph to ntwork N G A = ((u);v) j(u; v) 2 Ag ((t; s)) = ((v; (v)) = L; 8 v 2 V ((u ;v)) = ((u; v)) or ll (u ;v)2a [(s; v) ; ((v);t)j v 2 V g K ((t; s)) = k; K ((u; v)) = or ll u 6= t; n v 6= s: Th trnsormtions rom th t ow grph to th nl ntwork N G r shown in Fig 2 Thorm 35 A ow : E n! N, with j j = k, in th ntwork NG orrspons to st o vrtx isjoint liqus ; 2;:::; k in th unorint omptiility grph G Dnition 34 [4]Lt N = (s,t,v,e,,k) ow ntwork with unrlying irt grph G=(V,E), wighting on th rs ij 2 R or vry r (i,j) 2 E, pity K() or vry r 2E, n ow vlu v 2 R Th min-ost ow prolm is to n sil s-t ow o vlu v tht hs minimum ost In th orm o n LP: min t A = v vry no vry r vry r whr A is th no-r inin mtrix n ( i=s i = i=t othrwis Dnition 35 Th mximum ost ow prolm is tht givn ntwork N=(s,t,V,E,,K) n x ow vlu v, n th ow tht mximizs th totl ost Th sist mtho to solv th mx-ost ow prolm is to ngt th ost o h r in th ntwork, n run th min-ost ow lgorithm on th nw ntwork [4] Th prvious ntwork onstrution NG nsurs tht th rsulting pths r vrtx isjoint liqus in G (or G ) Whn th mx-ost ow lgorithm is ppli on this ntwork,w otin liqus tht mximiz th totl ost Th ow vlu on h pth is on, this implis tht th totl ost on h iniviul pth is th sum ovr ll iniviul rs on tht pth oring to thir topologil orr in th grph G = G(V; A), whr th ost on h r is linr untion o th \Sv Powr" For xmpl, i (s; ), (; ), (; ), (; t) is pth rom sour s to sink t Th totl ost on this pth is ost(s; ) ost(; ) ost(; ) ost(; t) Also, rom th ov inormtion, w n onlu tht th st o vrils ; ; g will shr th sm rgistr oring to th orr!! : Thorm 36 Th mx-ost ow lgorithm on th ntwork NG givs th minimum totl powr onsumption on th rgistrs in th iruit rprsnt y th omptiility grph G P Proo: Th totl ost is () (), whih is 2En linr untion o th \Totl Sv Powr" Th rson is tht 2 En L () () = 2En 2En () [L M swithing()] = () M 2En () swithing() In our spilly onstrut ntwork, () invry r xpt (t; s) P hs vlu ithr zro or on Th rst trm in th ov, (), is onstnt (=2jV jk 2En or G = G(V;A)) mong ll possil liqu ovrings tht ovr ll o th vrtis in th originl grph G Whn w mximiz th totl ost or givn ow vlu in NG,w r in minimizing th totl powr onsumption givn tht th numr o rgistrs is qul to this ow vlu Not tht, th mx-ost ow onnglwys ns th liqu ovring tht ovrs ll o th vrtis in th originl grph G whnvr th ow vlu j j is lrgr thn or qul to k min k min n trmin y th lt g lgorithm [] or simply y ning th mximum numr o rs tht ross ny -stp ounry In most ss, th k min oun y th lt g lgorithm is qul to th k min or mx-ost ow Howvr, in som pthologil ss, th two vlus r not th sm In tht s, post-prossing stp is n [2] 2 Th tim omplxity or th mx-ost ow lgorithm is O(km 2 ), oring to [4], whr m =2jV j2 or th grph G = G(V; A) n k is th ow vlus onitionl rnhs n sily hnl in our systm y rlxing th onitionl t ow grph into svrl

6 unonitionl t ow grphs n prorming th ov mtho on th iniviul rlx t ow grphs Du to th limit sp, w o not prsnt th tils hr A til xposition is provi in [2] 4 An xmpl Th ollowing xmpl is s on shul t ow grph s th on shown in Fig 3 This simpl t ow grph hs v primry input vrils,,, n For th sk o prsnttion, whoos th 5-vrit joint Gussin istriution s th joint p o,,, n Not howvr tht our mtho works or ritrry joint p's Th 5-vrit Gussin is goo hoi s this p is ommonly nountr in mny pplition omins, lik DSP Lt = A ; whr A = Th 5-vrit Gussin istriution is givn y: : : : : : () = Gussin5(; ; ; ; ) = p (2)5 t() xp 2 t g A whr mtrix is th ovrin mtrix or th 5-vrit Gussin joint p W ssum tht in this s it is givn y: 69:39 25:37 38:29 2:669 6:576 25:37 73:235 :992 4:952 63:63 38:29 :992 9:6 2:767 2:559 2:669 4:952 2:767 66:73 :366 6:575 63:63 2:559 :366 74:76 A Th numril vlus on th right hn si r provi s n xmpl From Fig 3, w know tht thr r six intrmit vrils in th t ow grph, tht is, rnom vrils, g, h, i, j, n k = g = h = ( ) ( ) i = ( )() j = 2 k = 2 ()() Th vrils' li tims r: (; 2); (; 2); (; 2); (; 2); (; 4); (2; 3); g(2; 4); h(2; 4); i(4; 5); j(4; 5); k(5; 6)g From th ov li tims, th prour us to onstrut th orint omptiility grph or th rgistr llotion prolm gnrts G = G(V; A) In this xmpl, w ssum 6-it rgistrs n th two's omplmnt rprsnttion or th vlus All numrs r in th rng [-32768, 32767] g * g h i ^2 j k Figur 3: Th shul t ow grph W us qution ( 2) in Stion 22 to lult th ross-r swithing tivitis or vry pir o rs in G(V;A): Th swithing tivity o or ny vril x rom tim = t whih is ssum to hv som unknown vlu to th tim tht th vril gts its rst vlu ws tkn to onstnt qul to (=5)[swithing(;)swithing(;) swithing(;)swithing(;)swithing(;)]: Atr lulting th swithing tivitis, w onstrut th mx-ost ow ntwork Th wight onh r is lult y qution ( 4)-( 6) in Stion 3 Hr w hoos M =, n so L = 837 Th ollowing wights r otin: w(x; x )=L; 8x 2 V ; w(s; x) = 527; 8x 2 V n othr w's r givn y th ollowing tl: g h i j k t g h i j Applying th mx-ost ow on th ntwork N G with th vrtx splitting thniqu, th ollowing rsults or numr o rgistrs, liqus n tul totl swithing tivity r otin: No o rg; liqus tot SA 7; ; g; ; g; ig; ; jg; g; g; hg; kgg ;; g; ; g; i; kg; ; jg; g; g; hgg ;; g; ; g; i; kg; ; hg; ; jg; gg 7882

7 Not tht our mtho ns th minimum powr rgistr ssignmnt or th givn numr o rgistrs To monstrt tht th swithing tivity lultion s on th joint p is nssry to otin low powr rgistr ssignmnt w prorm n xprimnt whr vry r wight in th omptiility grph ws st to som onstnt (= ) n thn rn th mx-ost ow or irnt ow vlus For ow vlu 5, w otin: Numr o rgistrs is qul to 5, liqus = ; h; kg; ; ; ig; ; g; jg; g; gg, tul totl swithing tivity = , whih is 355% wors thn th optimum solution Nxt, w gnrt rgistr ssignmnt solution using Rl [] whih ns th minimum numr o rgistrs n (in this s) n otin th ollowing rsult: Numr o rgistrs is qul to 5, liqus = ; ; i; kg; ; g; jg; ; hg; g; gg, tul totl swithing tivity = 7847, whih is 7% wors thn th optimum solution In, mong ll vli rgistr ssignmnt o givn siz, our propos lgorithm ns th on tht minimizs th powr onsumption Th prntg powr rution inrss or lrgr t ow grphs For xmpl, w otin 225% improvmnt in powr (ompr to th minimum rgistr ount rgistr ssignmnt prour) on 7-input t ow grph using similr ssumptions out th joint p n th t typs Spilly, For th Min-Powr Rgistr Assignmnt, w otin: Numr o rgistrs is qul to 9, liqus = ; ig; ; hg; ; j; kg; l; mg;ng; g; g;g; ggg n tul totl swithing tivity = 686; Numr o rgistrs is qul to 8, liqus = ; l; mg; ; hg;; j; kg; ;ig; g;g;gg;ngg n tul totl swithing tivity = 7272; Numr o rgistrs is qul to 7, liqus = ; l; m; ng;; hg; ; j; kg, ;ig;g;g; ggg n tul totl swithing tivity = 7763 For th Min-ount Rgistr Assignmnt, w otin: Numr o rgistrs is qul to 7, liqus = ; j; mg; ; h; k; ng; ; i; lg; g; g; g; ggg n tul totl swithing tivity = 7 5 onlusion This ppr prsnt novl wy to lult th swithing tivity xtrnl to st o rgistrs s on th ssumption tht th joint p o th primry input rnom vrils is known or n lult For shul t ow grph without yls, th omptiility grph or rgistr llotion n ssignmnt prolm ws provn to trnsitivly orintl grph A spil ntwork ws thn onstrut rom th ov omptiility grph n th mx-ost ow lgorithm ( vrition o min-ost ow lgorithm) ws prorm to otin th minimum powr onsumption rgistr ssignmnt Du to proprtis o trnsitivly orintl grph, th tim omplxity is polynomil Our utur work will ous on th rgistr ssignmnt or piplin sign n t ow grph with outr loops Aknowlgmnt Th rst uthor knowlgs hlpul isussions with hin-hi Hsu, Tung-Shn Lin n Kuo-hun L rom prtmnt o EE-systms t th Univrsity o Southrn liorni Rrns [] M lkrishnn n P Mrwl \Intgrt Shuling n ining: A Synthsis Approh or Dsign Sp Explortion" In pro o th 26th AM/IEEE DA, pp 68-74, 989 [2] J-M hng, M Prm,\Powr Eint Rgistr Assignmnt", ENG Thnil Rport 95-3, Univrsity o Southrn liorni, Mr 995 [3] G D Mihli,\Synthsis n Optimiztion o Digitl iruits"', MGrw Hill 994 [4] J Emons n RM Krp,\Thortil Improvmnts in Algorithmi Einy or Ntwork Flow Prolms", Journl o th AM, vol 9, no2, pp , April 972 [5] MGolumi, \Algorithmi Grph Thory n Prt Grphs", Ami Prss 98 [6] G Goossns, D Lnnr, J Vnhoo, J Ry, J Vn Mrrgn, n H D Mn \Optimiztion-s Synthsis o Multiprossor hips or Digitl Signl Prossing with thrl- II" In G Suir n PM MLlln, itor, Logi n Arhittur Synthsis, 988 [7] Y Hithok n DE Thoms, \A Mtho o Automti Dt Pth Synthsis", in Pro o th 2th Dsign Automti on Nw York, NY:AM/IEEE, pp , Jun 983 [8] R Hogg, A rig, \Introution to Mthmtil Sttistis" ourth Eition pp47-52 [9] D Ku, G D Mihli, \Rltiv Shuling Unr Timing onstrints", in DA, Proings o Dsign Automtion onrn, pp 59-64, Jun 99 [] K Kuukkr n A Prkr \MAAL, A Sotwr Pkg or Moul n us Allotion" Intrntionl Journl o omputr Ai VLSI Dsign, pp , 99 [] F Kurhi, A Prkr, \REAL: A Progrm or REgistr Allotion", in Proing o 24th Dsign Automtion onrn, Jun 987 [2] P Mihl, U Luthr, P Duzy, \Th Synthsis Approh to Digitl Systm Dsign", Kluwr Ami Pulishrs [3] M Pngrl n DD Gski, \Dsign Tools or Intllignt Silion ompiltion", IEEE trns on AD, 6(6), Nov 987 [4] Ppimitriou, K Stiglitz, \omintoril Optimiztion, Algorithms n omplxity" Prnti-Hll, in, 982 [5] A Ppoulis, \Proility, Rnom Vrils, n Stohsti Prosss" Thir Eition, stion 63, MGrw-Hill, 99 [6] PG Pulin n JP Knight,\Shuling n ining Algorithms or High-Lvl Synthsis", in Pro o th 26th AM/IEEE Dsign Automtion onrn (DA), pg -6, 989 [7] L Stok,\An Ext Polynomil Tim Algorithm or Moul Allotion", in Fith Intrntionl Workshop on High-Lvl Synthsis, uhlrhoh, pp69-76, Mrh [8] -J Tsng n DP Siwiork, \Automt Synthsis o Dt Pths in Digitl Systms", IEEE trns on AD, 5(3), July 986

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently?

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently? Rgistr Allotion Rgistr Allotion How to ssign vrils to initly mny rgistrs? Wht to o whn it n t on? How to o so iintly? Mony, Jun 3, 13 Mmory Wll Disprity twn CPU sp n mmory ss sp improvmnt Mony, Jun 3,

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

New challenges on Independent Gate FinFET Transistor Network Generation

New challenges on Independent Gate FinFET Transistor Network Generation Nw hllngs on Inpnnt Gt FinFET Trnsistor Ntwork Gnrtion Viniius N. Possni, Anré I. Ris, Rnto P. Ris, Flip S. Mrqus, Lomr S. Ros Junior Thnology Dvlopmnt Cntr, Frl Univrsity o Plots, Plots, Brzil Institut

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Clustering Techniques for Coarse-grained, Antifuse-based FPGAs

Clustering Techniques for Coarse-grained, Antifuse-based FPGAs Clustring Thniqus or Cors-grin, Antius-s FPGAs Chng-woo Kng n Mssou Prm Astrt In this ppr, w prsnt r n prormn-rivn lustring thniqus or ors-grin, ntius-s FPGAs. A mro logi ll in this lss o FPGAs hs multipl

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications Proings of th 6th WSEAS Intrntionl Confrn on Miroltronis, Nnoltronis, Optoltronis, Istnul, Turky, My 27-29, 27 32 A Low Nois n Rlil CMOS I/O Buffr for Mix Low Voltg Applitions HWANG-CHERNG CHOW n YOU-GANG

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method:

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method: Dinition: GREEDY TECHNIQUE Gry thniqu is gnrl lgorithm sign strtgy, uilt on ollowing lmnts: onigurtions: irnt hois, vlus to in ojtiv untion: som onigurtions to ithr mximiz or minimiz Th mtho: Applil to

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ h ln ony, hrunk th t ihr nr omputr in n nginring nivrsity of shington t omprssion onpts ossy t omprssion osslss t omprssion rfix os uffmn os th y 24 2 t omprssion onpts originl omprss o x y xˆ nor or omprss

More information

DETAIL B DETAIL A 7 8 APPLY PRODUCT ID LABEL SB838XXXX ADJ FOUR POST RACK SQUARE HOLE RAIL B REVISION

DETAIL B DETAIL A 7 8 APPLY PRODUCT ID LABEL SB838XXXX ADJ FOUR POST RACK SQUARE HOLE RAIL B REVISION RVISION RV SRIPTION Y T HNG NO NOT OR PROUT LL JJH // LR TIL PPLY PROUT I LL TIL INSI UPPR ROSS MMR ON PR RK IS J OUR POST RK SQUR HOL RIL IS MN MS G NUT, PNL RNG 99 PPLY PROUT I LL INSI UPPR ROSS MMR

More information

Module 2 Motion Instructions

Module 2 Motion Instructions Moul 2 Motion Instrutions CAUTION: Bor you strt this xprimnt, unrstn tht you r xpt to ollow irtions EXPLICITLY! Tk your tim n r th irtions or h stp n or h prt o th xprimnt. You will rquir to ntr t in prtiulr

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

temporally share the same FPGA Large circuit PI s micro-cycle one user cycle PO s

temporally share the same FPGA Large circuit PI s micro-cycle one user cycle PO s Ciruit Prtitioning for Dynmilly Rongurl FPGAs Huiqun Liu n D. F. Wong Dprtmnt of Computr Sins Unirsity of Txs t Austin Austin, T 787 Emil: fhqliu, wongg@s.utxs.u Astrt Dynmilly rongurl FPGAs h th potntil

More information

Layout Decomposition for Triple Patterning Lithography

Layout Decomposition for Triple Patterning Lithography Lyout Domposition or Tripl Pttrning Lithogrphy Bi Yu, Kun Yun, Boyng Zhng, Duo Ding, Dvi Z. Pn ECE Dpt. Univrsity o Txs t Austin, Austin, TX USA 7871 Cn Dsign Systms, In., Sn Jos, CA USA 9514 Emil: {i,

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

arxiv: v1 [cs.ar] 11 Feb 2014

arxiv: v1 [cs.ar] 11 Feb 2014 Lyout Domposition or Tripl Pttrning Lithogrphy Bi Yu, Kun Yun, Boyng Zhng, Duo Ding, Dvi Z. Pn ECE Dpt. Univrsity o Txs t Austin, Austin, TX USA 7871 Cn Dsign Systms, In., Sn Jos, CA USA 9514 Emil: {i,

More information

Constructing Minimal Spanning/Steiner Trees. with Bounded Path Length. Department of EE-Systems

Constructing Minimal Spanning/Steiner Trees. with Bounded Path Length. Department of EE-Systems Construting Miniml pnning/tinr Trs with Boun Pth Lngth Iksoo Pyo Jwon Oh n Mssou Prm JF1-61 Dprtmnt o EE-ystms Intl Corporttion Univrsity o outhrn Cliorni Hillsoro, OR 9714 Los Angls, CA 90089 Astrt This

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW Smll Pth Quiz ML n Dtss Cn you giv n xprssion tht rturns th lst / irst ourrn o h istint pri lmnt? Ltur 8 Strming Evlution: how muh mmory o you n? Sstin Mnth NICTA n UNSW

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

EXAMPLE 87.5" APPROVAL SHEET APPROVED BY /150HP DUAL VFD CONTROL ASSEMBLY CUSTOMER NAME: CAL POLY SLO FINISH: F 20

EXAMPLE 87.5 APPROVAL SHEET APPROVED BY /150HP DUAL VFD CONTROL ASSEMBLY CUSTOMER NAME: CAL POLY SLO FINISH: F 20 XMPL XMPL RVISIONS ZON RV. SRIPTION T PPROV 0.00 THIS IS N PPROVL RWING OR YOUR ORR. OR MNUTURING N GIN, THIS RWING MUST SIGN N RTURN TO MOTION INUSTRIS. NY HNGS M TO THIS RWING, TR MNUTURING HS GUN WILL

More information

Chapter 9. Graphs. 9.1 Graphs

Chapter 9. Graphs. 9.1 Graphs Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

More information

CS553 Lecture Register Allocation 1

CS553 Lecture Register Allocation 1 Low-Lvl Issus Lst ltur Livnss nlysis Rgistr llotion Toy Mor rgistr llotion Wnsy Common suxprssion limintion or PA2 Logistis PA1 is u PA2 hs n post Mony th 15 th, no lss u to LCPC in Orgon CS553 Ltur Rgistr

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

Announcements. Programming Project 4 due Saturday, August 18 at 11:30AM

Announcements. Programming Project 4 due Saturday, August 18 at 11:30AM Rgistr Allotion Announmnts Progrmming Projt 4 u Stury, August 18 t 11:30AM OH ll this wk. Ask qustions vi mil! Ask qustions vi Pizz! No lt sumissions. Pls vlut this ours on Axss. Your k rlly mks irn. Whr

More information

NMEA 2000 GATEWAY ASSEMBLY

NMEA 2000 GATEWAY ASSEMBLY Noti NOTICE Atr omplting instllti, ths instrutis shoul pl with th prout or th ownr's utur us. NOTICE This oumnt is writtn to i our lrs n ompny srvi prsnl in th propr instllti or srvi o our prouts. Prss

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

Clustering for Processing Rate Optimization

Clustering for Processing Rate Optimization Clustring for Prossing Rt Optimiztion Chun Lin, Ji Wng, n Hi Zhou Eltril n Computr Enginring Northwstrn Univrsity Evnston, IL 60208 Astrt Clustring (or prtitioning) is ruil stp twn logi synthsis n physil

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information