Properties and applications of ferromagnetic nanostructures

Size: px
Start display at page:

Download "Properties and applications of ferromagnetic nanostructures"

Transcription

1 Properties and applications of ferromagnetic nanostructures Diego Bisero, Lucia Del Bianco, Federico Spizzo Magnetism Experimental group

2 Outline 1.Nanostructures: some examples 2.Why ferromagnetic nanostructures? 3.Research activity: stripe magnetic domains nanomagnetic logic gates magnetic nanoparticles for biomedical applications magnetoplasmonic materials magnetic gas sensors

3 Nanostructures: examples 1D 2D 3D Why nanostructures?

4 Ferromagnetic nanostructures They are small... L size affects the properties... The size of domains and domain walls is comparable with that of the nanostructures By Tem5psu, CC BY-SA 4.0, size/shape: new degrees of freedom to affect the magnetic properties

5 Research area: stripe magnetic domains D. Bisero Rotatable magnetic anisotropy in thin films with stripe domains Formation of stripe domains in thin magnetostrictive films with perpendicular magnetic anisotropy (FeGa, TbFeGa) Rotation of stripe domains by a magnetic field perpendicular to the stripe axis H This kind of materials may be used as a sensor of mechanical stress or as an actuator

6 Research area: nanomagnetic logic gates D. Bisero Current technological paradigm: CMOS - Based on silicon transistors - The information is binary (0 and 1 states) and associated to different values of the Voltage - Changing the state of a bit requires the flow of an electric current Heat generation From thermodinamical considerations, there is a minimal amount of energy required for erasing 1 bit of information: k B T ln 2 Landauer Limit

7 Research area: nanomagnetic logic gates D. Bisero Trying to reach the Landauer limit: NanoMagnetic Logic (NML) The information contained in one dot should be transferred coherently over the longest possible distance: Nanodot WIRES NML-based circuits process information by manipulating the magnetization states of single domain nanomagnets coupled to their nearest neighbors through magnetic dipole interactions. The state variable is the magnetization direction and computations can take place without the passage of an electric current

8 Experimental methods: MFM and MOKE D. Bisero Magnetic Force Microscope (MFM) Magneto Optical Kerr Effect (MOKE)

9 D. Bisero Solid State Physics Experimental magnetism group stripe magnetic domain nanomagnetic logic gates master s degree (LM) thesis D. Bisero office 008 bisero@fe.infn.it Main collaborations: University of Notre Dame, Notre Dame, Indiana, USA (Center for Nano Science and Technology) University Pierre and Marie Curie, Paris Universidad Complutense, Madrid University of Perugia

10 Research area: magnetic nanoparticles for biomedical applications F. Spizzo / L. Del Bianco magnetic nanoparticle μ bio-functionalization layer Increases the nanoparticles bio-compatibility and affects nanoparticles aggregation Diameter ~ 5 10 nm The nanoparticle is just one magnetic domain ~ giant magnetic moment manipulated thanks to a magnetic field low toxicity high specific surface If an external AC magnetic field is applied, magnetic nanoparticles may release heat to the tissues (hyperthermia)

11 Research area: magnetic nanoparticles for biomedical applications F. Spizzo / L. Del Bianco Magnetic analysis: aggregation state relative concentration mutual magnetic interactions nanoparticles-covering interactions nanoparticles-solvent interactions SPION: SuperParamagnetic Iron Oxide Nanoparticles

12 Experimental methods: SQUID/Mössbauer F. Spizzo / L. Del Bianco SQUID (superconductive quantum interference device) energy By Joël Gubler - Own work, CC0, /index.php?curid= rel. transmission source I=3/2 I=1/2 δ 0 velocity / mm/s isomer shift quadrupole splitting when Vzz > 0 rel. transmission absorber δ ΔEQ Δ mi ± 3/2 ± 1/2 ± 1/2 0 velocity / mm/s Magnetic analysis: aggregation state relative concentration mutual magnetic interactions nanoparticles-covering interactions nanoparticles-solvent interactions Mössbauer spectroscopy (Fe)

13 Research area: magnetoplasmonic materials L. Del Bianco Ligand molecule DNA / protein When DNA/protein interact with the ligand molecule, he refractive index of the medium surrounding the nanoparticles changes; due to that, a shift in the position of the absorption maximum is observed. Plasmonic resonance Magnetoplasmonics: combination of plasmonic and magnetic properties

14 Research area: magnetoplasmonic materials L. Del Bianco Magnetoplasmonic material: Au + Co 1 2 Growth method: co-sputtering Au Co 3 Au 4 substrate Aims: to produce thin films with a fine intermixing of Au and Co (Au x Co 1-x ) [NEW!] to investigate the magnetic properties of the resulting material to use the same material to produce nanostructures for magnetoplasmonic applications 200 nm In collaboration with Dep. of Physics and Astronomy University of Padua

15 Experimental methods: magnetoplasmonic materials L. Del Bianco Magnetoplasmonic material: Au + Co Growth method: co-sputtering Au Co SQUID substrate Aims: to produce thin films with a fine intermixing of Au and Co (Au x Co 1-x ) to investigate the magnetic properties of the resulting material to use the same material to produce nanostructures for magnetoplasmonic applications Magneto Optical Kerr Effect (MOKE)

16 F. Spizzo / L. Del Bianco Solid State Physics Experimental magnetism group Magnetic nanoparticles for biomedical applications magnetoplasmonic materials Bachelor degree (LT) thesis - Master degree (LM) thesis L. Del Bianco office 009 lucia.delbianco@unife.it F. Spizzo office 006 spizzo@fe.infn.it Main collaborations: Department of Physics and Astronomy, University of Padua Department of Industrial Engineering, University of Padua Department of Molecular Biotechnology and Health Sciences, University of Turin ICMATE-CNR, Padua University of Perugia

17 Research area: magnetic gas sensors B. Fabbri / F. Spizzo O 2 1 CO 2 CO 2 ZnO: piezoelectric semiconductor electric field structural deformation O - e - e - O - Co: magnetostrictive ferromagnet mechanical stress magnetic properties

18 Research area: magnetic gas sensors B. Fabbri / F. Spizzo O 2 1 CO 2 CO 2 ZnO: piezoelectric semiconductor electric field structural deformation O - e - e - O - Co: magnetostrictive ferromagnet mechanical stress magnetic properties

19 Research area: magnetic gas sensors B. Fabbri / F. Spizzo Solid State Physics Experimental magnetism group & Sensors and Semiconductors group magnetic gas sensors Master degree (LM) thesis F. Spizzo office 006 spizzo@fe.infn.it B. Fabbri office 110 barbara.fabbri@unife.it Main collaborations: Elettra - Synchrotron light source - Trieste

Challenges for Materials to Support Emerging Research Devices

Challenges for Materials to Support Emerging Research Devices Challenges for Materials to Support Emerging Research Devices C. Michael Garner*, James Hutchby +, George Bourianoff*, and Victor Zhirnov + *Intel Corporation Santa Clara, CA + Semiconductor Research Corporation

More information

NANOMEDICINE. WILEY A John Wiley and Sons, Ltd., Publication DESIGN AND APPLICATIONS OF MAGNETIC NANOMATERIALS, NANOSENSORS AND NANOSYSTEMS

NANOMEDICINE. WILEY A John Wiley and Sons, Ltd., Publication DESIGN AND APPLICATIONS OF MAGNETIC NANOMATERIALS, NANOSENSORS AND NANOSYSTEMS NANOMEDICINE DESIGN AND APPLICATIONS OF MAGNETIC NANOMATERIALS, NANOSENSORS AND NANOSYSTEMS Vijay K. Varadan Linfeng Chen Jining Xie WILEY A John Wiley and Sons, Ltd., Publication Preface About the Authors

More information

Federico Chinni Curriculum vitae

Federico Chinni Curriculum vitae Federico Chinni Curriculum vitae Via Torleone 24, Bologna (Italy) CAP 40125 +39 347 8374882 +39 0534 29150 federico.chinni89@gmail.com Personal Information Date of Birth Porretta Terme, Nationality Italian

More information

Contents. Acknowledgments

Contents. Acknowledgments MAGNETIC MATERIALS Fundamentals and Applications Second edition NICOLA A. SPALDIN University of California, Santa Barbara CAMBRIDGE UNIVERSITY PRESS Contents Acknowledgments page xiii I Basics 1 Review

More information

Lecture 26: Nanosystems Superconducting, Magnetic,. What is nano? Size

Lecture 26: Nanosystems Superconducting, Magnetic,. What is nano? Size Lecture 26: Nanosystems Superconducting, Magnetic,. What is nano? Size Quantum Mechanics Structure Properties Recall discussion in Lecture 21 Add new ideas Physics 460 F 2006 Lect 26 1 Outline Electron

More information

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

Nanoscale optical circuits: controlling light using localized surface plasmon resonances Nanoscale optical circuits: controlling light using localized surface plasmon resonances T. J. Davis, D. E. Gómez and K. C. Vernon CSIRO Materials Science and Engineering Localized surface plasmon (LSP)

More information

Chapter 1 Electronic and Photonic Materials - DMS. Diluted Magnetic Semiconductor (DMS)

Chapter 1 Electronic and Photonic Materials - DMS. Diluted Magnetic Semiconductor (DMS) Diluted Magnetic Semiconductor (DMS) 1 Properties of electron Useful! Charge Electron Spin? Mass 2 Schematic of a Spinning & Revolving Particle Spinning Revolution 3 Introduction Electronics Industry Uses

More information

MAGNETIC MATERIALS. Fundamentals and device applications CAMBRIDGE UNIVERSITY PRESS NICOLA A. SPALDIN

MAGNETIC MATERIALS. Fundamentals and device applications CAMBRIDGE UNIVERSITY PRESS NICOLA A. SPALDIN MAGNETIC MATERIALS Fundamentals and device applications NICOLA A. SPALDIN CAMBRIDGE UNIVERSITY PRESS Acknowledgements 1 Review of basic magnetostatics 1.1 Magnetic field 1.1.1 Magnetic poles 1.1.2 Magnetic

More information

Contents. Preface to the first edition

Contents. Preface to the first edition Contents List of authors Preface to the first edition Introduction x xi xiii 1 The nanotechnology revolution 1 1.1 From micro- to nanoelectronics 2 1.2 From the macroscopic to the nanoscopic world 4 1.3

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

Nanoparticles magnetization switching by Surface Acoustic Waves

Nanoparticles magnetization switching by Surface Acoustic Waves Nanoparticles magnetization switching by Surface Acoustic Waves Author: Facultat de Física, Universitat de Barcelona, Diagonal 645, 828 Barcelona, Spain. Advisor: Javier Tejada Palacios Abstract: In this

More information

PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012

PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012 PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012 Superconductivity Theory, The Cooper Pair Application of Superconductivity Semi-Conductor Nano-technology Graphene 1 Announcements Your presentations

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information QSIT09.L03 Page 1 2.0 Basic Elements of a Quantum Information Processor 2.1 Classical information processing 2.1.1 The carrier of information - binary representation of information as bits (Binary digits).

More information

Magneto-optics and Magneto-plasmonics

Magneto-optics and Magneto-plasmonics Magneto-optics and Magneto-plasmonics César de Julián Fernández IMEM-CNR Parma Multifunctional Magnetic Materials Advanced magnetic materials and devices for biomedical applications Italian School of Magnetism

More information

Magnetoplasmonics: fundamentals and applications

Magnetoplasmonics: fundamentals and applications Antonio García-Martín http://www.imm-cnm.csic.es/magnetoplasmonics Instituto de Microelectrónica de Madrid Consejo Superior de Investigaciones Científicas Magnetoplasmonics: fundamentals and applications

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

The Dielectric Function of a Metal ( Jellium )

The Dielectric Function of a Metal ( Jellium ) The Dielectric Function of a Metal ( Jellium ) Total reflection Plasma frequency p (10 15 Hz range) Why are Metals Shiny? An electric field cannot exist inside a metal, because metal electrons follow the

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy Scanning Direction References: Classical Tunneling Quantum Mechanics Tunneling current Tunneling current I t I t (V/d)exp(-Aφ 1/2 d) A = 1.025 (ev) -1/2 Å -1 I t = 10 pa~10na

More information

Surface Plasmon Resonance. Magneto-optical. optical enhancement and other possibilities. Applied Science Department The College of William and Mary

Surface Plasmon Resonance. Magneto-optical. optical enhancement and other possibilities. Applied Science Department The College of William and Mary Surface Plasmon Resonance. Magneto-optical optical enhancement and other possibilities Applied Science Department The College of William and Mary Plasmonics Recently surface plasmons have attracted significant

More information

Low dimensional magnetism Experiments

Low dimensional magnetism Experiments Low dimensional magnetism Experiments Olivier Fruchart Brasov (Romania), Sept. 2003 1 Introduction...................................... 2 2 Ferromagnetic order................................. 2 2.1 Methods.....................................

More information

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Micromechanics Ass.Prof. Priv.-Doz. DI Dr. Harald Plank a,b a Institute of Electron Microscopy and Nanoanalysis, Graz

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Section 5.2.1 Nature of the Carbon Bond

More information

SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES

SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES CPC - B82Y - 2017.08 B82Y SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES Definition statement This place covers:

More information

5 Magnetic Sensors Introduction Theory. Applications

5 Magnetic Sensors Introduction Theory. Applications Sensor devices Magnetic sensors Outline 5 Magnetic Sensors Introduction Theory GalvanomagneticG Effects Applications Introduction A magnetic sensor is a transducer that converts a magnetic field into an

More information

MSE 7025 Magnetic Materials (and Spintronics)

MSE 7025 Magnetic Materials (and Spintronics) MSE 7025 Magnetic Materials (and Spintronics) Lecture 10: Characterization Techniques Episode I: VSM and MOKE Chi-Feng Pai cfpai@ntu.edu.tw Course Outline Time Table Week Date Lecture 1 Feb 24 Introduction

More information

Chapter 1. Particle Size Analysis

Chapter 1. Particle Size Analysis Chapter 1. Particle Size Analysis 1.1 Introduction Particle size/particle size distribution: a key role in determining the bulk properties of the powder... μ μ μ Size ranges of particles (x) - Coarse particles

More information

Magneto Optical Kerr Effect Microscopy Investigation on Permalloy Nanostructures

Magneto Optical Kerr Effect Microscopy Investigation on Permalloy Nanostructures Magneto Optical Kerr Effect Microscopy Investigation on Permalloy Nanostructures Zulzawawi Bin Haji Hujan A thesis submitted for the degree of MSc by research University of York Department of Physics January

More information

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. Plasmonics The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. A possible way out is the conversion of light into plasmons. They have much shorter

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov 26 February 2014 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube Objective: learn about nano-manipulation techniques with a STM or an AFM. 5.1: With a nanotube Moving a nanotube Cutting a nanotube Images at large distance At small distance : push the NT Voltage pulse

More information

Presented by: Göteborg University, Sweden

Presented by: Göteborg University, Sweden SMR 1760-3 COLLEGE ON PHYSICS OF NANO-DEVICES 10-21 July 2006 Nanoelectromechanics of Magnetic and Superconducting Tunneling Devices Presented by: Robert Shekhter Göteborg University, Sweden * Mechanically

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Carbon contains 6 electrons: (1s) 2,

More information

Scanning Tunneling Microscopy and its Application

Scanning Tunneling Microscopy and its Application Chunli Bai Scanning Tunneling Microscopy and its Application With 181 Figures SHANGHAI SCIENTIFIC & TECHNICAL PUBLISHERS Jpl Springer Contents 1. Introduction 1 1.1 Advantages of STM Compared with Other

More information

Nanoscale confinement of photon and electron

Nanoscale confinement of photon and electron Nanoscale confinement of photon and electron Photons can be confined via: Planar waveguides or microcavities (2 d) Optical fibers (1 d) Micro/nano spheres (0 d) Electrons can be confined via: Quantum well

More information

In today s lecture, we will cover:

In today s lecture, we will cover: In today s lecture, we will cover: Metal and Metal oxide Nanoparticles Semiconductor Nanocrystals Carbon Nanotubes 1 Week 2: Nanoparticles Goals for this section Develop an understanding of the physical

More information

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor From nanophysics research labs to cell phones Dr. András Halbritter Department of Physics associate professor Curriculum Vitae Birth: 1976. High-school graduation: 1994. Master degree: 1999. PhD: 2003.

More information

Nanoscale magnetic imaging with single spins in diamond

Nanoscale magnetic imaging with single spins in diamond Nanoscale magnetic imaging with single spins in diamond Ania Bleszynski Jayich UC Santa Barbara Physics AFOSR Nanoelectronics Review Oct 24, 2016 Single spin scanning magnetometer Variable temperature

More information

Ciência (Bio)nanosystems based on quantum dots, plasmonic or magnetic nanoparticles

Ciência (Bio)nanosystems based on quantum dots, plasmonic or magnetic nanoparticles Ciência 216 (Bio)nanosystems based on quantum dots, plasmonic or magnetic nanoparticles Paulo J. G. Coutinho Departamento/Centro de Física Escola de Ciências Universidade do Minho 4 Julho 216 OVERVIEW

More information

Mossbauer Effect and Spectroscopy. Kishan Sinha Xu Group Department of Physics and Astronomy University of Nebraska-Lincoln

Mossbauer Effect and Spectroscopy. Kishan Sinha Xu Group Department of Physics and Astronomy University of Nebraska-Lincoln Mossbauer Effect and Spectroscopy Kishan Sinha Xu Group Department of Physics and Astronomy University of Nebraska-Lincoln Emission E R γ-photon E transition hν = E transition - E R Photon does not carry

More information

Nanoelectronics 08. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture E = 2m 0 a 2 ξ 2.

Nanoelectronics 08. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture E = 2m 0 a 2 ξ 2. Nanoelectronics 08 Atsufumi Hirohata Department of Electronics 09:00 Tuesday, 6/February/2018 (P/T 005) Quick Review over the Last Lecture 1D quantum well : E = 2 2m 0 a 2 ξ 2 ( Discrete states ) Quantum

More information

29: Nanotechnology. What is Nanotechnology? Properties Control and Understanding. Nanomaterials

29: Nanotechnology. What is Nanotechnology? Properties Control and Understanding. Nanomaterials 29: Nanotechnology What is Nanotechnology? Properties Control and Understanding Nanomaterials Making nanomaterials Seeing at the nanoscale Quantum Dots Carbon Nanotubes Biology at the Nanoscale Some Applications

More information

Final exam. Introduction to Nanotechnology. Name: Student number:

Final exam. Introduction to Nanotechnology. Name: Student number: 1 Final exam. Introduction to Nanotechnology Name: Student number: 1. (a) What is the definition for a cluster size-wise? (3%) (b) Calculate the energy separation near the Fermi surface of a metallic cluster

More information

Paolo Vavassori. Ikerbasque, Basque Fundation for Science and CIC nanogune Consolider, San Sebastian, Spain.

Paolo Vavassori. Ikerbasque, Basque Fundation for Science and CIC nanogune Consolider, San Sebastian, Spain. Magnetic nanostructures Paolo Vavassori Ikerbasque, Basque Fundation for Science and CIC nanogune Consolider, San Sebastian, Spain. P. Vavassori nano@nanogune.eu I www.nanogune.eu 1 Outline Part I Introduction.

More information

Graphene for THz technology

Graphene for THz technology Graphene for THz technology J. Mangeney1, J. Maysonnave1, S. Huppert1, F. Wang1, S. Maero1, C. Berger2,3, W. de Heer2, T.B. Norris4, L.A. De Vaulchier1, S. Dhillon1, J. Tignon1 and R. Ferreira1 1 Laboratoire

More information

Directions for simulation of beyond-cmos devices. Dmitri Nikonov, George Bourianoff, Mark Stettler

Directions for simulation of beyond-cmos devices. Dmitri Nikonov, George Bourianoff, Mark Stettler Directions for simulation of beyond-cmos devices Dmitri Nikonov, George Bourianoff, Mark Stettler Outline Challenges and responses in nanoelectronic simulation Limits for electronic devices and motivation

More information

Design of Magnetoplasmonic Resonant Nanoantennas for Biosensing Applications

Design of Magnetoplasmonic Resonant Nanoantennas for Biosensing Applications Presented at the COMSOL Conference 2010 Paris Design of Magnetoplasmonic Resonant Nanoantennas for Biosensing Applications M. ESSONE MEZEME a and C. BROSSEAU b Lab-STICC, Université de Bretagne Occidentale

More information

Understanding the properties and behavior of groups of interacting atoms more than simple molecules

Understanding the properties and behavior of groups of interacting atoms more than simple molecules Condensed Matter Physics Scratching the Surface Understanding the properties and behavior of groups of interacting atoms more than simple molecules Solids and fluids in ordinary and exotic states low energy

More information

Nanostrutture a base di Si e Ge per nuovi dispositivi nano-elettronici

Nanostrutture a base di Si e Ge per nuovi dispositivi nano-elettronici Nanostrutture a base di Si e Ge per nuovi dispositivi nano-elettronici Alberto Debernardi Laboratorio MDM, IMM-CNR Agrate Brianza (Italy) www.mdm.imm.cnr.it Plan of the talk Scaling down electronic devices

More information

Aqueous Self-Assembly of Fp Derivatives: Multifunctional Metal-Carbonyl Nanovesicles (MCsomes)

Aqueous Self-Assembly of Fp Derivatives: Multifunctional Metal-Carbonyl Nanovesicles (MCsomes) Aqueous Self-Assembly of Fp Derivatives: Multifunctional Metal-Carbonyl Nanovesicles (MCsomes) 38 th IPR Symposium-May 4 th 2016 Nimer Murshid and Xiaosong Wang Nimer Murshid Department of Chemistry Waterloo

More information

Supporting Information

Supporting Information Supporting Information Thiocyanate Anchors for Salt-like Iron(II) Complexes on Au(111): Promises and Caveats Philipp Stock, a,b Andreas Erbe, b Gerald Hörner, a Manfred Buck, c Hervé Ménard, d and Andreas

More information

External control of the direction of magnetization in ferromagnetic InMnAs/GaSb heterostructures

External control of the direction of magnetization in ferromagnetic InMnAs/GaSb heterostructures External control of the direction of magnetization in ferromagnetic InMnAs/GaSb heterostructures X. Liu, a, W. L. Lim, a L. V. Titova, a T. Wojtowicz, a,b M. Kutrowski, a,b K. J. Yee, a M. Dobrowolska,

More information

Near-Field Nano/Atom Optics and Technology

Near-Field Nano/Atom Optics and Technology M. Ohtsu (Ed.) Near-Field Nano/Atom Optics and Technology With 189 Figures / Springer Preface List of Contributors V VII XIII 1. Introduction 1 1.1 Near-Field Optics and Related Technologies 1 1.2 History

More information

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy High-Resolution Surface Analysis

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2013 Lecture 02 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 2: outline 2 Introduction to Nanophotonics Theoretical

More information

The physics of ultra-thin vanadium dioxide: At the surface, interface, and in-between

The physics of ultra-thin vanadium dioxide: At the surface, interface, and in-between The physics of ultra-thin vanadium dioxide: At the surface, interface, and in-between Nicholas F. Quackenbush Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New

More information

are microscopically large but macroscopically small contacts which may be connected to a battery to provide the bias voltage across the junction.

are microscopically large but macroscopically small contacts which may be connected to a battery to provide the bias voltage across the junction. At present, we observe a long-lasting process of miniaturization of electronic devices. The ultimate limit for the miniaturization of electronic components is set by the atomic scale. However, in the case

More information

Spring 2009 EE 710: Nanoscience and Engineering

Spring 2009 EE 710: Nanoscience and Engineering Spring 2009 EE 710: Nanoscience and Engineering Part 1: Introduction Course Texts: Bhushan, Springer Handbook of Nanotechnology 2 nd ed., Springer 2007 Hornyak, et.al, Introduction ti to Nanoscience, CRC

More information

Figure 1. Schematic picture of surface helical domain structure.

Figure 1. Schematic picture of surface helical domain structure. Advances in Science and Technology Vol. 93 (2014) pp 203-207 Submitted: 20.05.2014 (2014) Trans Tech Publications, Switzerland Accepted: 10.07.2014 doi:10.4028/www.scientific.net/ast.93.203 Influence of

More information

Solid Surfaces, Interfaces and Thin Films

Solid Surfaces, Interfaces and Thin Films Hans Lüth Solid Surfaces, Interfaces and Thin Films Fifth Edition With 427 Figures.2e Springer Contents 1 Surface and Interface Physics: Its Definition and Importance... 1 Panel I: Ultrahigh Vacuum (UHV)

More information

Vienna Doctoral School in Physics

Vienna Doctoral School in Physics Vienna Doctoral School in Physics You? Hearings in Vienna: 22& 23 February 2018 Aerosol Physics Prof. Bernadett Weinzierl Atmospheric and Aerosol Physics Position 1 Airborne measurements of the complex

More information

Superparamagnetic Iron Oxide Nanoparticles For Drug Delivery

Superparamagnetic Iron Oxide Nanoparticles For Drug Delivery Superparamagnetic Iron Oxide Nanoparticles For Drug Delivery Yana Petri C150 Special Topic SPION ferrofluid Background and Motivation Most promising magnetic iron oxide nanoparticles for biomedical applications:

More information

PEEM and XPEEM: methodology and applications for dynamic processes

PEEM and XPEEM: methodology and applications for dynamic processes PEEM and XPEEM: methodology and applications for dynamic processes PEEM methods and General considerations Chemical imaging Magnetic imaging XMCD/XMLD Examples Dynamic studies PEEM and XPEEM methods 1

More information

Physics of switches. Luca Gammaitoni NiPS Laboratory

Physics of switches. Luca Gammaitoni NiPS Laboratory Physics of switches Luca Gammaitoni NiPS Laboratory Logic switches A logic switch is a device that can assume physically distinct states as a result of external inputs. Usually the output of a physical

More information

Cavity QED with quantum dots in microcavities

Cavity QED with quantum dots in microcavities Cavity QED with quantum dots in microcavities Martin van Exter, Morten Bakker, Thomas Ruytenberg, Wolfgang Löffler, Dirk Bouwmeester (Leiden) Ajit Barve, Larry Coldren (UCSB) Motivation and Applications

More information

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy Lecture 6: Physical Methods II UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy Physical Methods used in bioinorganic chemistry X ray crystallography X ray absorption (XAS)

More information

Nano devices for single photon source and qubit

Nano devices for single photon source and qubit Nano devices for single photon source and qubit, Acknowledgement K. Gloos, P. Utko, P. Lindelof Niels Bohr Institute, Denmark J. Toppari, K. Hansen, S. Paraoanu, J. Pekola University of Jyvaskyla, Finland

More information

Wafer-scale fabrication of graphene

Wafer-scale fabrication of graphene Wafer-scale fabrication of graphene Sten Vollebregt, MSc Delft University of Technology, Delft Institute of Mircosystems and Nanotechnology Delft University of Technology Challenge the future Delft University

More information

2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text.

2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text. 2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text. Chapter 21 Electric Charge 21-1 What Is Physics? 21-2

More information

From Hall Effect to TMR

From Hall Effect to TMR From Hall Effect to TMR 1 Abstract This paper compares the century old Hall effect technology to xmr technologies, specifically TMR (Tunnel Magneto-Resistance) from Crocus Technology. It covers the various

More information

Lecture 6. Alternative storage technologies. All optical recording. Racetrack memory. Topological kink solitons. Flash memory. Holographic memory

Lecture 6. Alternative storage technologies. All optical recording. Racetrack memory. Topological kink solitons. Flash memory. Holographic memory Lecture 6 Alternative storage technologies All optical recording Racetrack memory Topological kink solitons Flash memory Holographic memory Millipede Ferroelectric memory All-optical recording It is possible

More information

ROBUSTNESS AND POWER DISSIPATION IN QUANTUM-DOT CELLULAR AUTOMATA. A Dissertation. Submitted to the Graduate School. of the University of Notre Dame

ROBUSTNESS AND POWER DISSIPATION IN QUANTUM-DOT CELLULAR AUTOMATA. A Dissertation. Submitted to the Graduate School. of the University of Notre Dame ROBUSTNESS AND POWER DISSIPATION IN QUANTUM-DOT CELLULAR AUTOMATA A Dissertation Submitted to the Graduate School of the University of Notre Dame in Partial Fulfillment of the Requirements for the Degree

More information

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays Abstract #: 983 Program # MI+NS+TuA9 Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays D. A. Tulchinsky, M. H. Kelley, J. J. McClelland, R. Gupta, R. J. Celotta National Institute of Standards

More information

Nanotechnology. Gavin Lawes Department of Physics and Astronomy

Nanotechnology. Gavin Lawes Department of Physics and Astronomy Nanotechnology Gavin Lawes Department of Physics and Astronomy Earth-Moon distance 4x10 8 m (courtesy NASA) Length scales (Part I) Person 2m Magnetic nanoparticle 5x10-9 m 10 10 m 10 5 m 1 m 10-5 m 10-10

More information

Room Temperature Planar Hall Transistor

Room Temperature Planar Hall Transistor Room Temperature Planar Hall Transistor Bao Zhang 1, Kangkang Meng 1, Mei-Yin Yang 1, K. W. Edmonds 2, Hao Zhang 1, Kai-Ming Cai 1, Yu Sheng 1,3, Nan Zhang 1, Yang Ji 1, Jian-Hua Zhao 1, Kai-You Wang 1*

More information

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS)

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS) Spectroscopy of Nanostructures Angle-resolved Photoemission (ARPES, UPS) Measures all quantum numbers of an electron in a solid. E, k x,y, z, point group, spin E kin, ϑ,ϕ, hν, polarization, spin Electron

More information

Properties of Materials. Chapter Two Magnetic Properties of Materials

Properties of Materials. Chapter Two Magnetic Properties of Materials 1896 1920 1987 2006 Properties of Materials Chapter Two Magnetic Properties of Materials Key Magnetic Parameters How does M respond to H? Ferromagnetic Fe, Co, Ni Ferrimagnetic Fe 3 O 4 Antiferromagnetic

More information

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2 Nanostructure Materials Growth Characterization Fabrication More see Waser, chapter 2 Materials growth - deposition deposition gas solid Physical Vapor Deposition Chemical Vapor Deposition Physical Vapor

More information

İZMİR INSTITUTE OF TECHNOLOGY GRADUATE SCHOOL OF ENGINEERING AND SCIENCES DEPARTMENT OF PHOTONICS SCIENCE AND ENGINEERING CURRICULUM OF THE

İZMİR INSTITUTE OF TECHNOLOGY GRADUATE SCHOOL OF ENGINEERING AND SCIENCES DEPARTMENT OF PHOTONICS SCIENCE AND ENGINEERING CURRICULUM OF THE GRADUATE SCHOOL OF AND SCIENCES DEPARTMENT OF PHOTONICS SCIENCE AND The Photonics Science and Engineering PhD Program is a jointly operated interdisciplinary program. The Curriculum is supported by the

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

EXTRINSIC SEMICONDUCTOR

EXTRINSIC SEMICONDUCTOR EXTRINSIC SEMICONDUCTOR In an extrinsic semiconducting material, the charge carriers originate from impurity atoms added to the original material is called impurity [or] extrinsic semiconductor. This Semiconductor

More information

Surfaces and Interfaces

Surfaces and Interfaces 1/16 Surfaces and Interfaces Fouad MAROUN Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique CNRS Palaiseau, France 2/16 Outline Definition of surfaces and interfaces and 3 examples in

More information

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation QSIT09.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical

More information

Development of active inks for organic photovoltaics: state-of-the-art and perspectives

Development of active inks for organic photovoltaics: state-of-the-art and perspectives Development of active inks for organic photovoltaics: state-of-the-art and perspectives Jörg Ackermann Centre Interdisciplinaire de Nanoscience de Marseille (CINAM) CNRS - UPR 3118, MARSEILLE - France

More information

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998. Magnetoresistance due to Domain Walls in Micron Scale Fe Wires with Stripe Domains arxiv:cond-mat/9803101v1 [cond-mat.mes-hall] 9 Mar 1998 A. D. Kent a, U. Ruediger a, J. Yu a, S. Zhang a, P. M. Levy a

More information

Nanoimprint Lithography

Nanoimprint Lithography Nanoimprint Lithography Wei Wu Quantum Science Research Advanced Studies HP Labs, Hewlett-Packard Email: wei.wu@hp.com Outline Background Nanoimprint lithography Thermal based UV-based Applications based

More information

3. Anaemia can be diagnosed by (a) 15 P 31 (b) 15 P 32 (c) 26 Fe 59 (d) 11 Na 24. (b) α particle (Alpha particle)

3. Anaemia can be diagnosed by (a) 15 P 31 (b) 15 P 32 (c) 26 Fe 59 (d) 11 Na 24. (b) α particle (Alpha particle) MARCH 2010 PHYSICS Time Allowed: 3 Hours Maximum Marks: 150 PART - I 30 x 1 = 30 Note: i) Answer all the questions. ii) Choose and write the correct answer. 1. Electron microscope works on the principle

More information

Quantum-dot cellular automata

Quantum-dot cellular automata Quantum-dot cellular automata G. L. Snider, a) A. O. Orlov, I. Amlani, X. Zuo, G. H. Bernstein, C. S. Lent, J. L. Merz, and W. Porod Department of Electrical Engineering, University of Notre Dame, Notre

More information

( It will be applied from Fall)

( It will be applied from Fall) İZMİR INSTITUTE OF TECHNOLOGY GRADUATE SCHOOL OF ENGINEERING AND SCIENCES DEPARTMENT OF PHOTONICS SCIENCE AND ENGINEERING CURRICULUM OF THE MS PROGRAM IN PHOTONICS SCIENCE AND ENGINEERING The Photonics

More information

QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS

QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS PhD theses Orsolya Kálmán Supervisors: Dr. Mihály Benedict Dr. Péter Földi University of Szeged Faculty of Science and Informatics Doctoral School in Physics

More information

Department of Electrical Engineering and Information Systems, Tanaka-Ohya lab.

Department of Electrical Engineering and Information Systems, Tanaka-Ohya lab. Observation of the room-temperature local ferromagnetism and its nanoscale expansion in the ferromagnetic semiconductor Ge 1 xfe x Yuki K. Wakabayashi 1 and Yukio Takahashi 2 1 Department of Electrical

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov October 2018 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

Xray Magnetic Circular Dichroism Investigation in Ferromagnetic Semiconductors. Khashayar Khazen Condensed Matter National Lab-IPM

Xray Magnetic Circular Dichroism Investigation in Ferromagnetic Semiconductors. Khashayar Khazen Condensed Matter National Lab-IPM Xray Magnetic Circular Dichroism Investigation in Ferromagnetic Semiconductors Khashayar Khazen Condensed Matter National Lab-IPM IPM School of Physics School of Nano Condensed Matter National Lab Technology:

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

Plasmon enhanced UV electroluminescence in SiO 2 with percolating conduction sustained by free-exciton emitting SnO 2 nanoparticles

Plasmon enhanced UV electroluminescence in SiO 2 with percolating conduction sustained by free-exciton emitting SnO 2 nanoparticles Dipartimento di Scienza dei Materiali Università di Milano-Bicocca TITLE Plasmon enhanced UV electroluminescence in O 2 with percolating conduction sustained by free-exciton emitting SnO 2 nanoparticles

More information

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism Coordination Small Ferromagnets Superlattices Basic properties of a permanent magnet Magnetization "the strength of the magnet" depends

More information

2D Materials Research Activities at the NEST lab in Pisa, Italy. Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy

2D Materials Research Activities at the NEST lab in Pisa, Italy. Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy 2D Materials Research Activities at the NEST lab in Pisa, Italy Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy 2D Materials Research Activities at the NEST lab in

More information

Advanced Topics In Solid State Devices EE290B. Will a New Milli-Volt Switch Replace the Transistor for Digital Applications?

Advanced Topics In Solid State Devices EE290B. Will a New Milli-Volt Switch Replace the Transistor for Digital Applications? Advanced Topics In Solid State Devices EE290B Will a New Milli-Volt Switch Replace the Transistor for Digital Applications? August 28, 2007 Prof. Eli Yablonovitch Electrical Engineering & Computer Sciences

More information

CURRICULUM VITAE. 1. To apply the knowledge which I learned theoretically in the practical setting.

CURRICULUM VITAE. 1. To apply the knowledge which I learned theoretically in the practical setting. CURRICULUM VITAE II M,Sc. Nano Science and Technology, Coimbatore-641 046, Tamil Nadu. Mobile: +91-9843858762 E mail: maninano@gmail.com MANIVEL.P Objectives: 1. To apply the knowledge which I learned

More information