Fog detection product

Size: px
Start display at page:

Download "Fog detection product"

Transcription

1 Fog detection product derived from RGB recipes Takumi Maruyama, Haruma Ishida and Koetsu Chubachi Meteorological Satellite Center / Japan Meteorological Agency Meteorological Research Institute / Japan Meteorological Agency HAREX CORPORATION RGB Experts and Developers Workshop 2017 JMA Headquarters, Tokyo, Japan, 7-9 Nov HIMAWARI HIMAWARI-9

2 Introduction Seasonal variability of Night microphysics RGB Night microphysics RGB is useful for monitoring low cloud (fog) in nighttime. However, the colors are changed by depending on seasonal variations and climate characteristics (regional dependence). Fog/St Fog/St Summer Jun, 5, UTC Winter Jan, 3, UTC The variability of the colors brings forecasters some difficulties to understand the meaning of the colors. 2

3 Outline of Fog Detection Satellite based threshold Nighttime NWP(T, RH) based threshold Radiosonde (Kushiro) Night microphysics RGB Daytime black : T ( ) blue : Td ( ) Night microphysics RGB hutched area : NWP_RH(Surf) > 90% Natural color RGB General features of (radiation) Fog Relative humidity is high (almost 100%) at surface. Cloud top height is low and the cloud top temperature is similar to the ground surface temperature. Capped inversion layer is formed at cloud top and relative humidity is low above the cloud top. 3

4 Example : RGB imagery with Fog detection product (Near Japan) Night Microphysics RGB Day/Night Fog Detection Product Fog/St Natural color RGB Fog/St Yellow:Nighttime Red:Daytime Meso-Scale Model (MSM) is used for NWP. Spatial resolution : 0.02 Time resolution : 10 minutes Jun, 05, UTC Jun, 05, UTC 4

5 Threshold in nighttime (Satellite) Fog Low cloud Clear sky horizontal axis : BT(B07, 3.9μm) BT(B13, 10.4μm) vertical axis : BT(B13, 10.4μm) ( ) color : BT(B13, 10.4μm) BT(B15, 12.4μm) BT(B07) BT(B13) value is lower than -1.5 in many fog cases. BT(B13) value is higher than -10 in many fog cases. It may suggest that ice fog cases are very few. BT : Brightness Temperature SYNOP (Jul, 1, 2015 Jul, 31, 2016) 5

6 Threshold in nighttime (NWP) Fog Low cloud Clear sky horizontal axis : NWP_RH(Surf) (%) vertical axis : NWP_T(Surf) BT(B13, 10.4μm) color(red) : NWP_RH(Surf) > NWP_RH(700hPa, 850hPa, 925hPa) color(blue) : NWP_RH(Surf) =< NWP_RH(700hPa, 850hPa, 925hPa) BT : Brightness Temperature NWP_T : NWP Temperature NWP_RH : NWP Relative Humidity NWP_T(Surf) BT(B13) value is lower than 10 in many fog cases. NWP_RH(Surf) value is higher than 85% in many fog cases. NWP_RH(Surf) value is highest under 700hPa in many fog cases. SYNOP (Jul, 1, 2015 Jul, 31, 2016) 6

7 Process flow in nighttime Start BT(B13) > NWP_T(700hPa) and NWP_RH(700hPa) < 90% high/middle cloud elimination No Yes BT(B07) BT(B13) < -1.5 low cloud extraction No No Yes BT : Brightness Temperature REF : Reflectance NWP_T : NWP Temperature NWP_RH : NWP Relative Humidity fog extraction1 NWP_T(Surf) BT(B13) < 10 and BT(B13) > 10 Yes NWP_RH(Surf)>=85% and NWP_RH(Surf) > NWP_RH (700hPa, 850hPa, 925hPa) Result=Not fog No fog extraction2 Yes Result=Fog B07 : 3.9μm B13 : 10.4μm End 7

8 Threshold in daytime (Satellite) Fog Low cloud Clear sky horizontal axis : REF(B03, 0.64μm) vertical axis : REF(B05, 1.6μm) / REF(B04, 0.86μm) color : BT(B13, 10.4μm) ( ) BT : Brightness Temperature REF : Reflectance When REF(B03) value is high but REF(B05) / REF(B04) value is low, land surface may be covered with snow/ice. REF(B03) value is lower than 0.3 in many clear sky (land surface) cases. SYNOP (Jul, 1, 2015 Jul, 31, 2016) 8

9 Threshold in daytime (NWP) Fog Low cloud Clear sky horizontal axis : NWP_RH(Surf) (%) vertical axis : NWP_T(Surf) BT(B13, 10.4μm) color(red) : NWP_RH(Surf) > NWP_RH(700hPa, 850hPa, 925hPa) color(blue) : NWP_RH(Surf) =< NWP_RH(700hPa, 850hPa, 925hPa) BT : Brightness Temperature NWP_T : NWP Temperature NWP_RH : NWP Relative Humidity NWP_T(Surf) BT(B13) value is lower than 10 in many fog cases. NWP_RH(Surf) value is higher than 85% in many fog cases. NWP_RH(Surf) value is highest under 700hPa in many fog cases. SYNOP (Jul, 1, 2015 Jul, 31, 2016) 9

10 Process flow in daytime Start BT(B13) >T_NWP(700hPa) and RH_NWP(700hPa)<90% high/middle cloud elimination No Yes REF(B03) > 0.3 and REF(B05) / REF(B04) > 0.5 low cloud extraction snow/ice elimination No No Yes BT : Brightness Temperature REF : Reflectance T_NWP : NWP Temperature RH_NWP : NWP Relative Humidity fog extraction1 T_NWP(Surf) BT(B13) < 10 and BT(B13) > 10 Yes RH_NWP(Surf)>=85% and RH_NWP(Surf)>RH_NWP (700hPa, 850hPa, 925hPa) Result=Not fog No fog extraction2 Yes Result=Fog B03 : 0.64μm Snow/ice area is eliminated by B04 : 0.86μm End B05 : 1.6μm visible and near-infrared bands B13 : 10.4μm in daytime. 10

11 Evaluation by ground observations (SYNOP) Aug, 1, 2015 Jul, 31, 2016 Threat Score= FO/(FO+FX+XO) Bias Score=(FO+FX)/(FO+XO) Hit Ratio = (FO+XX)/N Misdetection Ratio= FX/(FO+FX) Undetected Ratio = XO/M SYNOP total Fog Not Fog Misdetection Fog Fog Hit(FO) FO+FX (FX) Detection Not Undetected Product Hit(XX) XO+XX Fog (XO) total M X N Requirement Clear sky or Low cloud or Fog by SYNOP Sun zenith angle > 93 (nighttime) or < 85 (daytime) BT(B13, 10.4μm) > NWP_T(700hPa) NWP_T(700hPa) < 90% Meso-Scale Model (MSM) is used for NWP. SYNOP Day/Night (24 Hour) Fog Detection Product Daytime Nighttime Number of data Threat Score Bias Score Hit Ratio Misdetection Ratio Undetected Ratio Nearest grid to SYNOP is evaluated. Accuracy is almost same between day and night. Main reason of misdetection and undetected is failure of distinguishing between fog and low cloud (especially stratus). 11

12 Pros/Cons of the fog product Pros Can detect fog at day and night boundary. Can detect fog visible through the gap between the high/middle clouds Cons Can t detect fog under the high/middle clouds. Can t detect ice fog for fear of misdetection of clear sky over snow/ice area. Can t detect local fog such as valley fog that is smaller than the product resolution Fog detection area depends on NWP accuracy and characteristics 12

13 Summary Night microphysics RGB is useful for monitoring low cloud (fog) in nighttime. However, colors of RGB imagery is changed by some features (regional dependence, seasonal dependence). This variability brings forecasters some difficulties to understand the meaning of the colors. We developed Day/Night Fog Detection product. It can display fog area in the same color without regional and seasonal dependence. Main reason of misdetection and undetected is failure of distinguishing between fog and low cloud (especially stratus). Even though we use NWP data, it is difficult to distinguish them. 13

14 Thank you for your kind attention! 14

15 Appendix 15

16 Example : RGB imagery with Fog detection product (Full Disk) Night Microphysics RGB Day/Night Fog Detection Product True Color Reproduction Image (m) Yellow:Nighttime Red:Daytime Global Spectral Model (GSM) is used for NWP. Spatial resolution : 0.02 Time resolution : 10 minutes Oct, 07, UTC SYNOP fog observation point and visibility (color) We also plan to develop full disk fog detection product which uses Global Spectral Model (GSM). 16

17 What s Night Microphysics RGB? UTC R : B15(I2 12.3)-B13(IR 10.4) Range : -4~2 [K] Gamma : 1.0 G : B13(IR 10.4)-B07(I4 3.9) Range : 0~10 [K] Gamma : 1.0 Thick Upper Cloud How Low the Cloud or Surface B : B13(IR 10.4) (Reverse) Range : 243~293 [K] Gamma : 1.0 Lower Water Cloud 17

18 Night Microphysics Cold, thick, high level cloud Very cold (< 50 C), thick, high level cloud Thin Cirrus cloud Thick, mid level cloud Thin, mid level cloud Low level cloud (high latitudes) Low level cloud (low latitudes) Ocean Land Note: Based on SEVIRI/EUMETSAT interpretation 18

19 19

20 Misdetection of low cloud Daytime Low cloud Nighttime It is difficult to distinguish between fog and stratus. horizontal axis : NWP_RH(Surf) (%) vertical axis : NWP_T(Surf) BT(B13, 10.4μm) 0(blue):Cumulonimbus 1(green):Cumulus 2(yellow):Cumulus and Stratocumulus 3(orange):Stratocumulus 4(red):Stratus BT : Brightness Temperature NWP_T : NWP Temperature NWP_RH : NWP Relative Humidity SYNOP (Jul, 1, 2015 Jul, 31, 2016) 20

21 Evaluation by ground observations (SHIP) Aug, 1, 2015 Jul, 31, 2016 Threat Score= FO/(FO+FX+XO) Bias Score=(FO+FX)/(FO+XO) Hit Ratio = (FO+XX)/N Misdetection Ratio= FX/(FO+FX) Undetected Ratio = XO/M SHIP total Fog No Fog Misdetection Fog Fog Hit(FO) FO+FX (FX) Detection Not Undetected Product Hit(XX) XO+XX Fog (XO) total M X N Requirement Clear sky or Low cloud or Fog by SHIP Sun zenith angle > 93 (nighttime) or < 85 (daytime) BT(B13, 10.4μm) > NWP_T(700hPa) NWP_T(700hPa) < 90% SHIP Day/Night (24 Hour) Fog Detection Product Daytime Nighttime Number of data Threat Score Bias Score Hit Ratio Misdetection Ratio Undetected Ratio Nearest grid to SHIP is evaluated. Meso-Scale Model (MSM) is used for NWP. 21

22 Evaluation by ground observations (SHIP) Aug, 1, 2016 Jul, 31, 2017 Threat Score= FO/(FO+FX+XO) Bias Score=(FO+FX)/(FO+XO) Hit Ratio = (FO+XX)/N Misdetection Ratio= FX/(FO+FX) Undetected Ratio = XO/M SHIP total Fog No Fog Misdetection Fog Fog Hit(FO) FO+FX (FX) Detection Not Undetected Product Hit(XX) XO+XX Fog (XO) total M X N Requirement Clear sky or Low cloud or Fog by SHIP Sun zenith angle > 93 (nighttime) or < 85 (daytime) BT(B13, 10.4μm) > NWP_T(700hPa) NWP_T(700hPa) < 90% SHIP Day/Night (24 Hour) Fog Detection Product Daytime Nighttime Number of data Threat Score Bias Score Hit Ratio Misdetection Ratio Undetected Ratio Nearest grid to SHIP is evaluated. Meso-Scale Model (MSM) is used for NWP. 22

23 Evaluation by ground observations (SYNOP) Aug, 1, 2016 Jul, 31, 2017 Threat Score= FO/(FO+FX+XO) Bias Score=(FO+FX)/(FO+XO) Hit Ratio = (FO+XX)/N Misdetection Ratio= FX/(FO+FX) Undetected Ratio = XO/M SYNOP total Fog Not Fog Misdetection Fog Fog Hit(FO) FO+FX (FX) Detection Not Undetected Product Hit(XX) XO+XX Fog (XO) total M X N Requirement Clear sky or Low cloud or Fog by SYNOP Sun zenith angle > 93 (nighttime) or < 85 (daytime) BT(B13, 10.4μm) > NWP_T(700hPa) NWP_T(700hPa) < 90% SYNOP Day/Night (24 Hour) Fog Detection Product Daytime Nighttime Number of data Threat Score Bias Score Hit Ratio Misdetection Ratio Undetected Ratio Nearest grid to SYNOP is evaluated. Meso-Scale Model (MSM) is used for NWP. 23

24 Evaluation by ground observations (SYNOP) Aug, 1, 2015 Jul, 31, 2016 Threat Score= FO/(FO+FX+XO) Bias Score=(FO+FX)/(FO+XO) Hit Ratio = (FO+XX)/N Misdetection Ratio= FX/(FO+FX) Undetected Ratio = XO/M SYNOP total Fog Not Fog Misdetection Fog Fog Hit(FO) FO+FX (FX) Detection Not Undetected Product Hit(XX) XO+XX Fog (XO) total M X N Requirement Clear sky or Low cloud or Fog by SYNOP Sun zenith angle > 93 (nighttime) or < 85 (daytime) BT(B13, 10.4μm) > NWP_T(700hPa) NWP_T(700hPa) < 90% SYNOP Day/Night (24 Hour) Fog Detection Product Daytime Nighttime Number of data Threat Score Bias Score Hit Ratio Misdetection Ratio Undetected Ratio Nearest grid to SYNOP is evaluated. Global Spectral Model (GSM) is used for NWP. 24

25 Evaluation by ground observations (SHIP) Aug, 1, 2015 Jul, 31, 2016 Threat Score= FO/(FO+FX+XO) Bias Score=(FO+FX)/(FO+XO) Hit Ratio = (FO+XX)/N Misdetection Ratio= FX/(FO+FX) Undetected Ratio = XO/M SHIP total Fog No Fog Misdetection Fog Fog Hit(FO) FO+FX (FX) Detection Not Undetected Product Hit(XX) XO+XX Fog (XO) total M X N Requirement Clear sky or Low cloud or Fog by SHIP Sun zenith angle > 93 (nighttime) or < 85 (daytime) BT(B13, 10.4μm) > NWP_T(700hPa) NWP_T(700hPa) < 90% SHIP Day/Night (24 Hour) Fog Detection Product Daytime Nighttime Number of data Threat Score Bias Score Hit Ratio Misdetection Ratio Undetected Ratio Nearest grid to SHIP is evaluated. Global Spectral Model (GSM) is used for NWP. 25

Day Microphysics RGB Nephanalysis in daytime. Meteorological Satellite Center, JMA

Day Microphysics RGB Nephanalysis in daytime. Meteorological Satellite Center, JMA Day Microphysics RGB Nephanalysis in daytime Meteorological Satellite Center, JMA What s Day Microphysics RGB? R : B04 (N1 0.86) Range : 0~100 [%] Gamma : 1.0 G : B07(I4 3.9) (Solar component) Range :

More information

Day Snow-Fog RGB Detection of low-level clouds and snow/ice covered area

Day Snow-Fog RGB Detection of low-level clouds and snow/ice covered area JMA Day Snow-Fog RGB Detection of low-level clouds and snow/ice covered area Meteorological Satellite Center, JMA What s Day Snow-Fog RGB? R : B04 (N1 0.86) Range : 0~100 [%] Gamma : 1.7 G : B05 (N2 1.6)

More information

How to display RGB imagery by SATAID

How to display RGB imagery by SATAID How to display RGB imagery by SATAID Akihiro SHIMIZU Meteorological Satellite Center (MSC), Japan Meteorological Agency (JMA) Ver. 2015110500 RGB imagery on SATAID SATAID software has a function of overlapping

More information

Global and Regional OSEs at JMA

Global and Regional OSEs at JMA Global and Regional OSEs at JMA Yoshiaki SATO and colleagues Japan Meteorological Agency / Numerical Prediction Division 1 JMA NWP SYSTEM Global OSEs Contents AMSU A over coast, MHS over land, (related

More information

Inter-comparison MTSAT-2 & Himawari-8

Inter-comparison MTSAT-2 & Himawari-8 Inter-comparison MTSAT-2 & Himawari-8 WMO Volcanic Ash Advisory Centre Best Practice Workshop 2017 Tokyo Volcanic Ash Advisory Centre Japan Meteorological Agency Outline Introduction Method Case study

More information

Ash RGB Detection of Volcanic Ash

Ash RGB Detection of Volcanic Ash Copyright, JMA RGB Detection of Volcanic Meteorological Satellite Center, JMA Ver. 20150424 Volcanic Detection by Infrared and Difference Image, and Basis Himawari-8 B15-B13 2015-02-16 06:35 UTC Himawari-8

More information

Himawari-8 True Color RGB

Himawari-8 True Color RGB Himawari-8 True Color RGB Meteorological Satellite Center, JMA Ver. 20150519 What s True Color RGB? R : B03(VS 0.64) G : B02(V2 0.51) 2015-03-17 00UTC B : B01(V1 0.46) Components of True Color RGB Channel

More information

JMA s atmospheric motion vectors

JMA s atmospheric motion vectors Prepared by JMA Agenda Item: WG II/6 Discussed in WG II JMA s atmospheric motion vectors This paper reports on the recent status of JMA's Atmospheric Motion Vectors (AMVs) from MTSAT-2 and MTSAT-1R, and

More information

Rapidly Developing Cumulus Area RDCA detection using Himawari-8 data

Rapidly Developing Cumulus Area RDCA detection using Himawari-8 data AOMSUC-7@Incheon Rapidly Developing Cumulus Area RDCA detection using Himawari-8 data Hiroshi SUZUE and Yasuhiko SUMIDA Meteorological Satellite Center Japan Meteorological Agency Contents Ø Outline of

More information

CURRENT STATUS OF OPERATIONAL WIND PRODUCT IN JMA/MSC

CURRENT STATUS OF OPERATIONAL WIND PRODUCT IN JMA/MSC Proceedings for the 13 th International Winds Workshop 27 June - 1 July 2016, Monterey, California, USA CURRENT STATUS OF OPERATIONAL WIND PRODUCT IN JMA/MSC Kazuki Shimoji and Kenichi Nonaka JMA/MSC,

More information

The MODIS Cloud Data Record

The MODIS Cloud Data Record The MODIS Cloud Data Record Brent C. Maddux 1,2 Steve Platnick 3, Steven A. Ackerman 1 Paul Menzel 1, Kathy Strabala 1, Richard Frey 1, 1 Cooperative Institute for Meteorological Satellite Studies, 2 Department

More information

NOWCASTING PRODUCTS BASED ON MTSAT-1R RAPID SCAN OBSERVATION. In response to CGMS Action 38.33

NOWCASTING PRODUCTS BASED ON MTSAT-1R RAPID SCAN OBSERVATION. In response to CGMS Action 38.33 CGMS-39, JMA-WP-08 Prepared by JMA Agenda Item: G.II/8 Discussed in WG II NOWCASTING PRODUCTS BASED ON MTSAT-1R RAPID SCAN OBSERVATION In response to CGMS Action 38.33 This document reports on JMA s MTSAT-1R

More information

RGB in Broadcast Meteorology

RGB in Broadcast Meteorology RGB in Broadcast Meteorology AHI Imagery for Weather Commentary on Clouds Yuki Takano Atmosphere and Ocean Research Institute The University of Tokyo collaborated with Shotaro Watanabe (Weather Map Co.

More information

The Impact of Observational data on Numerical Weather Prediction. Hirokatsu Onoda Numerical Prediction Division, JMA

The Impact of Observational data on Numerical Weather Prediction. Hirokatsu Onoda Numerical Prediction Division, JMA The Impact of Observational data on Numerical Weather Prediction Hirokatsu Onoda Numerical Prediction Division, JMA Outline Data Analysis system of JMA in Global Spectral Model (GSM) and Meso-Scale Model

More information

Introduction of JMA VLab Support Site on RGB Composite Imagery and tentative RGBs

Introduction of JMA VLab Support Site on RGB Composite Imagery and tentative RGBs The Sixth Asia/Oceania Meteorological Satellite Users' Conference 9 13 November 2015, Tokyo/Japan J M A Introduction of JMA VLab Support Site on RGB Composite Imagery and tentative RGBs Akihiro SHIMIZU

More information

Assimilation of Himawari-8 Atmospheric Motion Vectors into the Numerical Weather Prediction Systems of Japan Meteorological Agency

Assimilation of Himawari-8 Atmospheric Motion Vectors into the Numerical Weather Prediction Systems of Japan Meteorological Agency Assimilation of Himawari-8 Atmospheric Motion Vectors into the Numerical Weather Prediction Systems of Japan Meteorological Agency Koji Yamashita Japan Meteorological Agency kobo.yamashita@met.kishou.go.jp,

More information

SAFNWC/MSG SEVIRI CLOUD PRODUCTS

SAFNWC/MSG SEVIRI CLOUD PRODUCTS SAFNWC/MSG SEVIRI CLOUD PRODUCTS M. Derrien and H. Le Gléau Météo-France / DP / Centre de Météorologie Spatiale BP 147 22302 Lannion. France ABSTRACT Within the SAF in support to Nowcasting and Very Short

More information

Himawari 8/9 data distribution/dissemination plan

Himawari 8/9 data distribution/dissemination plan Himawari 8/9 data distribution/dissemination plan Japan Meteorological Agency (JMA) Hidehiko MURATA Himawari is the name of this flower in Japanese ET SUP 8, WMO HQ, Geneva, 14 17 April 2014 1 Outline

More information

TWO APPLICATIONS OF IMPROVEMENTS FOR AMVS OF NSMC/CMA

TWO APPLICATIONS OF IMPROVEMENTS FOR AMVS OF NSMC/CMA TWO APPLICATIONS OF IMPROVEMENTS FOR AMVS OF NSMC/CMA RE-NAVIGATION BASED ON FULL EARTH DISC IMAGE & CALCULATION OF RADIATION TRANSFER USING NWP DATA Zhang Xiaohu, Xu Jianmin National Satellite Meteorological

More information

AN OBSERVING SYSTEM EXPERIMENT OF MTSAT RAPID SCAN AMV USING JMA MESO-SCALE OPERATIONAL NWP SYSTEM

AN OBSERVING SYSTEM EXPERIMENT OF MTSAT RAPID SCAN AMV USING JMA MESO-SCALE OPERATIONAL NWP SYSTEM AN OBSERVING SYSTEM EXPERIMENT OF MTSAT RAPID SCAN AMV USING JMA MESO-SCALE OPERATIONAL NWP SYSTEM Koji Yamashita Japan Meteorological Agency / Numerical Prediction Division 1-3-4, Otemachi, Chiyoda-ku,

More information

RGB Experts and Developers Workshop - Introduction Tokyo, Japan 7-9 Nov 2017

RGB Experts and Developers Workshop - Introduction Tokyo, Japan 7-9 Nov 2017 RGB Experts and Developers Workshop - Introduction Tokyo, Japan 7-9 Nov 2017 Workshop Objectives Review of existing RGB standards Reconfirm and extend existing standards (new multi-spectral imagers) Stimulate

More information

Observing system experiments of MTSAT-2 Rapid Scan Atmospheric Motion Vector for T-PARC 2008 using the JMA operational NWP system

Observing system experiments of MTSAT-2 Rapid Scan Atmospheric Motion Vector for T-PARC 2008 using the JMA operational NWP system Tenth International Winds Workshop 1 Observing system experiments of MTSAT-2 Rapid Scan Atmospheric Motion Vector for T-PARC 2008 using the JMA operational NWP system Koji Yamashita Japan Meteorological

More information

Towards the assimilation of all-sky infrared radiances of Himawari-8. Kozo Okamoto 1,2

Towards the assimilation of all-sky infrared radiances of Himawari-8. Kozo Okamoto 1,2 Towards the assimilation of all-sky infrared radiances of Himawari-8 Kozo Okamoto 1,2 H. Ishimoto 1, M. Kunii 1,2, M. Otsuka 1,2, S. Yokota 1, H. Seko 1,2, and Y. Sawada 2 1: JMA/MRI, 2: RIKEN/AICS ISDA2016,

More information

Monitoring Sand and Dust Storms from Space

Monitoring Sand and Dust Storms from Space Monitoring Sand and Dust Storms from Space for Expert Consultation on Disaster Information and Knowledge, Session 2 ICC 21 for ESCAP s RESAP and CDRR 5 9 12 October, 2017 Toshiyuki KURINO WMO Space Programme

More information

JMA s ATMOSPHERIC MOTION VECTORS In response to Action 40.22

JMA s ATMOSPHERIC MOTION VECTORS In response to Action 40.22 5 July 2013 Prepared by JMA Agenda Item: II/6 Discussed in WG II JMA s ATMOSPHERIC MOTION VECTORS In response to Action 40.22 This paper reports on the recent status of JMA's AMVs from MTSAT-2 and MTSAT-1R,

More information

Preparation for Himawari 8

Preparation for Himawari 8 Preparation for Himawari 8 Japan Meteorological Agency Meteorological Satellite Center Hidehiko MURATA ET SUP 8, WMO HQ, Geneva, 14 17 April 2014 1/18 Introduction Background The Japan Meteorological Agency

More information

The Improvement of JMA Operational Wave Models

The Improvement of JMA Operational Wave Models The Improvement of JMA Operational Wave Models Toshiharu Tauchi Nadao Kohno * Mika Kimura Japan Meteorological Agency * (also) Meteorological Research Institute, JMA 10 th International Workshop on Wave

More information

Current Status of COMS AMV in NMSC/KMA

Current Status of COMS AMV in NMSC/KMA Current Status of COMS AMV in NMSC/KMA Eunha Sohn, Sung-Rae Chung, Jong-Seo Park Satellite Analysis Division, NMSC/KMA soneh0431@korea.kr COMS AMV of KMA/NMSC has been produced hourly since April 1, 2011.

More information

Impact of GPS and TMI Precipitable Water Data on Mesoscale Numerical Weather Prediction Model Forecasts

Impact of GPS and TMI Precipitable Water Data on Mesoscale Numerical Weather Prediction Model Forecasts Journal of the Meteorological Society of Japan, Vol. 82, No. 1B, pp. 453--457, 2004 453 Impact of GPS and TMI Precipitable Water Data on Mesoscale Numerical Weather Prediction Model Forecasts Ko KOIZUMI

More information

" The usefulness of RGB products: the perspective of the Australian Bureau of Meteorology "

 The usefulness of RGB products: the perspective of the Australian Bureau of Meteorology " The usefulness of RGB products: the perspective of the Australian Bureau of Meteorology " Presenter: Bodo Zeschke. Bureau of Meteorology Training Centre, Australian VLab Centre of Excellence Point of

More information

Evaluation and assimilation of all-sky infrared radiances of Himawari-8

Evaluation and assimilation of all-sky infrared radiances of Himawari-8 Evaluation and assimilation of all-sky infrared radiances of Himawari-8 Kozo Okamoto 1,2, Yohei Sawada 1,2, Masaru Kunii 1, Tempei Hashino 3, Takeshi Iriguchi 1 and Masayuki Nakagawa 1 1: JMA/MRI, 2: RIKEN/AICS,

More information

WIND PROFILER NETWORK OF JAPAN METEOROLOGICAL AGENCY

WIND PROFILER NETWORK OF JAPAN METEOROLOGICAL AGENCY WIND PROFILER NETWORK OF JAPAN METEOROLOGICAL AGENCY Masahito Ishihara Japan Meteorological Agency CIMO Expert Team on Remote Sensing Upper-Air Technology and Techniques 14-17 March, 2005 Geneva, Switzerland

More information

IMPACT STUDIES OF AMVS AND SCATTEROMETER WINDS IN JMA GLOBAL OPERATIONAL NWP SYSTEM

IMPACT STUDIES OF AMVS AND SCATTEROMETER WINDS IN JMA GLOBAL OPERATIONAL NWP SYSTEM IMPACT STUDIES OF AMVS AND SCATTEROMETER WINDS IN JMA GLOBAL OPERATIONAL NWP SYSTEM Koji Yamashita Japan Meteorological Agency / Numerical Prediction Division 1-3-4, Otemachi, Chiyoda-ku, Tokyo 100-8122,

More information

Status and Plans of using the scatterometer winds in JMA's Data Assimilation and Forecast System

Status and Plans of using the scatterometer winds in JMA's Data Assimilation and Forecast System Status and Plans of using the scatterometer winds in 's Data Assimilation and Forecast System Masaya Takahashi¹ and Yoshihiko Tahara² 1- Numerical Prediction Division, Japan Meteorological Agency () 2-

More information

Ice fog: T~<-10C RHi>100%

Ice fog: T~<-10C RHi>100% SATELLITE AND RADIOMETER BASED NOWCASTING APPLICATIONS FOR ARCTIC REGIONS Ismail Gultepe 1, Mike Pavolonis 2, Victor Chung 3, Corey Calvert 4, James Gurka 5, Randolf Ware 6, Louis Garand 7 G. Toth Aug

More information

4.1 New Generation Satellite Data and Nowcasting Products: Himawari

4.1 New Generation Satellite Data and Nowcasting Products: Himawari 4.1 New Generation Satellite Data and Nowcasting Products: Himawari SCOPE-Nowcasting-EP 18-20 September 2017 Koji Yamashita kobo.yamashita@met.kishou.go.jp Meteorological Satellite Center (MSC) Japan Meteorological

More information

Operational Use of Scatterometer Winds at JMA

Operational Use of Scatterometer Winds at JMA Operational Use of Scatterometer Winds at JMA Masaya Takahashi Numerical Prediction Division, Japan Meteorological Agency (JMA) 10 th International Winds Workshop, Tokyo, 26 February 2010 JMA Outline JMA

More information

Current status and plans of JMA operational wind product

Current status and plans of JMA operational wind product Current status and plans of JMA operational wind product Kazuki Shimoji Japan Meteorological Agency / Meteorological Satellite Center 3-235, Nakakiyoto, Kiyose, Tokyo, Japan Abstract The Meteorological

More information

JMA s Ensemble Prediction System for One-month and Seasonal Predictions

JMA s Ensemble Prediction System for One-month and Seasonal Predictions JMA s Ensemble Prediction System for One-month and Seasonal Predictions Akihiko Shimpo Japan Meteorological Agency Seasonal Prediction Modeling Team: H. Kamahori, R. Kumabe, I. Ishikawa, T. Tokuhiro, S.

More information

Satellites, Weather and Climate Module 1: Introduction to the Electromagnetic Spectrum

Satellites, Weather and Climate Module 1: Introduction to the Electromagnetic Spectrum Satellites, Weather and Climate Module 1: Introduction to the Electromagnetic Spectrum What is remote sensing? = science & art of obtaining information through data analysis, such that the device is not

More information

Applications of the SEVIRI window channels in the infrared.

Applications of the SEVIRI window channels in the infrared. Applications of the SEVIRI window channels in the infrared jose.prieto@eumetsat.int SEVIRI CHANNELS Properties Channel Cloud Gases Application HRV 0.7 Absorption Scattering

More information

RGB Experts and Developers Workshop 2017 Tokyo, Japan

RGB Experts and Developers Workshop 2017 Tokyo, Japan "Application of the Sandwich Product and variations to this as used by Australian Forecasters and as presented during training at the Australian VLab Centre of Excellence". RGB Experts and Developers Workshop

More information

RECENT UPGRADES OF AND ACTIVITIES FOR ATMOSPHERIC MOTION VECTORS AT JMA/MSC

RECENT UPGRADES OF AND ACTIVITIES FOR ATMOSPHERIC MOTION VECTORS AT JMA/MSC 1 th International Winds Workshop, Tokyo, Japan, - ruary 1 RECENT UPGRADES OF AND ACTIVITIES FOR ATMOSPHERIC MOTION VECTORS AT JMA/MSC Ryo OYAMA Meteorological Satellite Center of Japan Meteorological

More information

FUTURE PLAN AND RECENT ACTIVITIES FOR THE JAPANESE FOLLOW-ON GEOSTATIONARY METEOROLOGICAL SATELLITE HIMAWARI-8/9

FUTURE PLAN AND RECENT ACTIVITIES FOR THE JAPANESE FOLLOW-ON GEOSTATIONARY METEOROLOGICAL SATELLITE HIMAWARI-8/9 FUTURE PLAN AND RECENT ACTIVITIES FOR THE JAPANESE FOLLOW-ON GEOSTATIONARY METEOROLOGICAL SATELLITE HIMAWARI-8/9 Toshiyuki Kurino Japan Meteorological Agency, 1-3-4 Otemachi Chiyodaku, Tokyo 100-8122,

More information

NUMERICAL EXPERIMENTS USING CLOUD MOTION WINDS AT ECMWF GRAEME KELLY. ECMWF, Shinfield Park, Reading ABSTRACT

NUMERICAL EXPERIMENTS USING CLOUD MOTION WINDS AT ECMWF GRAEME KELLY. ECMWF, Shinfield Park, Reading ABSTRACT NUMERICAL EXPERIMENTS USING CLOUD MOTION WINDS AT ECMWF GRAEME KELLY ECMWF, Shinfield Park, Reading ABSTRACT Recent monitoring of cloud motion winds (SATOBs) at ECMWF has shown an improvement in quality.

More information

Changes in Cloud Cover and Cloud Types Over the Ocean from Surface Observations, Ryan Eastman Stephen G. Warren Carole J.

Changes in Cloud Cover and Cloud Types Over the Ocean from Surface Observations, Ryan Eastman Stephen G. Warren Carole J. Changes in Cloud Cover and Cloud Types Over the Ocean from Surface Observations, 1954-2008 Ryan Eastman Stephen G. Warren Carole J. Hahn Clouds Over the Ocean The ocean is cloudy, more-so than land Cloud

More information

Cloud Analysis Image: Product Guide

Cloud Analysis Image: Product Guide Cloud Analysis Image: Product Guide Doc.No. : EUM/TSS/MAN/15/795729 EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Issue : v1c Fax: +49 6151 807 555 Date : 19 February 2015 http://www.eumetsat.int

More information

Assimilation of Himawari-8 data into JMA s NWP systems

Assimilation of Himawari-8 data into JMA s NWP systems Assimilation of Himawari-8 data into JMA s NWP systems Masahiro Kazumori, Koji Yamashita and Yuki Honda Numerical Prediction Division, Japan Meteorological Agency 1. Introduction The new-generation Himawari-8

More information

Meteorological Satellite Image Interpretations, Part III. Acknowledgement: Dr. S. Kidder at Colorado State Univ.

Meteorological Satellite Image Interpretations, Part III. Acknowledgement: Dr. S. Kidder at Colorado State Univ. Meteorological Satellite Image Interpretations, Part III Acknowledgement: Dr. S. Kidder at Colorado State Univ. Dates EAS417 Topics Jan 30 Introduction & Matlab tutorial Feb 1 Satellite orbits & navigation

More information

Developments at DWD: Integrated water vapour (IWV) from ground-based GPS

Developments at DWD: Integrated water vapour (IWV) from ground-based GPS 1 Working Group on Data Assimilation 2 Developments at DWD: Integrated water vapour (IWV) from ground-based Christoph Schraff, Maria Tomassini, and Klaus Stephan Deutscher Wetterdienst, Frankfurter Strasse

More information

Atmospheric Boundary Layer over Land, Ocean, and Ice. Xubin Zeng, Michael Brunke, Josh Welty, Patrick Broxton University of Arizona

Atmospheric Boundary Layer over Land, Ocean, and Ice. Xubin Zeng, Michael Brunke, Josh Welty, Patrick Broxton University of Arizona Atmospheric Boundary Layer over Land, Ocean, and Ice Xubin Zeng, Michael Brunke, Josh Welty, Patrick Broxton University of Arizona xubin@email.arizona.edu 24 October 2017 Future of ABL Observations Workshop

More information

ESCI 344 Tropical Meteorology Lesson 7 Temperature, Clouds, and Rain

ESCI 344 Tropical Meteorology Lesson 7 Temperature, Clouds, and Rain ESCI 344 Tropical Meteorology Lesson 7 Temperature, Clouds, and Rain References: Forecaster s Guide to Tropical Meteorology (updated), Ramage Tropical Climatology, McGregor and Nieuwolt Climate and Weather

More information

P3.24 EVALUATION OF MODERATE-RESOLUTION IMAGING SPECTRORADIOMETER (MODIS) SHORTWAVE INFRARED BANDS FOR OPTIMUM NIGHTTIME FOG DETECTION

P3.24 EVALUATION OF MODERATE-RESOLUTION IMAGING SPECTRORADIOMETER (MODIS) SHORTWAVE INFRARED BANDS FOR OPTIMUM NIGHTTIME FOG DETECTION P3.24 EVALUATION OF MODERATE-RESOLUTION IMAGING SPECTRORADIOMETER (MODIS) SHORTWAVE INFRARED BANDS FOR OPTIMUM NIGHTTIME FOG DETECTION 1. INTRODUCTION Gary P. Ellrod * NOAA/NESDIS/ORA Camp Springs, MD

More information

ECNU WORKSHOP LAB ONE 2011/05/25)

ECNU WORKSHOP LAB ONE 2011/05/25) ECNU WORKSHOP LAB ONE (Liam.Gumley@ssec.wisc.edu 2011/05/25) The objective of this laboratory exercise is to become familiar with the characteristics of MODIS Level 1B 1000 meter resolution data. After

More information

Masahiro Kazumori, Takashi Kadowaki Numerical Prediction Division Japan Meteorological Agency

Masahiro Kazumori, Takashi Kadowaki Numerical Prediction Division Japan Meteorological Agency Development of an all-sky assimilation of microwave imager and sounder radiances for the Japan Meteorological Agency global numerical weather prediction system Masahiro Kazumori, Takashi Kadowaki Numerical

More information

Comparison of NASA AIRS and MODIS Land Surface Temperature and Infrared Emissivity Measurements from the EOS AQUA platform

Comparison of NASA AIRS and MODIS Land Surface Temperature and Infrared Emissivity Measurements from the EOS AQUA platform Comparison of NASA AIRS and MODIS Land Surface Temperature and Infrared Emissivity Measurements from the EOS AQUA platform Robert Knuteson, Steve Ackerman, Hank Revercomb, Dave Tobin University of Wisconsin-Madison

More information

Arctic Weather Every 10 Minutes: Design & Operation of ABI for PCW

Arctic Weather Every 10 Minutes: Design & Operation of ABI for PCW Arctic Weather Every 10 Minutes: Design and Operation of ABI for PCW Dr. Paul C. Griffith and Sue Wirth 31st Space Symposium, Technical Track, Colorado Springs, Colorado This document is not subject to

More information

Short-Term Forecasting of Surface Solar Irradiance Based on Meteosat-SEVIRI Data Using a Nighttime Cloud lndex

Short-Term Forecasting of Surface Solar Irradiance Based on Meteosat-SEVIRI Data Using a Nighttime Cloud lndex Short-Term Forecasting of Surface Solar Irradiance Based on Meteosat-SEVIRI Data Using a Nighttime Cloud lndex Annette Hammer Energy Meteorology Group Institute of Physics Carl von Ossietzky University

More information

Introducing Atmospheric Motion Vectors Derived from the GOES-16 Advanced Baseline Imager (ABI)

Introducing Atmospheric Motion Vectors Derived from the GOES-16 Advanced Baseline Imager (ABI) Introducing Atmospheric Motion Vectors Derived from the GOES-16 Advanced Baseline Imager (ABI) Jaime Daniels NOAA/NESDIS, Center for Satellite Applications and Research Wayne Bresky, Andrew Bailey, Americo

More information

Tonga Country Report

Tonga Country Report Tonga Country Report Tonga Meteorological Services Ph. (676)35355 email: metstaff@met.gov.to Joint Meeting of RA II WIGOS Project and RA V TT-SU Jakarta, Indonesia / 11 October 2018 BMKG Headquarter Outline

More information

VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING

VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING Niilo Siljamo, Otto Hyvärinen Finnish Meteorological Institute, Erik Palménin aukio 1, P.O.Box 503, FI-00101 HELSINKI Abstract Hydrological

More information

How Tokyo VAAC s forecasters uses RGB products

How Tokyo VAAC s forecasters uses RGB products How Tokyo VAAC s forecasters uses RGB products RGB Experts and Developers Workshop 2017 @ Tokyo, Japan 8 November 2017 Tokyo Volcanic Advisory Center Hiroaki TSUCHIYAMA Areas of Responsibility of the Nine

More information

A Time Lag Model to Estimate Rainfall Rate Based on GOES Data

A Time Lag Model to Estimate Rainfall Rate Based on GOES Data A Time Lag Model to Estimate Rainfall Rate Based on GOES Data Nazario D. Ramirez, Robert J. Kuligowski, and Joan M. Castro Octava Reunión Nacional de Percepción Remota y Sistemas Geográficos de Información

More information

Assimilation of GNSS Radio Occultation Data at JMA. Hiromi Owada, Yoichi Hirahara and Masami Moriya Japan Meteorological Agency

Assimilation of GNSS Radio Occultation Data at JMA. Hiromi Owada, Yoichi Hirahara and Masami Moriya Japan Meteorological Agency Assimilation of GNSS Radio Occultation Data at JMA Hiromi Owada, Yoichi Hirahara and Masami Moriya Japan Meteorological Agency COSMIC-IROWG 2017, 21-27 September 2017 1 Outline Current RO data utilization

More information

TWO APPLICATIONS OF IMPROVEMENTS FOR AMVS OF NSMC/CMA. Zhang Xiaohu, Xu Jianmin National Satellite Meteorological Center, Beijing , CHINA

TWO APPLICATIONS OF IMPROVEMENTS FOR AMVS OF NSMC/CMA. Zhang Xiaohu, Xu Jianmin National Satellite Meteorological Center, Beijing , CHINA TWO APPLICATIONS OF IMPROVEMENTS FOR AMVS OF NSMC/CMA Zhang Xiaohu, Xu Jianmin National Satellite Meteorological Center, Beijing 100081, CHINA RE-NAVIGATION BASED ON FULL EARTH DISC IMAGE CALCULATION OF

More information

Fog Detection(FOG) Algorithm Theoretical Basis Document

Fog Detection(FOG) Algorithm Theoretical Basis Document (FOG) (FOG-v1.0) NMSC/SCI/ATBD/FOG, Issue 1, rev.0 2012.12.12 National Meteorological Satellite Center REPORT SIGNATURE TABLE National Meteorological Satellite Center DOCUMENT CHANGE RECORD National Meteorological

More information

STATUS OF JAPANESE METEOROLOGICAL SATELLITES AND RECENT ACTIVITIES OF MSC

STATUS OF JAPANESE METEOROLOGICAL SATELLITES AND RECENT ACTIVITIES OF MSC STATUS OF JAPANESE METEOROLOGICAL SATELLITES AND RECENT ACTIVITIES OF MSC Daisaku Uesawa Meteorological Satellite Center, Japan Meteorological Agency Abstract MTSAT-1R is the current operational Japanese

More information

Satellite observation of atmospheric dust

Satellite observation of atmospheric dust Satellite observation of atmospheric dust Taichu Y. Tanaka Meteorological Research Institute, Japan Meteorological Agency 11 April 2017, SDS WAS: Dust observation and modeling @WMO, Geneva Dust observations

More information

OPERATIONAL SYSTEM FOR EXTRACTING CLOUD MOTION AND WATER VAPOR MOTION WINDS FROM GMS-5 IMAGE DATA ABSTRACT

OPERATIONAL SYSTEM FOR EXTRACTING CLOUD MOTION AND WATER VAPOR MOTION WINDS FROM GMS-5 IMAGE DATA ABSTRACT OPERATIONAL SYSTEM FOR EXTRACTING CLOUD MOTION AND WATER VAPOR MOTION WINDS FROM GMS-5 IMAGE DATA Masami Tokuno Meteorological Satellite Center, Japan Meteorological Agency 3-235, Nakakiyoto, Kiyose, Tokyo

More information

Applications of multi-spectral satellite data

Applications of multi-spectral satellite data Applications of multi-spectral satellite data Jochen Kerkmann EUMETSAT, Satellite Meteorologist, Training Officer Adjusted by E de Coning South African Weather Service Content 1. Why should we use RGBs?

More information

Steve Ackerman, R. Holz, R Frey, S. Platnick, A. Heidinger, and a bunch of others.

Steve Ackerman, R. Holz, R Frey, S. Platnick, A. Heidinger, and a bunch of others. Steve Ackerman, R. Holz, R Frey, S. Platnick, A. Heidinger, and a bunch of others. Outline Using CALIOP to Validate MODIS Cloud Detection, Cloud Height Assignment, Optical Properties Clouds and Surface

More information

Development of JMA storm surge model

Development of JMA storm surge model 2 nd JCOMM Scientific and Technical Symposium on Storm Surges 8-13 November 2015, Key West, Florida, USA Development of JMA storm surge model Hiroshi HASEGAWA (h_hasegawa@met.kishou.go.jp) Office of Marine

More information

Recent Improvement of Integrated Observation Systems in JMA

Recent Improvement of Integrated Observation Systems in JMA Recent Improvement of Integrated Observation Systems in JMA Mr Osamu Suzuki and Mr Yoshihiko Tahara Japan Meteorological Agency 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan Tel: +81-3-3212-8341, Fax:

More information

Condensation Nuclei. Condensation Nuclei 2/10/11. Hydrophobic Water-repelling Oils, gasoline, paraffin Resist condensation, even above 100% RH

Condensation Nuclei. Condensation Nuclei 2/10/11. Hydrophobic Water-repelling Oils, gasoline, paraffin Resist condensation, even above 100% RH Chapter 5 The Formation of Dew & Frost Dew forms on objects near the ground surface when they cool below the dew point temperature. More likely on clear nights due to increased radiative cooling White

More information

Appendix B. A proposition for updating the environmental standards using real Earth Albedo and Earth IR Flux for Spacecraft Thermal Analysis

Appendix B. A proposition for updating the environmental standards using real Earth Albedo and Earth IR Flux for Spacecraft Thermal Analysis 19 Appendix B A proposition for updating the environmental standards using real Earth Albedo and Earth IR Romain Peyrou-Lauga (ESA/ESTEC, The Netherlands) 31 st European Space Thermal Analysis Workshop

More information

Condensation: Dew, Fog, & Clouds. Chapter 5

Condensation: Dew, Fog, & Clouds. Chapter 5 Condensation: Dew, Fog, & Clouds Chapter 5 The Formation of Dew & Frost Dew forms on objects near the ground surface when they cool below the dew point temperature. More likely on clear nights due to increased

More information

CLOUD MOTION WINDS FROM FY-2 AND GMS-5 METEOROLOGICAL SATELLITES. Xu Jianmin, Zhang Qisong, Fang Xiang, Liu Jian

CLOUD MOTION WINDS FROM FY-2 AND GMS-5 METEOROLOGICAL SATELLITES. Xu Jianmin, Zhang Qisong, Fang Xiang, Liu Jian CLOUD MOTION WINDS FROM FY-2 AND GMS-5 METEOROLOGICAL SATELLITES Xu Jianmin, Zhang Qisong, Fang Xiang, Liu Jian National Satellite Meteorological Center Abstract Cloud Motion Winds (CMW) from FY-2 and

More information

Recent Developments of JMA Operational NWP Systems and WGNE Intercomparison of Tropical Cyclone Track Forecast

Recent Developments of JMA Operational NWP Systems and WGNE Intercomparison of Tropical Cyclone Track Forecast Recent Developments of JMA Operational NWP Systems and WGNE Intercomparison of Tropical Cyclone Track Forecast Chiashi Muroi Numerical Prediction Division Japan Meteorological Agency 1 CURRENT STATUS AND

More information

11 days (00, 12 UTC) 132 hours (06, 18 UTC) One unperturbed control forecast and 26 perturbed ensemble members. --

11 days (00, 12 UTC) 132 hours (06, 18 UTC) One unperturbed control forecast and 26 perturbed ensemble members. -- APPENDIX 2.2.6. CHARACTERISTICS OF GLOBAL EPS 1. Ensemble system Ensemble (version) Global EPS (GEPS1701) Date of implementation 19 January 2017 2. EPS configuration Model (version) Global Spectral Model

More information

Climate & Earth System Science. Introduction to Meteorology & Climate. Chapter 05 SOME OBSERVING INSTRUMENTS. Instrument Enclosure.

Climate & Earth System Science. Introduction to Meteorology & Climate. Chapter 05 SOME OBSERVING INSTRUMENTS. Instrument Enclosure. Climate & Earth System Science Introduction to Meteorology & Climate MAPH 10050 Peter Lynch Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Meteorology

More information

Status and Plans of Next Generation Japanese Geostationary Meteorological Satellites Himawari 8/9

Status and Plans of Next Generation Japanese Geostationary Meteorological Satellites Himawari 8/9 Status and Plans of Next Generation Japanese Geostationary Meteorological Satellites Himawari 8/9 Masahiro Hayashi 1, Kotaro Bessho 1, and Tomoo Ohno 2 1: JMA/Meteorological Satellite Center (MSC) 2: JMA/Satellite

More information

Using the CRTM and GOES Observations to Improve Model Microphysics

Using the CRTM and GOES Observations to Improve Model Microphysics Using the CRTM and GOES Observations to Improve Model Microphysics Dan Lindsey NOAA Center for Satellite Applications and Research, CIRA, Ft. Collins, CO Louie Grasso, Yoo-Jeong Noh, Steve Miller, Curtis

More information

RECENT ADVANCES TO EXPERIMENTAL GMS ATMOSPHERIC MOTION VECTOR PROCESSING SYSTEM AT MSC/JMA

RECENT ADVANCES TO EXPERIMENTAL GMS ATMOSPHERIC MOTION VECTOR PROCESSING SYSTEM AT MSC/JMA RECENT ADVANCES TO EXPERIMENTAL GMS ATMOSPHERIC MOTION VECTOR PROCESSING SYSTEM AT MSC/JMA Ryoji Kumabe 1, Yoshiki Kajino 1 and Masami Tokuno 2 1 Meteorological Satellite Center, Japan Meteorological Agency

More information

Journal of the Meteorological Society of Japan, Vol. 75, No. 1, pp , Day-to-Night Cloudiness Change of Cloud Types Inferred from

Journal of the Meteorological Society of Japan, Vol. 75, No. 1, pp , Day-to-Night Cloudiness Change of Cloud Types Inferred from Journal of the Meteorological Society of Japan, Vol. 75, No. 1, pp. 59-66, 1997 59 Day-to-Night Cloudiness Change of Cloud Types Inferred from Split Window Measurements aboard NOAA Polar-Orbiting Satellites

More information

Application and verification of ECMWF products 2016

Application and verification of ECMWF products 2016 Application and verification of ECMWF products 2016 RHMS of Serbia 1 Summary of major highlights ECMWF forecast products became the backbone in operational work during last several years. Starting from

More information

Remote Ground based observations Merging Method For Visibility and Cloud Ceiling Assessment During the Night Using Data Mining Algorithms

Remote Ground based observations Merging Method For Visibility and Cloud Ceiling Assessment During the Night Using Data Mining Algorithms Remote Ground based observations Merging Method For Visibility and Cloud Ceiling Assessment During the Night Using Data Mining Algorithms Driss BARI Direction de la Météorologie Nationale Casablanca, Morocco

More information

TOWARDS IMPROVED HEIGHT ASSIGNMENT AND QUALITY CONTROL OF AMVS IN MET OFFICE NWP

TOWARDS IMPROVED HEIGHT ASSIGNMENT AND QUALITY CONTROL OF AMVS IN MET OFFICE NWP Proceedings for the 13 th International Winds Workshop 27 June - 1 July 2016, Monterey, California, USA TOWARDS IMPROVED HEIGHT ASSIGNMENT AND QUALITY CONTROL OF AMVS IN MET OFFICE NWP James Cotton, Mary

More information

Recent Developments of JMA Operational NWP Systems and WGNE Intercomparison of Tropical Cyclone Track Forecast

Recent Developments of JMA Operational NWP Systems and WGNE Intercomparison of Tropical Cyclone Track Forecast Recent Developments of JMA Operational NWP Systems and WGNE Intercomparison of Tropical Cyclone Track Forecast Masayuki Nakagawa and colleagues at JMA Numerical Prediction Division Japan Meteorological

More information

Developments in CALIOP Aerosol Products. Dave Winker

Developments in CALIOP Aerosol Products. Dave Winker Developments in CALIOP Aerosol Products Dave Winker NASA Langley Research Center Hampton, VA Winker - 1 Outline Level 3 aerosol product (beta-version) Version 4 Level 1 product A few CALIOP assimilation

More information

VERIFICATION OF MERIS LEVEL 2 PRODUCTS: CLOUD TOP PRESSURE AND CLOUD OPTICAL THICKNESS

VERIFICATION OF MERIS LEVEL 2 PRODUCTS: CLOUD TOP PRESSURE AND CLOUD OPTICAL THICKNESS VERIFICATION OF MERIS LEVEL 2 PRODUCTS: CLOUD TOP PRESSURE AND CLOUD OPTICAL THICKNESS Rene Preusker, Peter Albert and Juergen Fischer 17th December 2002 Freie Universitaet Berlin Institut fuer Weltraumwissenschaften

More information

Development of Innovative Technology to Provide Low-Cost Surface Atmospheric Observations in Data-sparse Regions

Development of Innovative Technology to Provide Low-Cost Surface Atmospheric Observations in Data-sparse Regions Development of Innovative Technology to Provide Low-Cost Surface Atmospheric Observations in Data-sparse Regions Paul Kucera and Martin Steinson University Corporation for Atmospheric Research/COMET 3D-Printed

More information

Evaluation and Assimilation of Remotely- Sensed Lake Surface Temperature in the HIRLAM Weather Forecasting System

Evaluation and Assimilation of Remotely- Sensed Lake Surface Temperature in the HIRLAM Weather Forecasting System Evaluation and Assimilation of Remotely- Sensed Lake Surface Temperature in the HIRLAM Weather Forecasting System H. Kheyrollah Pour 1, C.R. Duguay 1, L. Rontu 2 with contributions from Kalle Eerola 2,

More information

The next-generation supercomputer and NWP system of the JMA

The next-generation supercomputer and NWP system of the JMA The next-generation supercomputer and NWP system of the JMA Masami NARITA m_narita@naps.kishou.go.jp Numerical Prediction Division (NPD), Japan Meteorological Agency (JMA) Purpose of supercomputer & NWP

More information

Country scale solar irradiance forecasting for PV power trading

Country scale solar irradiance forecasting for PV power trading Country scale solar irradiance forecasting for PV power trading The benefits of the nighttime satellite-based forecast Sylvain Cros, Laurent Huet, Etienne Buessler, Mathieu Turpin European power exchange

More information

Project Moon Watch. What You Need. Find Out Do this activity to see how the moon s appearance changes during a 30-day period.

Project Moon Watch. What You Need. Find Out Do this activity to see how the moon s appearance changes during a 30-day period. Chapter 3 The Sun, Moon, and Earth Chapter Science Investigation Project Moon Watch What You Need moon calendar Find Out Do this activity to see how the moon s appearance changes during a 30-day period.

More information

AVIATION APPLICATIONS OF A NEW GENERATION OF MESOSCALE NUMERICAL WEATHER PREDICTION SYSTEM OF THE HONG KONG OBSERVATORY

AVIATION APPLICATIONS OF A NEW GENERATION OF MESOSCALE NUMERICAL WEATHER PREDICTION SYSTEM OF THE HONG KONG OBSERVATORY P452 AVIATION APPLICATIONS OF A NEW GENERATION OF MESOSCALE NUMERICAL WEATHER PREDICTION SYSTEM OF THE HONG KONG OBSERVATORY Wai-Kin WONG *1, P.W. Chan 1 and Ivan C.K. Ng 2 1 Hong Kong Observatory, Hong

More information

WG1 Overview. PP KENDA for km-scale EPS: LETKF. current DA method: nudging. radar reflectivity (precip): latent heat nudging 1DVar (comparison)

WG1 Overview. PP KENDA for km-scale EPS: LETKF. current DA method: nudging. radar reflectivity (precip): latent heat nudging 1DVar (comparison) WG1 Overview Deutscher Wetterdienst, D-63067 Offenbach, Germany current DA method: nudging PP KENDA for km-scale EPS: LETKF radar reflectivity (precip): latent heat nudging 1DVar (comparison) radar radial

More information

Feature-tracked 3D Winds from Satellite Sounders: Derivation and Impact in Global Models

Feature-tracked 3D Winds from Satellite Sounders: Derivation and Impact in Global Models Feature-tracked 3D Winds from Satellite Sounders: Derivation and Impact in Global Models David Santek, Anne-Sophie Daloz 1, Samantha Tushaus 1, Marek Rogal 1, Will McCarty 2 1 Space Science and Engineering

More information

RGB Products: an easy and practical way to display multispectral satellite data (in combination with derived products)

RGB Products: an easy and practical way to display multispectral satellite data (in combination with derived products) RGB Products: an easy and practical way to display multispectral satellite data (in combination with derived products) Dr. Jochen Kerkmann Training Officer EUMETSAT Multi-channel GEO satellites today Him-08

More information

Satellite Soil Moisture Content Data Assimilation in Operational Local NWP System at JMA

Satellite Soil Moisture Content Data Assimilation in Operational Local NWP System at JMA Satellite Soil Moisture Content Data Assimilation in Operational Local NWP System at JMA Yasutaka Ikuta Numerical Prediction Division Japan Meteorological Agency Acknowledgment: This research was supported

More information