Analysis of Natural Wind Characteristics and Review of Their Correlations with Human Thermal Sense through Actual Measurements

Size: px
Start display at page:

Download "Analysis of Natural Wind Characteristics and Review of Their Correlations with Human Thermal Sense through Actual Measurements"

Transcription

1 Analysis of Natural Wind Characteristics and Review of Their Correlations with Human Thermal Sense through Actual Measurements Ki Nam Kang 1,a, Jin Yu 1,b, Doo Sam Song 2,c, Hee Jung Ham 3,d, Kook Jeong Seo 4,e, In Cheol Yun 4,f 1 Graduate School, Sungkyunkwan University, Suwon, Korea, Professor, Sungkyunkwan University, Suwon, Korea, Professor, Kangwon University, Hyoja-2dong, Chunchon , Korea 4 Senior engineer, Samsung electronics co., 416 Maetan-3dong, Suwon, Korea a reomiya@korea.com, b yujin737@hamail.net, c dssong@skku.edu, d heejham@kangwon.ac.kr, e kookjeong.seo@samsung.com, f ic.yun@samsung.com ABSTRACT The purpose of this study is to propose a new cooling system that can improve the problems of conventional cooling systems such as constant and monotonous air-flow, lower temperature than the ambient conditions, and energy efficiency. To improve these drawbacks, this paper focuses on the dynamic characteristics of natural wind so these characteristics can be used as a control strategy of indoor cooling systems. In this paper, based on the field measurements, the characteristics of natural wind fluctuation are analyzed by using the Fast Fourier Transform (FFT) analysis. The strong correlations between natural wind and thermal sense of the human subject can be found by using the FFT analysis, and the relationships can be model as a slope of the low frequencies of the natural wind spectrum, β-value. It is expected that the proper selection of β-value can simulate a comfortable wind and will increase the energy efficient of cooling systems. KEYWORDS: Natural wind, 1/f Fluctuation, FFT(Fast Fourier Transform), β-value, PSD(Power Spectral Density) 1. INTORDUCTION Recently the demand for cooling is rapidly increasing in Korea due to climate change resulting from global environmental changes and the residential culture centered on apartment houses. Furthermore, there is a concern for increasing energy consumption due to the quickly rising demands for comfortableness of air conditioning with the increasing expectations on quality of life of occupants in rooms. In general, the individual needs for cooling of various consumers cannot be met due to the characteristics of conventional air-conditioning systems represented by low-temperature control and monotonous airflow. As a result, energy waste is encouraged without ensuring the thermal comfort of residents due to uneven temperature distribution of residential spaces and the severe temperature differences between indoor and outdoor. Accordingly, there are active attempts in other countries to improve thermal comfort of residents and improve energy efficiency by applying natural wind characteristics called fluctuation wind to conventional room air conditioning systems. Kuno et al. (1999) is reviewing in detail the effects of air current fluctuations on the thermal comfort of human body through experiments. Kamata et al. (1999), Zhu et al. (2006), and others are reporting on their study of the fluctuation characteristics of natural wind and mechanical wind through spectral analysis, 781

2 and the simulation of the fluctuation characteristics of natural wind in actual air-conditioning systems. Moreover, Shukuya et al. (1999) report on the effect of the natural wind velocity and the unique fluctuation characteristics (difference of velocity, cycles) of natural wind on the thermal comfort perception through experiments of subjects exposed to natural wind in summer. The ultimate goal of these papers is to complement the shortcomings of conventional air-conditioning systems by using the air flow fluctuation characteristics of natural wind so as to achieve comfortable and energy-saving air conditioning control. This study analyzed the natural wind in relatively comfortable mountain areas in summer through actual measurements based on the results of preceding studies. Furthermore, this study also measured the thermal sensation of subjects exposed to natural wind. The measurement data was put into a spectral analysis to investigate the fluctuation characteristics of natural wind and the correlations between the natural wind fluctuation characteristics and the thermal sensation of subjects were analyzed. Through this process, this study tried to quantitatively reveal the characteristics of more comfortable natural wind for humans. The analysis results of comfortable natural wind proposed by this study will be used to develop control logic for new air conditioning system targeted at energy saving which is the ultimate goal of this study. 2. MEASUREMENTS OF NATURAL WIND This chapter reports on the contents and results of the measurements of summer natural wind in mountain areas, and the analysis results of the correlations between natural wind and the thermal sensation of the subjects. 2.1 Contents of Measurements To analyze the characteristics of thermal comfort perception for natural wind under hot and humid environment in summer, the actual measurements were conducted in Mt. Seorak area where relatively comfortable wind can be felt in summer (July 21 to 27, 2006). The site for measurements (Figure 1) was a pension located near valley facing a mountain to the north which was an open space where there were few factors affecting wind flow. As shown in Table 1, the measurement items included weather station (temperature/humidity, wind velocity, air pressure, solar radiation, etc.) to measure the microclimate around the measurement Figure 1. Measurement scene of natural wind site, temperature/humidity, radiant temperature and the 3D wind direction/velocity to record the wind characteristics felt by subjects in detail. The measurement interval was about 30 seconds for the weather station and the temperature and humidity around subjects, and 0.1 seconds (10 Hz) for 3D wind direction/velocity due to the need for detailed analysis of the fluctuation characteristics of natural wind. In addition, to investigate the thermal sensation of subjects exposed to natural wind under the measurement environment conditions, five groups of male and female subjects participated in this experiment for one hour each from 9 am to 5 pm. The clothing ensembles of the male and female subjects were 0.7clo and 0.5clo, respectively, and their thermal sensation and comfort perception were recorded once every 30 seconds or so in sitting condition (1.0met). For the thermal sensation of subjects exposed to natural wind, the ASHRAE seven-points scale for thermal sensation (-3 to +3) was used, and for the thermal comfort perception, the ASHRAE six-points scale for thermal perception (1 to 6) was used (Table 2). As shown in Figure 1, to minimize the effect of the radiant heat on the 782

3 thermal sensation of subjects during the experiment, an overhang was installed so that the subjects would not be directly exposed to direct solar radiation. Table 1. Measurement items and details Measurement items Details Interval Physical elements Human subject elements Outside Temp. Radiant (globe) Temp. Humidity Wind velocity Wind direction Turbulent intensity Wind velocity/direction Direct Solar Radiation Thermal Sensation and Comfort Perception Table 2. Scales of Thermal Sensation and Comfort Perception 2.2 Actual Measurement Results for Natural Wind Data-logger+ Thermocouple SK-Sato As shown in Figure 2, the wind direction to the measurement site during the measurement period showed a nearly steady distribution, with the highest frequency of southeastern wind. Figure 3 below shows the outside thermal environment (globe temperature, outside air temperature, humidity), the wind velocity in the X-axis (east-west) direction which is the front direction from the subjects, and the comfort perception data during the experiment hours for the subjects in one day of the measurement period. The average outside temperature was 24.8 ; it was a little low at 21 in the morning and around 25 in the afternoon. The average globe temperature was Due to intermittent rains at daybreak during the Figure 2. Distribution of wind direction measurement period, the humidity in the morning was high at about 80%, but the average humidity during the total experiment period was 54%. The average wind velocity was 0.58m/s, and the highest wind velocity was 2.95m/s (Figure 3). Most of the measured wind velocity values were 0.2m/s or 30.0s 3D Ultrasonic Anemometer 0.1s Davis Weather station 60.0s - Number of participants: Male 6 person and female 6 person in a day - 2 person (male and female) were participated for 1 hour. - Age : 22~28 - Clothing ensembles : Male : T-shirt, Panty, Short-sleeved, Beach shoes (effective clothing thermal insulation is 0.4 [clo]) Female: T-shirt, Panty, Short-sleeved, Brassiere, Beach shoes (effective clothing thermal insulation is 0.41 [clo]) - Activity level: sedentary(1.1met) - ASHRAE seven points scale for thermal sensation and ASHRAE 6 points scale for comfort perception were used. Thermal sensation scale very little little very uncomfortable comfortable uncomfortable uncomfortable comfortable comfortable Comfort perception Cold Cool Slightly Cool Neutral Slightly Warm Warm Hot s 783

4 lower; its frequency was about 77% of the total wind velocity measurements. Solar radiation was 1,067W/m 2 at the highest, and W/m 2 on average. Frequency(%) C S V Humidity(%) Figure 3. Measurement data for outside temperature/humidity, wind velocity, and comfort perception (July, 25) Figure 4. Frequency distribution of wind velocity Figure 5. Frequency distribution of temperature Figure 6. Correlations among air temperature, wind velocity and the comfort perception of subjects (July, 25) 784

5 Figure 6 shows the measurement results that represent the correlation between the natural wind velocity and air temperature changes and the comfort perception of male and female subjects between 14:00 and 15:00 on July 25 th. Even though the average outside temperature was relatively high at 26, the subjects felt comfortable when wind velocity was strong at certain moments. From this, we can see that the high momentary fluctuations of natural wind affect the comfort perception of subjects. This result is also discovered in the results of Fanger et al. (1987). Table 3 below shows the analysis results of the correlations between outside thermal environment factors (outside temperature, humidity, radiant temperature, and wind velocity) and the comfort perception of subjects. The factor with the highest correlation with the thermal comfort perception of subjects was wind velocity, followed by globe temperature, outside temperature, and humidity. Table 3. Correlations between comfort perception and thermal environment factors CSV CSV 1 Humidity Humidity Outside temperature Outside temperature Globe temperature Wind velocity X Globe temperature Wind velocity X The distribution of wind velocity ( X ) at the time when male and female subjects felt comfortable based on the measurement results in Figure 6 and the correlation analysis results in Table 3 is shown in Figure 7. Here, the frequency of feeling comfortable according to the momentary wind velocity was similar between male and female. The highest frequency of feeling comfortable appeared at the wind velocity around 0.4m/s. Figure 7. Relationship between comfort range and X wind velocity 3. ANALYSIS OF NATURAL WIND CHARACTERISTICS This chapter analyzes the unique fluctuation characteristics of natural wind measured in mountain areas in summer through the Power Spectral Analysis method. In particular, the review results on the effects of spectral characteristics of air current on human comfort perception is reported. 3.1 Power spectral analysis The correlations between the fluctuation characteristics of natural wind and the comfort perception of subjects can be indirectly confirmed through the records of wind velocity changes over time and comfort perception (Figure 6). However, to more accurately analyze the irregular fluctuation rhythms of natural wind, power spectral analysis through FFT (Fast Fourier Transform Analysis) is required. Existing studies (Hara et al. 1996), have reported that the fluctuation characteristics of natural wind has the 1/f characteristic, and has close relations with human comfort perception by Yamamoto (1997). Moreover, it has been reported that low frequency eddy is an important factor in human sensation by Fanger et al. (1987). Therefore, this study analyzed the natural wind measurement data with a focus on the frequency range 0.01 to 1 Hz. Accordingly, the analysis results were averaged through the power spectrum exponent (β-value) which can simply show the energy distribution of the turbulent flow of natural wind. Therefore, the energy distribution E(f) at a specific frequency range is expressed by the following equation: 785

6 E / β ( f ) 1 f (1) Figure 8 compares the Power Spectral Analysis results for natural wind at typical comfortable time(a) and uncomfortable time(b) based on the analysis results for the measurement data for natural wind (Figure 6) against the Power Spectral Analysis results for mechanical wind(c). Here the analysis results for mechanical wind were obtained from the data measured at 2m away from an inlet of the air flow discharged from a home air-conditioner at the height of 1.1m and the wind velocity of 2.93m/s. Comfortable natural wind(a) shows a shaper slope of 1/f from low frequency to high frequency. It has high power in the low frequency area, and the power weakens as it moves toward high frequency, showing ignorable white noises. On the other hand, for uncomfortable natural wind(b) and mechanical wind(c), the power changes slowly from low frequency to high frequency, with a small β-value. These results clearly show the fluctuation characteristics of comfortable natural wind, uncomfortable natural wind, and mechanical wind. (a) Comfortable natural wind (b) Uncomfortable natural wind (c) Mechanical wind Figure 8. The typical logarithmic power spectrum curves Figure 9 shows the correlation between β-value and average wind velocity through the natural wind data measured from this study and the frequency analysis for natural wind measurement section where male and female subject s responded relative comfortableness. The analysis results of this study showed that the comfortable area was distributed mainly at lower wind velocity, and the β-value of comfortable natural wind ranged between 1.1 and 2.0. This was almost identical to the β-value range (1.2 to 1.9) of comfortable natural wind from a similar study by Zhu et al. (2006). β Figure 9. β-value distribution of comfortable natural wind 786

7 4. CONCLUSIONS This study analyzed the natural wind in relatively comfortable mountain areas in summer through actual measurements in order to investigate the correlation between the fluctuation characteristics of natural wind and the human thermal comfort perception. Furthermore, this study simultaneously measured the thermal sensation of subjects exposed to natural wind. To more accurately analyze the irregular fluctuation rhythms of natural wind, a power spectral analysis through FFT (Fast Fourier Transform) analysis was conducted. These analysis results were averaged through β-value which can simply show the dynamic characteristics of natural wind. This study leads to the following conclusions: (1) Among the outside environmental factors (wind velocity, temperature, radiant temperature, humidity) that were measured, the change of wind velocity shows the highest correlation with the comfort perception of subjects. (2) The frequency of feeling comfortable was higher for both male and female subjects at a relatively low velocity of natural wind around 0.4m/s. (3) The subjects felt more comfortable at moments of high wind velocity and at points of high fluctuation even in irregular natural wind. (4) Natural wind has a sharp slope of 1/f from low frequency to high frequency. It has high power in low frequency area, and the power weakens as it moves toward high frequency, showing ignorable white noises. However, mechanical wind showed a steady power with slow slope of 1/f. This clearly shows the difference between natural wind and mechanical wind. (5) The power spectral analysis for wind velocity data measured in this study showed that the frequency characteristic value (β-value) of comfortable natural wind ranged from 1.1 to 2.0 while the uncomfortable natural wind showed a β-value lower than 1.0 which is similar to mechanical wind. ACKNOWLEDGEMENT This work was partly supported by grant from the Samsung Electronics Co., Ltd. and grant R from the Basic Research Program of the Korea Science & Engineering Foundation. REFERENCES Byun, I. S., Seong, S. P., Shim, M. S., The Development Of Chaotic Room Air-conditioner Proceedings of the SAREK Summer Annual Conference. Hanzawa, H., Melikow, AK., Fanger, P.O., Airflow Characteristics In The Occupied Zone Of Ventilated Spaces. ASHRAE Transactions ;93(1), pp Hara, T., Shimizu, M., Iguchi, K., and Odagiri, G., Chaotic Fluctuation In Natural Wind And Its Application To Thermal Amenity Proc. 2 nd World congress of Nonlinear Analysis, Theory, Methods & Applications, Vol. 30, No 5, pp Kitakawa, T., Nomura, T., A Wavelet-based Method To Generate Artificial Wind Fluctuation Data Journal of Wind Engineering and Industrial Aerodynamics 9,1 pp Kuno, S., Tanaka, M., Saito, T., A Study On Physiological And Psychological Responses In The Case Where Subjects Move To Slightly Warm Environment With Air Movement From Hot Environment J. Archit. Plann. Environ. Eng., AIJ No. 524, pp

8 Kuwasawa, Y., Saito, M., Kamata, M., Effects Of Fluctuating Air Movement On Thermal Comfort J. Archit. Plann. Environ. Eng., AIJ No. 526, pp Ouyang, Q., Dai, W., Li, H., and Zhu, Y., Study On Dynamic Characteristics Of Natural And Mechanical Wind In Built Environment Using Spectral Analysis, Building and Environment 41, pp Saito, M., Shukuya, M., An Analysis On The Outdoor Air Movement Providing With SUZUSISA Sensation J.Archit. Plann. Environ. Eng., AIJ No 523, pp Shimizu, M., Hara, T., The Fluctuation Characteristics Of Natural Wind. Refrigeration ;71(821), pp Xia, Y. Z., Niu, J. L., Zhano, R. Y., and Burnett, J., Effects Of Turbulent Air On Human Thermal Sensations In A Warm Isothermal Environment Indoor Air 2000, pp Yamamoto, MT., /f Fluctuations In Biological Systems. Proceeding of Annual International Conference of the IEEE Engineering in Medicine and Biology, Chicago, USA, pp

Subjective Thermal Comfort in the Environment with Spot Cooling System

Subjective Thermal Comfort in the Environment with Spot Cooling System Subjective Thermal Comfort in the Environment with Spot ing System Hayato Ohashi 1, Hitomi Tsutsumi 1, Shin-ichi Tanabe 1, Ken-ichi Kimura 1, Hideaki Murakami 2, Koji Kiyohara 3 1 Department of Architecture,

More information

Thermal behavior and Energetic Dispersals of the Human Body under Various Indoor Air Temperatures at 50% Relative Humidity

Thermal behavior and Energetic Dispersals of the Human Body under Various Indoor Air Temperatures at 50% Relative Humidity Thermal behavior and Energetic Dispersals of the Human Body under Various Indoor Air Temperatures at 50% Relative Humidity Hakan CALISKAN Usak University, Department of Mechanical Engineering, Usak, Turkey

More information

Evaluation of the Convective Heat Transfer Coefficient of the Human Body Using the Wind Tunnel and Thermal Manikin

Evaluation of the Convective Heat Transfer Coefficient of the Human Body Using the Wind Tunnel and Thermal Manikin Evaluation of the Convective Heat Transfer Coefficient of the Human Body Using the Wind Tunnel and Thermal Manikin 1, Shinsuke Kato 2 and Janghoo Seo* 3 1 Assistant Professor, School of Architecture, Yeungnam

More information

RELATIONSHIPS BETWEEN OVERALL THERMAL SENSATION, ACCEPTABILITY AND COMFORT

RELATIONSHIPS BETWEEN OVERALL THERMAL SENSATION, ACCEPTABILITY AND COMFORT RELATIONSHIPS BETWEEN OVERALL THERMAL SENSATION, ACCEPTABILITY AND COMFORT Yufeng Zhang 1, and Rongyi Zhao 2 1 State Key Laboratory of Subtropical Building Science, South China University of Technology,

More information

CAE 331/513 Building Science Fall 2017

CAE 331/513 Building Science Fall 2017 CAE 331/513 Building Science Fall 2017 September 19, 2017 Human thermal comfort Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Twitter: @built_envi

More information

Physiological Response of Human Body and Thermal Sensation for Irradiation and Exercise Load Changes

Physiological Response of Human Body and Thermal Sensation for Irradiation and Exercise Load Changes ICUC9-9 th International Conference on Urban Climate jointly with th Symposium on the Urban Environment Physiological Response of Human Body and Thermal Sensation for Irradiation and Exercise Load Changes

More information

Principles and Applications of Building Science Dr. E Rajasekar Department of Civil Engineering Indian Institute of Technology, Roorkee

Principles and Applications of Building Science Dr. E Rajasekar Department of Civil Engineering Indian Institute of Technology, Roorkee Principles and Applications of Building Science Dr. E Rajasekar Department of Civil Engineering Indian Institute of Technology, Roorkee Lecture - 04 Thermal Comfort in Built Environment 2 In previous module,

More information

STUDY ON THE THERMAL PERFORMANCE AND AIR DISTRIBUTION OF A DISPLACEMENT VENTILATION SYSTEM FOR LARGE SPACE APPLICATION

STUDY ON THE THERMAL PERFORMANCE AND AIR DISTRIBUTION OF A DISPLACEMENT VENTILATION SYSTEM FOR LARGE SPACE APPLICATION STUDY ON THE THERMAL PERFORMANCE AND AIR DISTRIBUTION OF A DISPLACEMENT VENTILATION SYSTEM FOR LARGE SPACE APPLICATION K Sakai 1*, E Yamaguchi 2, O Ishihara 3 and M Manabe 1 1 Dept. of Architectural Engineering,

More information

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE NPTEL NPTEL ONLINE CERTIFICATION COURSE. Refrigeration and Air-conditioning. Lecture-37 Thermal Comfort

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE NPTEL NPTEL ONLINE CERTIFICATION COURSE. Refrigeration and Air-conditioning. Lecture-37 Thermal Comfort INDIAN INSTITUTE OF TECHNOLOGY ROORKEE NPTEL NPTEL ONLINE CERTIFICATION COURSE Refrigeration and Air-conditioning Lecture-37 Thermal Comfort with Prof. Ravi Kumar Department of Mechanical and Industrial

More information

Environmental Engineering

Environmental Engineering Environmental Engineering 1 Indoor Environment and Thermal Comfort Vladimír Zmrhal (room no. 814) Master degree course 1 st semester (winter) Dpt. of Environmental Engineering 1 Environmental Engineering

More information

ISO 7730 INTERNATIONAL STANDARD

ISO 7730 INTERNATIONAL STANDARD INTERNATIONAL STANDARD ISO 7730 Third edition 2005-11-15 Ergonomics of the thermal environment Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices

More information

OPERATIVE TEMPERATURE SIMULATION OF ENCLOSED SPACE WITH INFRARED RADIATION SOURCE AS A SECONDARY HEATER

OPERATIVE TEMPERATURE SIMULATION OF ENCLOSED SPACE WITH INFRARED RADIATION SOURCE AS A SECONDARY HEATER OPERATIVE TEMPERATURE SIMULATION OF ENCLOSED SPACE WITH INFRARED RADIATION SOURCE AS A SECONDARY HEATER L. Hach 1, K. Hemzal 2, Y. Katoh 3 1 Institute of Applied Physics and Mathematics, Faculty of Chemical

More information

Application and Analysis of Asymmetrical Hot and Cold Stimuli

Application and Analysis of Asymmetrical Hot and Cold Stimuli University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 6-29-2016 Application and Analysis of Asymmetrical Hot and Cold Stimuli Ahmad Manasrah University of South

More information

THERMAL ENVIRONMENT PREDICTION USING CFD WITH A VIRTUAL MANNEQUIN MODEL AND EXPERIMENT WITH SUBJECT IN A FLOOR HEATING ROOM

THERMAL ENVIRONMENT PREDICTION USING CFD WITH A VIRTUAL MANNEQUIN MODEL AND EXPERIMENT WITH SUBJECT IN A FLOOR HEATING ROOM Proceedings of Building Simulation 11: THERMAL ENVIRONMENT PREDICTION USING CFD WITH A VIRTUAL MANNEQUIN MODEL AND EXPERIMENT WITH SUBJECT IN A FLOOR HEATING ROOM Ryoichi Kajiya 1, Kodai Hiruta, Koji Sakai

More information

A Numerical Analysis of Indoor Thermal Environment and Human Thermophysiological Responses under Natural Ventilation S. Iizuka 1,*, T. Sakoi 2, T. Sai

A Numerical Analysis of Indoor Thermal Environment and Human Thermophysiological Responses under Natural Ventilation S. Iizuka 1,*, T. Sakoi 2, T. Sai A Numerical Analysis of Indoor Thermal Environment and Human Thermophysiological Responses under Natural Ventilation S. Iizuka 1,*, T. Sakoi 2, T. Saito 1, and S. Kuno 1 1 Graduate School of Environmental

More information

Quality of life and open spaces: A survey of microclimate and comfort in outdoor urban areas

Quality of life and open spaces: A survey of microclimate and comfort in outdoor urban areas Quality of life and open spaces: A survey of microclimate and comfort in outdoor urban areas NIOBE CHRISOMALLIDOU, KATERINA TSIKALOUDAKI AND THEODORE THEODOSIOU Laboratory of Building Construction and

More information

MODELLING THERMAL COMFORT FOR TROPICS USING FUZZY LOGIC

MODELLING THERMAL COMFORT FOR TROPICS USING FUZZY LOGIC Eighth International IBPSA Conference Eindhoven, Netherlands August 11-14, 2003 MODELLING THERMAL COMFORT FOR TROPICS USING FUZZY LOGIC Henry Feriadi, Wong Nyuk Hien Department of Building, School of Design

More information

The impact of cultural and climatic background on thermal sensation votes

The impact of cultural and climatic background on thermal sensation votes The impact of cultural and climatic background on thermal sensation votes INJI KENAWY 1, HISHAM ELKADI 2 12 School of Architecture and Built Environment, Deakin University, Geelong, Australia ABSTRACT:

More information

Determination of the Acceptable Room Temperature Range for Local Cooling

Determination of the Acceptable Room Temperature Range for Local Cooling ICEB6, Shenzhen, China Maximize IAQ, Vol. I-1-4 Determination of the Acceptable Room Temperature Range for Local Cooling Yufeng Zhang Rongyi Zhao Assistant Professor Professor South China University of

More information

THERMAL COMFORT IN HIGHLY GLAZED BUILDINGS DETERMINED FOR WEATHER YEARS ON ACCOUNT OF SOLAR RADIATION. Dominika Knera 1 and Dariusz Heim 1

THERMAL COMFORT IN HIGHLY GLAZED BUILDINGS DETERMINED FOR WEATHER YEARS ON ACCOUNT OF SOLAR RADIATION. Dominika Knera 1 and Dariusz Heim 1 THERMAL COMFORT IN HIGHLY GLAZED BUILDINGS DETERMINED FOR WEATHER YEARS ON ACCOUNT OF SOLAR RADIATION Dominika Knera 1 and Dariusz Heim 1 1 Department of Heat and Mass Transfer, Lodz University of Technology

More information

PROCESS CONTROL FOR THERMAL COMFORT MAINTENANCE USING FUZZY LOGIC

PROCESS CONTROL FOR THERMAL COMFORT MAINTENANCE USING FUZZY LOGIC Journal of ELECTRICAL ENGINEERING, VOL. 59, NO. 1, 2008, 34 39 PROCESS CONTROL FOR THERMAL COMFORT MAINTENANCE USING FUZZY LOGIC Zoran L. Baus Srete N. Nikolovski Predrag Ž. Marić This paper presents the

More information

Thermal Comfort; Operative Temperature in the Sun

Thermal Comfort; Operative Temperature in the Sun Thermal Comfort; Operative Temperature in the Sun Ida Bryn (Ph.d) Marit Smidsrød (MSc) Erichsen&Horgen AS, Postboks 4464 Nydalen, 0403 Oslo, E-mail: ihb@erichsen-horgen.no, telephone: 47 22026333, telefax:

More information

Project 2. Introduction: 10/23/2016. Josh Rodriguez and Becca Behrens

Project 2. Introduction: 10/23/2016. Josh Rodriguez and Becca Behrens Project 2 Josh Rodriguez and Becca Behrens Introduction: Section I of the site Dry, hot Arizona climate Linen supply and cleaning facility Occupied 4am-10pm with two shifts of employees PHOENIX, ARIZONA

More information

therefore cold air is released to the outdoor space, contributing to changes in the outdoor microclimate (Figure 1). This results in a cool spot in th

therefore cold air is released to the outdoor space, contributing to changes in the outdoor microclimate (Figure 1). This results in a cool spot in th Characteristics of Cold-air Release from Air-conditioned and Open-entrance Shops to Outside Street Spaces in Summer T. Asawa 1,*, and Y. Kugimachi 2 1 Interdisciplinary Graduate School of Science and Engineering,

More information

Vantage Pro Technical Reference

Vantage Pro Technical Reference Vantage Pro Technical Reference Davis Instruments 3465 Diablo Ave. Hayward, CA 94545 Created: 9/11/01 Calculations of Derived Variables The following parameters do not have any sensors or circuitry. They

More information

CHAPTER 3. The sun and the seasons. Locating the position of the sun

CHAPTER 3. The sun and the seasons. Locating the position of the sun zenith 90 observer summer solstice 75 altitude angles equinox 52 winter solstice 29 Figure 3.1: Solar noon altitude angles for Melbourne SOUTH winter midday shadow WEST summer midday shadow summer EAST

More information

Modeling Human Thermoregulation and Comfort. CES Seminar

Modeling Human Thermoregulation and Comfort. CES Seminar Modeling Human Thermoregulation and Comfort CES Seminar Contents 1 Introduction... 1 2 Modeling thermal human manikin... 2 2.1 Thermal neutrality... 2 2.2 Human heat balance equation... 2 2.3 Bioheat equation...

More information

Study on Reusing Abandoned Chimneys as Solar Chimneys to Induce Breeze in Residential Areas

Study on Reusing Abandoned Chimneys as Solar Chimneys to Induce Breeze in Residential Areas Study on Reusing Abandoned Chimneys as Solar Chimneys to Induce Breeze in Residential Areas AZUSA TAKAYAMA 1, KOICHI ASANO 1, SHIGEMITSU SHUCHI 1 and KENICHI HASEGAWA 1 1 Faculty of Systems Science and

More information

Air Diffusion Designing for Comfort

Air Diffusion Designing for Comfort Air Diffusion Designing for Comfort Occupant Comfort Air Diffusion Selection ADPI Air Diffusion Performance index Ventilation Effectiveness Induction Room Space Induction Design Criteria ISO7730 ASHRAE

More information

ASSESSMENT OF THERMAL SENSATION OF RESIDENTS IN THE SOUTHERN GREAT PLAIN, HUNGARY

ASSESSMENT OF THERMAL SENSATION OF RESIDENTS IN THE SOUTHERN GREAT PLAIN, HUNGARY ASSESSMENT OF THERMAL SENSATION OF RESIDENTS IN THE SOUTHERN GREAT PLAIN, HUNGARY KOVÁCS A. 1, KÁNTOR NOÉMI 2, ÉGERHÁZI LILLA ANDREA 1 ABSTRACT. Assessment of thermal sensation of residents in the Southern

More information

Neural computing thermal comfort index for HVAC systems

Neural computing thermal comfort index for HVAC systems Neural computing thermal comfort index for HVAC systems S. Atthajariyakul, T. Leephakpreeda * School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology,

More information

Studying the Thermal and Cryogenic Performance of Shevadun in Native (Local) Buildings of Dezful Based on. Modeling and Environmental Measuring

Studying the Thermal and Cryogenic Performance of Shevadun in Native (Local) Buildings of Dezful Based on. Modeling and Environmental Measuring American Journal of Energy Research, 2013, Vol. 1, No. 3, 45-53 Available online at http://pubs.sciepub.com/ajer/1/3/2 Science and Education Publishing DOI:10.12691/ajer-1-3-2 Studying the Thermal and

More information

Investigations on effect of the orientation on thermal comfort in terraced housing in Malaysia

Investigations on effect of the orientation on thermal comfort in terraced housing in Malaysia Investigations on effect of the orientation on thermal comfort in terraced housing in Malaysia Dr Mohamed Ali Abdul Hussain Al-Obaidi 1 and Prof. Peter Woods 2 1 Senior lecturer, Center for Equatorial

More information

BSE Public CPD Lecture Numerical Simulation of Thermal Comfort and Contaminant Transport in Rooms with UFAD system on 26 March 2010

BSE Public CPD Lecture Numerical Simulation of Thermal Comfort and Contaminant Transport in Rooms with UFAD system on 26 March 2010 BSE Public CPD Lecture Numerical Simulation of Thermal Comfort and Contaminant Transport in Rooms with UFAD system on 26 March 2010 Organized by the Department of Building Services Engineering, a public

More information

Healthy Buildings 2017 Europe July 2-5, 2017, Lublin, Poland

Healthy Buildings 2017 Europe July 2-5, 2017, Lublin, Poland Healthy Buildings 2017 Europe July 2-5, 2017, Lublin, Poland Paper ID 0076 ISBN: 978-83-7947-232-1 Experimental Study of the Airflow Distribution Close to the Human Body with a Downward Plane Jet Marie

More information

Abstract. Received 10 March 2016; accepted 19 April 2016; published 22 April 2016

Abstract. Received 10 March 2016; accepted 19 April 2016; published 22 April 2016 Health, 2016, 8, 583-604 Published Online April 2016 in SciRes. http://www.scirp.org/journal/health http://dx.doi.org/10.4236/health.2016.86062 Availability of Heat Conduction for Environmental Control

More information

Occupant Behavior Related to Space Cooling in a High Rise Residential Building Located in a Tropical Region N.F. Mat Hanip 1, S.A. Zaki 1,*, A. Hagish

Occupant Behavior Related to Space Cooling in a High Rise Residential Building Located in a Tropical Region N.F. Mat Hanip 1, S.A. Zaki 1,*, A. Hagish Occupant Behavior Related to Space Cooling in a High Rise Residential Building Located in a Tropical Region N.F. Mat Hanip 1, S.A. Zaki 1,*, A. Hagishima 2, J. Tanimoto 2, and M.S.M. Ali 1 1 Malaysia-Japan

More information

Climatically Adapted Piloti Arrangement and Ratio of Residential Blocks in a Subtropical Climate City

Climatically Adapted Piloti Arrangement and Ratio of Residential Blocks in a Subtropical Climate City Climatically Adapted Piloti Arrangement and Ratio of Residential Blocks in a Subtropical Climate City Zeng Zhou 1, Qinli Deng 2, Akashi Mochida 2 1 Wuhan University, China, haomaoz@hotmail.com 2 Tohoku

More information

Thermal Comfort. Appendices: A: Dry Heat Loss calculations. file://k:\marketing\homepage\gammel%20homepage\website\books\thermal\therm...

Thermal Comfort. Appendices: A: Dry Heat Loss calculations. file://k:\marketing\homepage\gammel%20homepage\website\books\thermal\therm... Page 1 of 25 Thermal Comfort This booklet is an introduction to thermal comfort. It explains procedures to evaluate the thermal environment and methods applied for its measurement. Contents What is Thermal

More information

Ch. 12 Human Thermal Comfort and Indoor Air Quality

Ch. 12 Human Thermal Comfort and Indoor Air Quality Ch. 12 Human Thermal Comfort and Indoor Air Quality -2-12.1 Introduction - Temperature & Humidity Control - IAQ Indoor Air Quality : control of indoor airborne contaminants 12.2 Energy balance on the human

More information

Weather Practice Test

Weather Practice Test Name: Weather Practice Test 1. The diagram below shows weather instruments A and B. Which table correctly indicates the name of the weather instrument and the weather variable that it measures? A) B) C)

More information

EXPERIMENTAL ANALYSIS OF AIR-CONDITIONING IN HOSPITAL ROOMS BY MEANS OF LIGHT RADIANT CEILINGS

EXPERIMENTAL ANALYSIS OF AIR-CONDITIONING IN HOSPITAL ROOMS BY MEANS OF LIGHT RADIANT CEILINGS EXPERIMENTAL ANALYSIS OF AIR-CONDITIONING IN HOSPITAL ROOMS BY MEANS OF LIGHT RADIANT CEILINGS Renato M. Lazzarin renato@gest.unipd.it Francesco Castellotti caste@gest.unipd.it Filippo Busato busato@gest.unipd.it

More information

URBAN HEAT ISLAND IN SEOUL

URBAN HEAT ISLAND IN SEOUL URBAN HEAT ISLAND IN SEOUL Jong-Jin Baik *, Yeon-Hee Kim ** *Seoul National University; ** Meteorological Research Institute/KMA, Korea Abstract The spatial and temporal structure of the urban heat island

More information

PAUL RUDOLPH Oriental Masonic Gardens

PAUL RUDOLPH Oriental Masonic Gardens 1 PAUL RUDOLPH Oriental Masonic Gardens Latitude _ 41.3 N Longitude _ 72.9 W Climate: transition between Cfa _ Humid Subtropical and Dfa_ Humid Continental climate 2 Paul Rudolph INTRODUCTION Fig. 1 -

More information

Fundamentals of Transmission Operations

Fundamentals of Transmission Operations Fundamentals of Transmission Operations Load Forecasting and Weather PJM State & Member Training Dept. PJM 2014 9/10/2013 Objectives The student will be able to: Identify the relationship between load

More information

Lesson 2C - Weather. Lesson Objectives. Fire Weather

Lesson 2C - Weather. Lesson Objectives. Fire Weather Lesson 2C - Weather 2C-1-S190-EP Lesson Objectives 1. Describe the affect of temperature and relative humidity has on wildland fire behavior. 2. Describe the affect of precipitation on wildland fire behavior.

More information

J17.3 Impact Assessment on Local Meteorology due to the Land Use Changes During Urban Development in Seoul

J17.3 Impact Assessment on Local Meteorology due to the Land Use Changes During Urban Development in Seoul J17.3 Impact Assessment on Local Meteorology due to the Land Use Changes During Urban Development in Seoul Hae-Jung Koo *, Kyu Rang Kim, Young-Jean Choi, Tae Heon Kwon, Yeon-Hee Kim, and Chee-Young Choi

More information

FUNDAMENTALS OF HVAC

FUNDAMENTALS OF HVAC FUNDAMENTALS OF HVAC Prof.Dr. Yusuf Ali KARA Res.Asst. Semih AKIN 1 INTRODUCTION Terminology: HVAC: Heating, ventilating, air-conditioning and refrigerating. Air conditioning is the process of treating

More information

C L I M A T E R E S P O N S I V E U R B A N D E S I G N F O R G R E E K P U B L I C S P A C E

C L I M A T E R E S P O N S I V E U R B A N D E S I G N F O R G R E E K P U B L I C S P A C E C L I M A T E R E S P O N S I V E U R B A N D E S I G N F O R G R E E K P U B L I C S P A C E Prepared by: Ioannis Karakounos With the guidance of: Raphael Lafargue Kristina Von Bomhard Concept Make public

More information

Outdoor Thermal Comfort and Local Climate Change: Exploring Connections

Outdoor Thermal Comfort and Local Climate Change: Exploring Connections Outdoor Thermal Comfort and Local Climate Change: Exploring Connections ROBERTA COCCI GRIFONI 1, MARIANO PIERANTOZZI 2, SIMONE TASCINI 1 1 School of Architecture and Design E. Vittoria, University of Camerino,

More information

THE EVALUATION ON INDOOR THERMAL COMFORT INDEX

THE EVALUATION ON INDOOR THERMAL COMFORT INDEX 03-030 The 2005 World Sustainable Building Conference, THE EVALUATION ON INDOOR THERMAL COMFORT INDEX Xie Yingbai Ph.D Yu Zhun Yang Xianliang Institute of Energy and Power Engineering, North China Electric

More information

A NEW SIMULATION SYSTEM TO PREDICT HUMAN-ENVIRONMENT THERMAL INTERACTIONS IN NATURALLY VENTILATED BUILDINGS. Leicester LE1 9BH, UK. Karlsruhe, Germany

A NEW SIMULATION SYSTEM TO PREDICT HUMAN-ENVIRONMENT THERMAL INTERACTIONS IN NATURALLY VENTILATED BUILDINGS. Leicester LE1 9BH, UK. Karlsruhe, Germany Proceedings: Building Simulation 7 A NEW SIMULATION SYSTEM TO PREDICT HUMAN-ENVIRONMENT THERMAL INTERACTIONS IN NATURALLY VENTILATED BUILDINGS Tong Yang, Paul C Cropper, Malcolm J Cook, Rehan Yousaf, and

More information

Study on Thermal Load Calculation for Ceiling Radiant Cooling Panel System

Study on Thermal Load Calculation for Ceiling Radiant Cooling Panel System Study on Thermal Load Calculation for Ceiling Radiant Cooling Panel System Sei Ito, Yasunori Akashi, Jongyeon Lim Shimizu Corporation, Tokyo, Japan University of Tokyo, Tokyo, Japan Abstract The ceiling

More information

Personalizing Thermal Comfort in a Prototype Indoor Space

Personalizing Thermal Comfort in a Prototype Indoor Space Personalizing Thermal Comfort in a Prototype Indoor Space Sotirios D Kotsopoulos, Federico Casalegno School of Humanities Arts and Social Sciences Massachusetts Institute of Technology Cambridge, Massachusetts,

More information

An Investigation on the Human Thermal Comfort from a Glass Window

An Investigation on the Human Thermal Comfort from a Glass Window Article An Investigation on the Human Thermal Comfort from a Glass Window Nopparat Khamporn a and Somsak Chaiyapinunt b Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn niversity,

More information

Climates of Earth. Lesson Outline LESSON 1. A. What is climate? 1. is the long-term average weather conditions that occur in a particular region.

Climates of Earth. Lesson Outline LESSON 1. A. What is climate? 1. is the long-term average weather conditions that occur in a particular region. Lesson Outline LESSON 1 A. What is climate? 1. is the long-term average weather conditions that occur in a particular region. 2. Climate depends on how average weather conditions throughout the year. B.

More information

Winter Thermal Comfort in 19 th Century Traditional Buildings of the Town of Florina, in North-Western Greece

Winter Thermal Comfort in 19 th Century Traditional Buildings of the Town of Florina, in North-Western Greece PLEA2 - The 22 nd Conference on Passive and Low Energy Architecture. Beirut, Lebanon, 13-16 November 2 Winter Thermal Comfort in 19 th Century Traditional Buildings of the Town of Florina, in North-Western

More information

Combined GIS, CFD and Neural Network Multi-Zone Model for Urban Planning and Building Simulation. Methods

Combined GIS, CFD and Neural Network Multi-Zone Model for Urban Planning and Building Simulation. Methods Combined GIS, CFD and Neural Network Multi-Zone Model for Urban Planning and Building Simulation Meng Kong 1, Mingshi Yu 2, Ning Liu 1, Peng Gao 2, Yanzhi Wang 1, Jianshun Zhang 1 1 School of Engineering

More information

Indoor Environment Quality. Study the world Capture the elements Environmental testing made easy. MI 6201 Multinorm. MI 6401 Poly.

Indoor Environment Quality. Study the world Capture the elements Environmental testing made easy. MI 6201 Multinorm. MI 6401 Poly. Study the world Capture the elements Environmental testing made easy MI 6401 Poly MI 6201 Multinorm MI 6301 FonS Find out more about Indoor Environment Quality parameters testing Indoor Environmental Quality

More information

Cooling Load Calculation and Thermal Modeling for Vehicle by MATLAB

Cooling Load Calculation and Thermal Modeling for Vehicle by MATLAB Cooling Load Calculation and Thermal Modeling for Vehicle by MATLAB OumSaad Abdulsalam 1, Budi Santoso 2, Dwi Aries 2 1 P. G. Student, Department of Mechanical Engineering, Sebelas Maret University, Indonesia

More information

APPENDIX A. Guangzhou weather data from 30/08/2011 to 04/09/2011 i) Guangzhou Weather Data: Day 242 (30/08/2011) Diffuse Solar Radiation (W/m2)

APPENDIX A. Guangzhou weather data from 30/08/2011 to 04/09/2011 i) Guangzhou Weather Data: Day 242 (30/08/2011) Diffuse Solar Radiation (W/m2) APPENDIX A Guangzhou weather data from 30/08/2011 to 04/09/2011 i) Guangzhou Weather Data: Day 242 (30/08/201 Rariation(W/m2) (W/m2) (oc) Relative Humidity (%) (o) 30/08/2011 08:00 166.00 74.00 0.1000

More information

MEASUREMENT OF THE AIRFLOW AND TEMPERATURE FIELDS AROUND LIVE SUBJECTS AND THE EVALUATION OF HUMAN HEAT LOSS

MEASUREMENT OF THE AIRFLOW AND TEMPERATURE FIELDS AROUND LIVE SUBJECTS AND THE EVALUATION OF HUMAN HEAT LOSS MEASUREMENT OF THE AIRFLOW AND TEMPERATURE FIELDS AROUND LIVE SUBJECTS AND THE EVALUATION OF HUMAN HEAT LOSS GH Zhou 1, DL Loveday 1, AH Taki 2 and KC Parsons 3 1 Department of Civil and Building Engineering,

More information

Aalborg Universitet. Comparison between Different Air Distribution Systems Nielsen, Peter Vilhelm. Publication date: 2006

Aalborg Universitet. Comparison between Different Air Distribution Systems Nielsen, Peter Vilhelm. Publication date: 2006 Aalborg Universitet Comparison between Different Air Distribution Systems Nielsen, Peter Vilhelm Publication date: 2006 Document Version Publisher's PDF, also known as Version of record Link to publication

More information

ARCH 1250 APPLIED ENVIRONMENTAL STUDIES. CLASS TWO - CLIMATE Macroclimate and Microclimate

ARCH 1250 APPLIED ENVIRONMENTAL STUDIES. CLASS TWO - CLIMATE Macroclimate and Microclimate APPLIED ENVIRONMENTAL STUDIES CLASS TWO - Macroclimate and Microclimate Part 1: Climate Overview John Seitz, RA, LEED AP Assistant Adjunct Professor Professor Paul C. King, RA, AIA, ARA Assistant Professor

More information

Better Weather Data Equals Better Results: The Proof is in EE and DR!

Better Weather Data Equals Better Results: The Proof is in EE and DR! Better Weather Data Equals Better Results: The Proof is in EE and DR! www.weatherbughome.com Today s Speakers: Amena Ali SVP and General Manager WeatherBug Home Michael Siemann, PhD Senior Research Scientist

More information

NUMERICAL MODELLING OF TEMPERATURE AND AIR FLOW DISTRIBUTION IN ENCLOSED ROOM

NUMERICAL MODELLING OF TEMPERATURE AND AIR FLOW DISTRIBUTION IN ENCLOSED ROOM NUMERICAL MODELLING OF TEMPERATURE AND AIR FLOW DISTRIBUTION IN ENCLOSED ROOM Igor Bonefacic 1, Bernard Frankovic 2, Ivan Vilicic 3, Vladimir Glazar 4 Faculty of Engineering, Vukovarska 58, Rijeka, Croatia,

More information

A Simulation Tool for Radiative Heat Exchangers

A Simulation Tool for Radiative Heat Exchangers Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2012 A Simulation Tool for Radiative Heat Exchangers Yunho Hwang yhhwang@umd.edu

More information

HD32.2 WBGT Index HD32.3 WBGT-PMV. [ GB ] - WBGT index. - PMV index and PPD

HD32.2 WBGT Index HD32.3 WBGT-PMV. [ GB ] - WBGT index. - PMV index and PPD HD32.2 WBGT Index HD32.3 WBGT-PMV [ GB ] - WBGT index. - PMV index and PPD [ GB ] [ GB ] Description HD32.2 WBGT Index is an instrument made by Delta Ohm srl for the analysis of WBGT index (Wet Bulb Glob

More information

Orientation of Building

Orientation of Building Orientation of Building Prof. S.K.Gupta 1 1 Dean &DirectorAmity University HaryanaPanchgaon, Manesar, Gurgaon I. INTRODUCTION The need to conserve essential building materials has drawn attention again

More information

Unit 5 Lesson 3 How is Weather Predicted? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 5 Lesson 3 How is Weather Predicted? Copyright Houghton Mifflin Harcourt Publishing Company Tracking the Weather Warm up 1 Why is it important to watch the weather forecast before traveling to another country? Tracking the Weather A meteorologist is a scientist who studies weather. Meteorologists

More information

Predicting Individual Thermal Comfort using Machine Learning Algorithms

Predicting Individual Thermal Comfort using Machine Learning Algorithms Predicting Individual Thermal Comfort using Machine Learning Algorithms Asma Ahmad Farhan 1, Krishna Pattipati 2, Bing Wang 1, and Peter Luh 2 Abstract thermal sensation in an environment may be delayed,

More information

METHOD OF IN-SITU MEASUREMENT OF THERMAL INSULATION PERFORMANCE OF BUILDING ELEMENTS USING INFRARED CAMERA

METHOD OF IN-SITU MEASUREMENT OF THERMAL INSULATION PERFORMANCE OF BUILDING ELEMENTS USING INFRARED CAMERA METHOD OF IN-SITU MEASUREMENT OF THERMAL INSULATION PERFORMANCE OF BUILDING ELEMENTS USING INFRARED CAMERA Shinsuke Kato 1, Katsuichi Kuroki 2, and Shinji Hagihara 2 1 Institute of Industrial Science,

More information

GEOGRAPHY EYA NOTES. Weather. atmosphere. Weather and climate

GEOGRAPHY EYA NOTES. Weather. atmosphere. Weather and climate GEOGRAPHY EYA NOTES Weather and climate Weather The condition of the atmosphere at a specific place over a relatively short period of time Climate The atmospheric conditions of a specific place over a

More information

Prediction of Thermal Comfort and Ventilation Efficiency for Small and Large Enclosures by Combined Simulations

Prediction of Thermal Comfort and Ventilation Efficiency for Small and Large Enclosures by Combined Simulations Institute for Thermodynamics and Building Energy Systems, Dresden University of Technology Prediction of Thermal Comfort and Ventilation Efficiency for Small and Large Enclosures by Combined Simulations

More information

Earth Science Unit 5- Weather Knowledge Packet

Earth Science Unit 5- Weather Knowledge Packet Earth Science Unit 5- Weather Knowledge Packet 2B: Describe types of energy transfer We all have a pretty good idea that the Sun is where majority of the heat comes from in Earth. That heat tends to act

More information

EVALUATION OF THERMAL ENVIRONMENT AROUND THE BLIND ON NON-UNIFOM RADIANT FIELDS A CFD SIMULATION OF HEAT TRANSFER DISTRIBUTION NEAR THE BLINDS

EVALUATION OF THERMAL ENVIRONMENT AROUND THE BLIND ON NON-UNIFOM RADIANT FIELDS A CFD SIMULATION OF HEAT TRANSFER DISTRIBUTION NEAR THE BLINDS 800 1500 6240 1600 1500 840 Proceedings of BS2015: EVALUATION OF THERMAL ENVIRONMENT AROUND THE BLIND ON NON-UNIFOM RADIANT FIELDS A CFD SIMULATION OF HEAT TRANSFER DISTRIBUTION NEAR THE BLINDS Nozomi

More information

Case Study Las Vegas, Nevada By: Susan Farkas Chika Nakazawa Simona Tamutyte Zhi-ya Wu AAE/AAL 330 Design with Climate

Case Study Las Vegas, Nevada By: Susan Farkas Chika Nakazawa Simona Tamutyte Zhi-ya Wu AAE/AAL 330 Design with Climate Case Study Las Vegas, Nevada By: Susan Farkas Chika Nakazawa Simona Tamutyte Zhi-ya Wu AAE/AAL 330 Design with Climate Professor Alfredo Fernandez-Gonzalez School of Architecture University of Nevada,

More information

Chapter 2 Experimental Studies on Hygrothermal Behaviour of ETICS

Chapter 2 Experimental Studies on Hygrothermal Behaviour of ETICS Chapter 2 Experimental Studies on Hygrothermal Behaviour of ETICS 2.1 Setting up the Test 2.1.1 Preliminary Tests A preliminary test was carried out to assess where, in a façade, was surface condensation

More information

Climate. Annual Temperature (Last 30 Years) January Temperature. July Temperature. Average Precipitation (Last 30 Years)

Climate. Annual Temperature (Last 30 Years) January Temperature. July Temperature. Average Precipitation (Last 30 Years) Climate Annual Temperature (Last 30 Years) Average Annual High Temp. (F)70, (C)21 Average Annual Low Temp. (F)43, (C)6 January Temperature Average January High Temp. (F)48, (C)9 Average January Low Temp.

More information

Chapter 5: Weather. Only Section 1: What is Weather?

Chapter 5: Weather. Only Section 1: What is Weather? Chapter 5: Weather Only Section 1: What is Weather? Find the definitions of: Meteorology, meteorologist, weather, climate Not in book? Use the dictionaries **Meteorology - Meteorology is the study of the

More information

Effect Of Orientation On Indoor Temperature Case Study: Yekape Penjaringansari Housing in Surabaya

Effect Of Orientation On Indoor Temperature Case Study: Yekape Penjaringansari Housing in Surabaya Effect Of Orientation On Indoor Temperature Case Study: Yekape Penjaringansari Housing in Surabaya Wanda W. Canadarma - E-mail : wandaw@peter.petra.ac.id Anik Juniwati E-mail : ajs@peter.petra.ac.id Luciana

More information

Ponce de Leon Middle School 6 th Grade Summer Instructional Packet

Ponce de Leon Middle School 6 th Grade Summer Instructional Packet Ponce de Leon Middle School 6 th Grade Summer Instructional Packet DIRECTIONS: 1. You are required to complete the Summer Instructional Packet. 2. Turn in your completed package to your teacher, when you

More information

Ceiling Radiant Cooling Panels Employing Heat-Conducting Rails: Deriving the Governing Heat Transfer Equations

Ceiling Radiant Cooling Panels Employing Heat-Conducting Rails: Deriving the Governing Heat Transfer Equations Authors may request permission to reprint or post on their personal or company Web site once the final version of the article has been published. A reprint permission form may be found at www.ashrae.org.

More information

USEFUL WASTE HEAT OF VENTILATED PV-MODULES: PHYSICAL MODELLING AND VALIDATION RESULTS. Lucerne, Switzerland. to

USEFUL WASTE HEAT OF VENTILATED PV-MODULES: PHYSICAL MODELLING AND VALIDATION RESULTS. Lucerne, Switzerland.  to USEFUL WASTE HEAT OF VENTILATED PV-MODULES: PHYSICAL MODELLING AND VALIDATION RESULTS Sven Kropf 1, Alfred Moser 1, and Gerhard Zweifel 2 1 Institute for Building Technology, ETH, Zürich, Switzerland 2

More information

Assignability of Thermal Comfort Models to nonstandard

Assignability of Thermal Comfort Models to nonstandard Department of Architecture Institute of Building Climatology Assignability of Thermal Comfort Models to nonstandard Occupants P. Freudenberg Dresden, 12.06.2013 Thermal Comfort Models: Motivation Objectives

More information

Thermal Comfort, Weather-Type, and Consumer Behavior: Influences on Visitor Attendance at Four U.S. Metropolitan Zoos

Thermal Comfort, Weather-Type, and Consumer Behavior: Influences on Visitor Attendance at Four U.S. Metropolitan Zoos Thermal Comfort, Weather-Type, and Consumer Behavior: Influences on Visitor Attendance at Four U.S. Metropolitan Zoos David R. Perkins Doctoral Candidate, ABD & NSF Graduate Fellow Department of Geography

More information

Experimental Performance and Numerical Simulation of Double Glass Wall Thana Ananacha

Experimental Performance and Numerical Simulation of Double Glass Wall Thana Ananacha Experimental Performance and Numerical Simulation of Double Glass Wall Thana Ananacha Abstract This paper reports the numerical and experimental performances of Double Glass Wall are investigated. Two

More information

Benchmark #: State Language: Student Friendly Language: The student models earth s cycles, constructive and

Benchmark #: State Language: Student Friendly Language: The student models earth s cycles, constructive and Science, Grade: 7 Mastery Check Benchmark #: 7.4.1.2 4 State Language: Student Friendly Language: The student models earth s cycles, constructive and I will be able to describe weathering, erosion, and

More information

INVESTIGATING GLAZING SYSTEM SIMULATED RESULTS WITH REAL MEASUREMENTS

INVESTIGATING GLAZING SYSTEM SIMULATED RESULTS WITH REAL MEASUREMENTS INVESTIGATING GLAZING SYSTEM SIMULATED RESULTS WITH REAL MEASUREMENTS Mark Luther 1, Timothy Anderson 2, and Tim Brain 3 1 School of Architecture and Building, Deakin University, Geelong, Australia 2 School

More information

Different Materials with High Thermal Mass and its Influence on a Buildings Heat Loss An Analysis based on the Theory of Dynamic Thermal Networks

Different Materials with High Thermal Mass and its Influence on a Buildings Heat Loss An Analysis based on the Theory of Dynamic Thermal Networks Different Materials with High hermal Mass and its Influence on a Buildings Heat Loss An Analysis based on the heory of Dynamic hermal Networks Eva-Lotta W urkinen, Jonathan arlsson 2 Section of Building

More information

HD32.2 WBGT Index HD 32.2 INSTRUMENT FOR THE ANALYSIS OF THE WBGT INDEX

HD32.2 WBGT Index HD 32.2 INSTRUMENT FOR THE ANALYSIS OF THE WBGT INDEX HD32.2 WBGT Index HD32.2 instrument can detect simultaneously the following quantities Globe thermometer temperature Tg. Wet bulb temperature with natural ventilation Tn. Environment temperature T. Starting

More information

Aircon Energy Saver Evaluation Report for SHUI ON DEVELOPMENTS ...

Aircon Energy Saver Evaluation Report for SHUI ON DEVELOPMENTS ... . Aircon Energy Saver Evaluation Report for SHUI ON DEVELOPMENTS.......... Report for the testing of the Aircon Energy Saver when installed on DX cooling equipment at Rainbow City, Shanghai, China Test

More information

AN OCCUPANT BEHAVIOR MODEL BASED ON ARTIFICIAL INTELLIGENCE FOR ENERGY BUILDING SIMULATION

AN OCCUPANT BEHAVIOR MODEL BASED ON ARTIFICIAL INTELLIGENCE FOR ENERGY BUILDING SIMULATION AN OCCUPANT BEHAVIOR MODEL BASED ON ARTIFICIAL INTELLIGENCE FOR ENERGY BUILDING SIMULATION Mathieu Bonte, Alexandre Perles, Bérangére Lartigue, and Françoise Thellier Université Toulouse III - Paul Sabatier,

More information

Average Weather In March For Fukuoka, Japan

Average Weather In March For Fukuoka, Japan Average Weather In March For Fukuoka, Japan Location This report describes the typical weather at the Fukuoka Airport (Fukuoka, Japan) weather station over the course of an average March. It is based on

More information

Introduction HMTTSC Nikolay Smirnov 1,*, Vladimir Tyutikov 1, and Vadim Zakharov 1

Introduction HMTTSC Nikolay Smirnov 1,*, Vladimir Tyutikov 1, and Vadim Zakharov 1 Mathematical and physical modeling of heat transfer through window with heat-reflecting screens to determine the potential of reducing thermal costs for microclimate parameters maintaining Nikolay Smirnov,*,

More information

Atmospheric Moisture, Precipitation, and Weather Systems

Atmospheric Moisture, Precipitation, and Weather Systems Atmospheric Moisture, Precipitation, and Weather Systems 6 Chapter Overview The atmosphere is a complex system, sometimes described as chaotic in nature. In this chapter we examine one of the principal

More information

1 Wind Turbine Acoustics. Wind turbines generate sound by both mechanical and aerodynamic

1 Wind Turbine Acoustics. Wind turbines generate sound by both mechanical and aerodynamic Wind Turbine Acoustics 1 1 Wind Turbine Acoustics Wind turbines generate sound by both mechanical and aerodynamic sources. Sound remains an important criterion used in the siting of wind farms. Sound emission

More information

ARCH 348 BUILDING AND ENVIRONMENTAL SYSTEMS

ARCH 348 BUILDING AND ENVIRONMENTAL SYSTEMS ARCH 348 BUILDING AND ENVIRONMENTAL SYSTEMS Instructor: Prof. Dr. Uğur Atikol Web site for instructor: http://staff.emu.edu.tr/uguratikol/ Web site for the course: http://staff.emu.edu.tr/uguratikol/en/teaching/courses/arch348-building-andenvironmental-systems-in-architecture

More information

teachers and students(gong 2005). For example: square, foot path, lawn area, lakeside area, building of the around. The quality of campus semi-open sp

teachers and students(gong 2005). For example: square, foot path, lawn area, lakeside area, building of the around. The quality of campus semi-open sp Measurement of Summer Outdoor Thermal Environment of Campus Open Space and Validation the Simulation Model Guang Chen 1, Lihua Zhao 1,*, and Qiong Li 1 1 Building Environment and Energy Laboratory (BEEL),

More information

Thermal Analysis of a Passenger-Loaded Vehicle in Severe Winter Conditions

Thermal Analysis of a Passenger-Loaded Vehicle in Severe Winter Conditions 2008, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). Published in HVAC&R Research, Vol. 14, No. 1, January 2008. For personal use only. Additional reproduction,

More information