Thermal Comfort; Operative Temperature in the Sun

Size: px
Start display at page:

Download "Thermal Comfort; Operative Temperature in the Sun"

Transcription

1 Thermal Comfort; Operative Temperature in the Sun Ida Bryn (Ph.d) Marit Smidsrød (MSc) Erichsen&Horgen AS, Postboks 4464 Nydalen, 0403 Oslo, telephone: , telefax: INTRODUCTION Thermal comfort is an important issue in the indoor environment. The operative temperature is one of the main parameters that describe thermal comfort. The operative temperature is normally calculated as described Thermal comfort Analysis and applications in environmental engineering, P.O Fanger. In common practice today the operative temperature is measured and calculated for a location in the shade. Short wave radiation on the body due to the sun is not included. This paper proposes a method to include direct solar radiation in the evaluation of thermal comfort. 2. MEASURED THERMAL COMFORT IN AN OFFICE A south facing office located in Oslo was chosen for measurement of thermal comfort with different shading devices. The office was equipped for one person and a 100 W heater simulated the person. The work place in the office is shown in figure 1. An operative temperature sensor is located at the desk in front of the PC. This location is close to where the person is located. In the back of the room where there is no sun we both measure the air and the operative temperature. Figure 1 South facing office at SIEMENS Linderud. Measurement of operative temperature.

2 The office has 11 m 2 floor area and 3.6 m 2 glazing fazing south. The windows has clear double glazing with U-value: 2.7 W/m 2, g-value 0,76 and light transmission 80%. One external and internal shading are installed. Measurements were performed in the office on sunny days without shading, with internal and external shadings. It is electrically heated and mechanically ventilated. Operative temperature at the workplace and in the back of the room were measured together with outdoor air-, ventilation inlet air and room air temperature and outdoor solar radiation. Temperature in south facing office at SIEMENS Linderud , Sun, No shading 35,00 30,00 25,00 Temperature, C 20,00 15,00 10,00 5,00 0,00 Room temperature Supply air temperature Outdoor air temperature Operative temperature in the sun Operative temperature in the shade Time,h Figure 2 Temperatures in the office with no shading. The temperatures are measured in the office with no shading in the middle of august. As we see the operative temperature at the workplace goes up to 31 o C. This will cause severe discomfort. At the same time the operative temperature in the shade is maximum 22.5 o C and maximum air temperature is 22 o C. When calculating thermal comfort only the operative temperatures in the shade is calculated in the existing calculation methods and simulation programs. By using common practice today the planners would calculate the operative temperature to be 22.5 o C and the air temperature 22 o C which mean it would be a very good indoor climate. The operative temperature at the workplace in figure 2 shows the reality. The operative temperature at the workplace is 8.5 o C higher than would be calculated. This also shows that the common practice today often may lead to poor thermal comfort. We will here present a method to overcome this gap between theory and reality.

3 Temperatures in south facing office at SIEMENS Linderud Sun, Outdoor blinds lamellae 45 o 35,00 30,00 25,00 Temperature, C 20,00 15,00 10,00 5,00 0,00 Room temperature Supply air temperature Outdoor air temperature Operative temperature in the sun Operative temperature in the shade Time, h Figur 3 Temperatures in the office with outdoor shading with slats at 45 o

4 35,00 Temperatures in south facing office at SIEMENS Linderud Sun, Indoor blinds, lamellae 45 o 30,00 25,00 Temperature, C 20,00 15,00 10,00 5,00 0,00 Room temperature Supply air temperature Outdoor air temperature Operative temperature in the sun Operative temperature in the shade Time, h Figur 4 Temperatures in the office with indoor shading and lamellae slope at 45 o. In Figure 3 we see the operative temperatures and the air temperature in the room is measured on a clear sunny day the During this day the outdoor shading was used. These measurements shows that the operative temperature at the workplace will be 23 o C while the operative temperature in the shade and air is equal and 22.5 o C. The difference between the operative temperature at the workplace and in the back of the room is now only 0.5 o C. The reason for this is the difference in direct solar radiation at the workplace for the two cases. Figure 4 shows that the operative temperature at the workplace is 1 o C higher than the operative temperature in the shade with interior blinds. This means that we for this situation has a slightly higher direct solar radiation than the case with the outside shading 3. CALCULATON OF OPERATIVE TEMPERATURE IN THE SUN In this project we were interested in finding a way to calculate the operative temperature in the sun. If we could calculate this temperature it will be easy to say something about the indoor environment when no shading or curtains is used. P.O. Fanger describes a calculation of the mean radiant temperature for a person who is affected by a high-intensity radiant source. In our case the sun is a high intensity radiant source. We can then use his equation to calculate the mean radiant temperature with influence of radiation: where, T mrt 4 ( T + ( const f q ) 0, 25 = [1] umrt p ir sun

5 T mrt total mean radiation temperature included sun radiation [K] T umrt radiation temperature without sun contribution [K] const 1/(0,97* ) 5,77*10-8, Stephan Boltzmans constant [W/m C 4 ] f p projected area factor Absorption factor q sun can be found like this: where q I sin h sun = k [2] I h Global horizontal radiation [W/m ] Angel of incidence [ ] i shade factor or direct solar transmittance When the mean radiation temperature is found, t mrt is used to calculate the operative temperature in the sun, by using this relation: where, t optsun ta + tmrt = [3] 2 t a ambient air temperature [ C] Equation [3] is valid when the air velocity is below 0,4 m/s and when the mean radiation temperature is below 50 C. 4. EXAMPLE In the calculation of the mean radiant temperature from Fanger, equation [1] we had to make some assumptions. The projected area factor, f p, is an area factor. Fanger describes, in his book, this factor with relation to a seated or standing person. In our case we have a globe, and an area factor for a globe will be f p = A s /A k. Where A s area of a circle A k area of a globe The equation that is valid for this case is A s 4 d 2 = [4] 2 A k = d [5] This results in an area factor for a globe at If we uses data from Fanger's diagram for seated person, for an altitude at 60 and an azimuth at 0 we get a projected area factor at

6 0.26. We decided to use the area factor for a globe in our calculations, so we where nearest to our measurements. The absorption was set to 0.85, since a black globe was used to measure. In our project we measured the global horizontal radiant, Ih, from the sun. The measurements were worked through We measured I h = 889 W/m at 2:00 pm. When we calculated the theoretic sun we got I h = 681 W/m. The measured value here is over the theoretic possible value and we suspect that our measurements are too high. We assume the reason for this can be the placing of our instrument. It may have been exposed for considerable reflections, which lead to higher values of radiant than expected from the sun. For this reason we have used theoretic sun in our calculations. f p = 0,26 = 0,85 i = 0,69 (direct solar transmission of glass) Measured Measured Calculated Calculated Calculated Calculated Calculated Calculated Measured Air Operative I h, global Incidence Solar Radiant Mean radiant Opt temp Opt temp Temperat Temperat horizontal Angle radiation temperature temperatur in the sun in the sun ure ure rad. e 2*T opt_shade from (1) from (3) - T a T a T opt_shade q sun T umrt T mrt T opt_sun T opt_sun Time C C W/m W/m C C C C 1.00 pm 21,2 22, ,9 42,8 32,0 31, pm 22,2 22, ,2 40,2 31,2 30,7 At the hours 1:00 PM and 2:00 PM, when the weather was bright, the measurements and the theoretic calculations are quite similar. The measured temperature is slightly lower than the calulated. This may be caused by inexact direct solar transmission of the glass as the data used was taken from a catalogue. This leads us to believe that this method can be used to calculate the operative temperature in the sun. It also shows that operative temperature in the shade is not a correct measure for thermal comfort. To calculate the operative temperature in the sun we first calculate the operative temperature in the shade with a building simulation program where we use the g-value for the facade component. Then we calculate the operative temperature in the sun with the method described here where we also need the direct solar transmission. We therefore also need to know the direct solar radiation to compare to facade products. We suggest that the method should be verified in laboratory tests where data on glazing is available and surroundings are controlled. 5. CONCLUSION We wanted to find a method to calculate the operative temperature in the sun. By using Fanger's theory about high-intensity radiant source we have found a method to calculate the mean radiant temperature for persons exposed to high radiance. In our calculations we saw

7 that the calculated and the measured operative temperature was similar. This shows that this method can be used for calculating the operative temperature in the sun. The results also show that operative temperature in the shade is insufficient to determine thermal comfort. We need also to calculate the operative temperature in the sun. The g-value is insufficient to describe the solar properties of a facade product. Direct solar transmission for the glazing and shading together is also necessary. Since our measurement of the global horizontal radiant is not reliable there will be necessary with a control of the method with new measurements. New measurements are planned in the near future that will be used to support the method described in this note. 6. REFERENCES P.O. Fanger Thermal comfort Analysis and applications in environmental engineering. McGraw-Hill Book Company.

BRE Client Report. Calculation of summertime solar shading performance for MicroLouvre. Prepared for: Smartlouvre. BRE Watford, Herts WD25 9XX

BRE Client Report. Calculation of summertime solar shading performance for MicroLouvre. Prepared for: Smartlouvre. BRE Watford, Herts WD25 9XX BRE Client Report Calculation of summertime solar shading performance for MicroLouvre Prepared for: Smartlouvre Date: 21 December 2017 Report Number: P111107-1000 Issue: 2 BRE Watford, Herts WD25 9XX Customer

More information

CZECH TECHNICAL UNIVERSITY IN PRAGUE FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF ENVIRONMENTAL ENGINEERING

CZECH TECHNICAL UNIVERSITY IN PRAGUE FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF ENVIRONMENTAL ENGINEERING CZECH TECHNICAL UNIVERSITY IN PRAGUE FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF ENVIRONMENTAL ENGINEERING APPLICABILITY OF CHILLED BEAM-SYSTEM IN THE MIDDLE EAST BACHELOR THESIS JACQUES MATTA 2 EE

More information

Daylighting Buildings Nexus November 12, 2009

Daylighting Buildings Nexus November 12, 2009 Daylighting Buildings Nexus November 12, 2009 Holly Wasilowski, Registered Architect, LEED AP Doctor of Design Student in Sustainable Design Harvard Graduate School of Design Agenda: Introduction Rules

More information

TREES Training for Renovated Energy Efficient Social housing

TREES Training for Renovated Energy Efficient Social housing TREES Training for Renovated Energy Efficient Social housing Intelligent Energy -Europe programme, contract n EIE/05/110/SI2.420021 Section 2 Tools 2.1 Simplified heating load calculation Tamas CSOKNYAI

More information

AN EVALUATIVE METHOD FOR HIGH-PERFORMANCE WINDOW SYSTEM AND WINDOW SIDE RADIATION ENVIRONMENT

AN EVALUATIVE METHOD FOR HIGH-PERFORMANCE WINDOW SYSTEM AND WINDOW SIDE RADIATION ENVIRONMENT AN EVALUATIVE METHOD FOR HIGH-PERFORMANCE WINDOW SYSTEM AND WINDOW SIDE RADIATION ENVIRONMENT Kimiko Kohri Department of Energy and Environmental Science, Graduate School of Engineering, Utsunomiya University

More information

Double-Skin Facade in Low-Latitude: Study on the Absorptance, Reflectance, and Transmittance of Direct Solar Radiation

Double-Skin Facade in Low-Latitude: Study on the Absorptance, Reflectance, and Transmittance of Direct Solar Radiation ouble-skin Facade in Low-Latitude: Study on the Absorptance, Reflectance, and Transmittance of irect Solar Radiation G-LO 011 Rosady Mulyadi epartment of Architecture Faculty of Engineering Hasanuddin

More information

An Investigation on the Human Thermal Comfort from a Glass Window

An Investigation on the Human Thermal Comfort from a Glass Window Article An Investigation on the Human Thermal Comfort from a Glass Window Nopparat Khamporn a and Somsak Chaiyapinunt b Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn niversity,

More information

THERMAL COMFORT IN HIGHLY GLAZED BUILDINGS DETERMINED FOR WEATHER YEARS ON ACCOUNT OF SOLAR RADIATION. Dominika Knera 1 and Dariusz Heim 1

THERMAL COMFORT IN HIGHLY GLAZED BUILDINGS DETERMINED FOR WEATHER YEARS ON ACCOUNT OF SOLAR RADIATION. Dominika Knera 1 and Dariusz Heim 1 THERMAL COMFORT IN HIGHLY GLAZED BUILDINGS DETERMINED FOR WEATHER YEARS ON ACCOUNT OF SOLAR RADIATION Dominika Knera 1 and Dariusz Heim 1 1 Department of Heat and Mass Transfer, Lodz University of Technology

More information

THE AVERAGE TOTAL DAYLIGHT FACTOR

THE AVERAGE TOTAL DAYLIGHT FACTOR THE AVERAGE TOTAL DAYLIGHT FACTOR Luisa Brotas LEARN - Low Energy Architecture Research Unit London Metropolitan University INETI Department of Renewable Energy National Institute Engineering, Technology

More information

CAE 331/513 Building Science Fall 2016

CAE 331/513 Building Science Fall 2016 CAE 331/513 Building Science Fall 2016 Week 3: September 8, 2016 Heat transfer in buildings: Finish radiation, then solar radiation and windows Advancing energy, environmental, and sustainability research

More information

EVALUATION OF THERMAL ENVIRONMENT AROUND THE BLIND ON NON-UNIFOM RADIANT FIELDS A CFD SIMULATION OF HEAT TRANSFER DISTRIBUTION NEAR THE BLINDS

EVALUATION OF THERMAL ENVIRONMENT AROUND THE BLIND ON NON-UNIFOM RADIANT FIELDS A CFD SIMULATION OF HEAT TRANSFER DISTRIBUTION NEAR THE BLINDS 800 1500 6240 1600 1500 840 Proceedings of BS2015: EVALUATION OF THERMAL ENVIRONMENT AROUND THE BLIND ON NON-UNIFOM RADIANT FIELDS A CFD SIMULATION OF HEAT TRANSFER DISTRIBUTION NEAR THE BLINDS Nozomi

More information

Orientation of Building

Orientation of Building Orientation of Building Prof. S.K.Gupta 1 1 Dean &DirectorAmity University HaryanaPanchgaon, Manesar, Gurgaon I. INTRODUCTION The need to conserve essential building materials has drawn attention again

More information

Working of a SUNLUX SUNSCREEN

Working of a SUNLUX SUNSCREEN Working of a SUNLUX SUNSCREEN Working of a Sunlux Sunscreen Sunscreen = protection against sunrays Sunscreen means protection against the sunrays, so the function is the protection against light and heat,

More information

Simplified Collector Performance Model

Simplified Collector Performance Model Simplified Collector Performance Model Prediction of the thermal output of various solar collectors: The quantity of thermal energy produced by any solar collector can be described by the energy balance

More information

Response function method

Response function method Response function method Response function method An analytical approach to the solution of ordinary and partial differential equations using the Laplace transform: An equation in the time domain is transformed

More information

Principles and Applications of Building Science Dr. E Rajasekar Department of Civil Engineering Indian Institute of Technology, Roorkee

Principles and Applications of Building Science Dr. E Rajasekar Department of Civil Engineering Indian Institute of Technology, Roorkee Principles and Applications of Building Science Dr. E Rajasekar Department of Civil Engineering Indian Institute of Technology, Roorkee Lecture - 04 Thermal Comfort in Built Environment 2 In previous module,

More information

Solar Radiation 230 BTU s per Hr/SF. Performance Glazing Coatings, Layers & Gases

Solar Radiation 230 BTU s per Hr/SF. Performance Glazing Coatings, Layers & Gases Solar Radiation 230 BTU s per Hr/SF 89 83 82 90 Performance Glazing Coatings, Layers & Gases Learning Objectives After Viewing This Presentation You Will Understand: q The NFRC Labeling System q Light

More information

CAE 331/513 Building Science Fall 2017

CAE 331/513 Building Science Fall 2017 CAE 331/513 Building Science Fall 2017 September 19, 2017 Human thermal comfort Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Twitter: @built_envi

More information

Definitions of U- and g-value in case of double skin facades or vented windows

Definitions of U- and g-value in case of double skin facades or vented windows Windows as Renewable Energy Sources for Europe Window Energy Data Network www.windat.org Project supported by DG for Energy and Transport of the European Commission contract NNE5-2000-122 Definitions of

More information

STUDY ON THE THERMAL PERFORMANCE AND AIR DISTRIBUTION OF A DISPLACEMENT VENTILATION SYSTEM FOR LARGE SPACE APPLICATION

STUDY ON THE THERMAL PERFORMANCE AND AIR DISTRIBUTION OF A DISPLACEMENT VENTILATION SYSTEM FOR LARGE SPACE APPLICATION STUDY ON THE THERMAL PERFORMANCE AND AIR DISTRIBUTION OF A DISPLACEMENT VENTILATION SYSTEM FOR LARGE SPACE APPLICATION K Sakai 1*, E Yamaguchi 2, O Ishihara 3 and M Manabe 1 1 Dept. of Architectural Engineering,

More information

Winter Night. Thermos 6mm Outdoors # #

Winter Night. Thermos 6mm Outdoors # # February 26, 2016 By Gagnon, Stephan stephan@thermosrn.ca Thermos 3mm à 6mm vs Climaguard 80/70 Make-up Name Make-up Icon Transmittance Reflectance U-Value Visible (τ v %) (τ e %) Visible ρ v % out ρ v

More information

Effect of Installing a Curved Venetian Blind to the Glass Window on Heat Transmission

Effect of Installing a Curved Venetian Blind to the Glass Window on Heat Transmission Effect of Installing a Curved Venetian Blind to the Glass Window on Heat Transmission Somsak Chaiyapinunt *1 and Nopparat Khamporn 2 1 Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn

More information

IDA ICE CIBSE-Validation Test of IDA Indoor Climate and Energy version 4.0 according to CIBSE TM33, issue 3

IDA ICE CIBSE-Validation Test of IDA Indoor Climate and Energy version 4.0 according to CIBSE TM33, issue 3 FHZ > FACHHOCHSCHULE ZENTRALSCHWEIZ HTA > HOCHSCHULE FÜR TECHNIK+ARCHITEKTUR LUZERN ZIG > ZENTRUM FÜR INTEGRALE GEBÄUDETECHNIK IDA ICE CIBSE-Validation Test of IDA Indoor Climate and Energy version 4.0

More information

EFFECT OF INTERNAL LONG WAVE RADIATION AND CONVECTION ON FENESTRATION SIMULATION

EFFECT OF INTERNAL LONG WAVE RADIATION AND CONVECTION ON FENESTRATION SIMULATION EFFECT OF INTERNAL LONG WAVE RADIATION AND CONVECTION ON FENESTRATION SIMULATION Adelqui Fissore Sch. University of Concepción Mechanical Engineering Department Concepción - Chile ABSTRACT This paper presents

More information

ABOUT UNCERTAINTIES IN SIMULATION MODELS FOR BUILDING SYSTEMS CONTROL

ABOUT UNCERTAINTIES IN SIMULATION MODELS FOR BUILDING SYSTEMS CONTROL ABOUT UNCERTAINTIES IN SIMULATION MODELS FOR BUILDING SYSTEMS CONTROL Kristina Orehounig, Matthias Schuss, Claus Pröglhöf, and Ardeshir Mahdavi Department of Building Physics and Building Ecology Vienna

More information

INVESTIGATING GLAZING SYSTEM SIMULATED RESULTS WITH REAL MEASUREMENTS

INVESTIGATING GLAZING SYSTEM SIMULATED RESULTS WITH REAL MEASUREMENTS INVESTIGATING GLAZING SYSTEM SIMULATED RESULTS WITH REAL MEASUREMENTS Mark Luther 1, Timothy Anderson 2, and Tim Brain 3 1 School of Architecture and Building, Deakin University, Geelong, Australia 2 School

More information

Glazing selection for solar design

Glazing selection for solar design Glazing selection for solar design Visible light transmittance: A measure of the amount of visible light that passes through the glazing material of a window, door, or skylight. Visible light transmittance,

More information

Institut national des sciences appliquées de Strasbourg GENIE CLIMATIQUE ET ENERGETIQUE APPENDICES

Institut national des sciences appliquées de Strasbourg GENIE CLIMATIQUE ET ENERGETIQUE APPENDICES Institut national des sciences appliquées de Strasbourg GENIE CLIMATIQUE ET ENERGETIQUE APPENDICES DEVELOPMENT OF A TOOL, BASED ON THE THERMAL DYNAMIC SIMULATION SOFTWARE TRNSYS, WHICH RUNS PARAMETRIC

More information

Fundamentals of light

Fundamentals of light Fundamentals of light CHAPTER 1 Introduction Environmental issues Limited resources. Consumption. Sustainability Environmental damage will result in environmental changes (climate change, global warming,

More information

Fundamentals of light

Fundamentals of light Fundamentals of light CHAPTER 1 Introduction Environmental issues Limited resources. Consumption. Sustainability Environmental damage will result in environmental changes (climate change, global warming,

More information

AR/IA 241 LN 231 Lecture 4: Fundamental of Energy

AR/IA 241 LN 231 Lecture 4: Fundamental of Energy Faculty of Architecture and Planning Thammasat University A/IA 24 LN 23 Lecture 4: Fundamental of Energy Author: Asst. Prof. Chalermwat Tantasavasdi. Heat For a specific substance, the heat given to the

More information

1 BAKER HOUSE DINING: LIGHTING DIAGNOSTIC

1 BAKER HOUSE DINING: LIGHTING DIAGNOSTIC Shauna Jin + Caitlin Mueller 4.401: Lighting and Acoustics Analyses 27 April 2006 1 BAKER HOUSE DINING: LIGHTING DIAGNOSTIC 1.1 Sunlight Penetration The Baker House Dining room is exposed mostly to southern

More information

THE EFFECTS OF CALORIMETER TILT ON THE INWARD-FLOWING FRACTION OF ABSORBED SOLAR RADIATION IN A VENETIAN BLIND

THE EFFECTS OF CALORIMETER TILT ON THE INWARD-FLOWING FRACTION OF ABSORBED SOLAR RADIATION IN A VENETIAN BLIND Collins, M.R., and Harrison, S.J., "The Effects of Calorimeter Tilt on the Inward-Flowing Fraction of Absorbed Solar Radiation in a Venetian Blind", ASHRAE Transactions, Vol. 107 (1), pp. 677-683, 2001.

More information

Draft for comment (613) Public Works Canada Design & Construction Technology DRAn' 1 July, Computer-Aided Design Centre (CAD) TSS COPY

Draft for comment (613) Public Works Canada Design & Construction Technology DRAn' 1 July, Computer-Aided Design Centre (CAD) TSS COPY ~------------ 6. (c) Public Works Canada Design & Construction Technology DRAn' 1 July, 1980 Draft for comment Computer-Aided Design Centre (CAD) TSS COPY DO NOT REMOVE User enquiries and requests for

More information

DEFINING THE PERFORMANCE OF THE DOUBLE SKIN FAÇADE WITH THE USE OF THE SIMULATION MODEL

DEFINING THE PERFORMANCE OF THE DOUBLE SKIN FAÇADE WITH THE USE OF THE SIMULATION MODEL Eighth International IBPSA Conference Eindhoven, Netherlands August -4, 003 DEFINING THE PERFORMANCE OF THE DOUBLE SKIN FAÇADE WITH THE USE OF THE SIMULATION MODEL Wojtek Stec & Dolf van Paassen Energy

More information

ADVANCED ROOF COATINGS: MATERIALS AND THEIR APPLICATIONS

ADVANCED ROOF COATINGS: MATERIALS AND THEIR APPLICATIONS ADVANCED ROOF COATINGS: MATERIALS AND THEIR APPLICATIONS Abstract J.M. Bell 1 and G.B. Smith 2 The use of low emittance and high solar reflectance coatings is widespread in window glazings, wall and roof

More information

Aalborg Universitet. Comparison between Different Air Distribution Systems Nielsen, Peter Vilhelm. Publication date: 2006

Aalborg Universitet. Comparison between Different Air Distribution Systems Nielsen, Peter Vilhelm. Publication date: 2006 Aalborg Universitet Comparison between Different Air Distribution Systems Nielsen, Peter Vilhelm Publication date: 2006 Document Version Publisher's PDF, also known as Version of record Link to publication

More information

Project 2. Introduction: 10/23/2016. Josh Rodriguez and Becca Behrens

Project 2. Introduction: 10/23/2016. Josh Rodriguez and Becca Behrens Project 2 Josh Rodriguez and Becca Behrens Introduction: Section I of the site Dry, hot Arizona climate Linen supply and cleaning facility Occupied 4am-10pm with two shifts of employees PHOENIX, ARIZONA

More information

Experimental Performance and Numerical Simulation of Double Glass Wall Thana Ananacha

Experimental Performance and Numerical Simulation of Double Glass Wall Thana Ananacha Experimental Performance and Numerical Simulation of Double Glass Wall Thana Ananacha Abstract This paper reports the numerical and experimental performances of Double Glass Wall are investigated. Two

More information

DAYLIGHT GLARE ANALYSIS FOR AN ALL GLASS CATHEDRAL: INTEGRATING SIMULATION WITH COMMON SENSE TO IMPROVE VISUAL COMFORT

DAYLIGHT GLARE ANALYSIS FOR AN ALL GLASS CATHEDRAL: INTEGRATING SIMULATION WITH COMMON SENSE TO IMPROVE VISUAL COMFORT ASHRAE and IBPSA-USA SimBuild 2016 Building Performance Modeling Conference Salt Lake City, UT August 8-12, 2016 DAYLIGHT GLARE ANALYSIS FOR AN ALL GLASS CATHEDRAL: INTEGRATING SIMULATION WITH COMMON SENSE

More information

Appendix 5.A11: Derivation of solar gain factors

Appendix 5.A11: Derivation of solar gain factors Thermal design, plant sizing and energy consumption: Additional appendices A11-1 Appendix 5.A11: Derivation of solar gain factors 5.A11.1 Notation Symbols used in this appendix are as follows. a Fraction

More information

A. Solar Walls. B. Prototype I

A. Solar Walls. B. Prototype I A Introduction There are many different technologies that are emerging to help develop the future power infrastructure. The importance of these technologies is increasing the sustainability of how our

More information

Solar Flat Plate Thermal Collector

Solar Flat Plate Thermal Collector Solar Flat Plate Thermal Collector INTRODUCTION: Solar heater is one of the simplest and basic technologies in the solar energy field. Collector is the heart of any solar heating system. It absorbs and

More information

ASSESSMENT OF WINDOW SYSTEMS CONSIDERING SOLAR AND THERMAL PERFORMANCE

ASSESSMENT OF WINDOW SYSTEMS CONSIDERING SOLAR AND THERMAL PERFORMANCE ASSESSMENT OF WINDOW SYSTEMS CONSIDERING SOLAR AND THERMAL PERFORMANCE Frank Gergaud & Evangelos Marios Liaros Master Thesis in Energy-efficient and Environmental Buildings Faculty of Engineering Lund

More information

The energy performance of an airflow window

The energy performance of an airflow window The energy performance of an airflow window B.(Bram) Kersten / id.nr. 0667606 University of Technology Eindhoven, department of Architecture Building and Planning, unit Building Physics and Systems. 10-08-2011

More information

ARCHITECTURE IN THE DAYLIGHT

ARCHITECTURE IN THE DAYLIGHT ARCHITECTURE IN THE DAYLIGHT Site Location MANUS LEUNG HARVARD GSD FALL 2015 The house is located in Jl. Intern Corn Kebun Jeruk Blok U3 No.18, Kembangan District of Jakarta 11640 Indonesia. 01 OBJECTIVES

More information

COMMERCIAL HEAT GAIN - HEAT LOSS CALCULATION LOAD FORM

COMMERCIAL HEAT GAIN - HEAT LOSS CALCULATION LOAD FORM COMMERCIAL HEAT GAIN - HEAT LOSS CALCULATION LOAD FORM Job Name: Address: Phone/Fax/Email: Contractor: Address: Phone/Fax/Email: Heat Gain Summary Sensible Heat (Btu/h) Latent Heat (Btu/h) Total Heat Gain

More information

Model 3024 Albedometer. User s Manual 1165 NATIONAL DRIVE SACRAMENTO, CALIFORNIA WWW. ALLWEATHERINC. COM

Model 3024 Albedometer. User s Manual 1165 NATIONAL DRIVE SACRAMENTO, CALIFORNIA WWW. ALLWEATHERINC. COM Model 3024 Albedometer User s Manual 1165 NATIONAL DRIVE SACRAMENTO, CALIFORNIA 95834 WWW. ALLWEATHERINC. COM TABLE OF CONTENTS INTRODUCTION... 1 THEORY OF OPERATION... 2 General Description... 2 Accuracy...

More information

EXPERIMENTAL ANALYSIS OF AIR-CONDITIONING IN HOSPITAL ROOMS BY MEANS OF LIGHT RADIANT CEILINGS

EXPERIMENTAL ANALYSIS OF AIR-CONDITIONING IN HOSPITAL ROOMS BY MEANS OF LIGHT RADIANT CEILINGS EXPERIMENTAL ANALYSIS OF AIR-CONDITIONING IN HOSPITAL ROOMS BY MEANS OF LIGHT RADIANT CEILINGS Renato M. Lazzarin renato@gest.unipd.it Francesco Castellotti caste@gest.unipd.it Filippo Busato busato@gest.unipd.it

More information

Performance Assessment of PV/T Air Collector by Using CFD

Performance Assessment of PV/T Air Collector by Using CFD Performance Assessment of /T Air Collector by Using CFD Wang, Z. Department of Built Environment, University of Nottingham (email: laxzw4@nottingham.ac.uk) Abstract Photovoltaic-thermal (/T) collector,

More information

STUDENT MODELLING COMPETITION

STUDENT MODELLING COMPETITION STUDENT MODELLING COMPETITION Design and simulation of an energy-positive house Building Simulation 2013 Briefing Document L. Stephan T.Béjat O. Flechon M. J. Cook Version 1.1 Presentation of the competition

More information

(Refer Slide Time: 00:01:19 min)

(Refer Slide Time: 00:01:19 min) Refrigeration and Air Conditioning Prof. M. Ramgopal Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. # 40 Cooling and heating Load Calculations Welcome back,

More information

SIMULATION OF FRAME CAVITY HEAT TRANSFER USING BISCO v10w

SIMULATION OF FRAME CAVITY HEAT TRANSFER USING BISCO v10w PHYSIBEL SIMULATION OF FRAME CAVITY HEAT TRANSFER USING BISCO v10w Introduction In construction elements such as window frames and bricks, the heat transfer through air cavities is often a quite important

More information

Analysis of Energy Savings and Visual Comfort Produced by the Proper Use of Windows

Analysis of Energy Savings and Visual Comfort Produced by the Proper Use of Windows Analysis of Energy Savings and Visual Comfort Produced by the Proper Use of Windows I. Acosta, M. A. Campano, and J. F. Molina Abstract The aim of this research is to quantify the daylight autonomy and

More information

Thermal behavior and Energetic Dispersals of the Human Body under Various Indoor Air Temperatures at 50% Relative Humidity

Thermal behavior and Energetic Dispersals of the Human Body under Various Indoor Air Temperatures at 50% Relative Humidity Thermal behavior and Energetic Dispersals of the Human Body under Various Indoor Air Temperatures at 50% Relative Humidity Hakan CALISKAN Usak University, Department of Mechanical Engineering, Usak, Turkey

More information

SIZZLING SHOWCASE: TEMPERATURE STUDY OF THE ADELL McMILLAN GALLERY AT THE UNIVERSITY OF OREGON ERB MEMORIAL UNION

SIZZLING SHOWCASE: TEMPERATURE STUDY OF THE ADELL McMILLAN GALLERY AT THE UNIVERSITY OF OREGON ERB MEMORIAL UNION SIZZLING SHOWCASE: TEMPERATURE STUDY OF THE ADELL McMILLAN GALLERY AT THE UNIVERSITY OF OREGON ERB MEMORIAL UNION Tim Allred University of Oregon Department of Architecture Eugene, OR 97403 tallred@gladstone.uoregon.edu

More information

ESTIMATION OF AUTOMOBILE COOLING LOADS FOR AIR CONDITIONING SYSTEM DESIGN

ESTIMATION OF AUTOMOBILE COOLING LOADS FOR AIR CONDITIONING SYSTEM DESIGN Nigerian Research Journal of Engineering and Environmental Sciences 596 Original Research Article ESTIMATION OF AUTOMOBILE COOLING LOADS FOR AIR CONDITIONING SYSTEM DESIGN *Omo-Oghogho, E., Aliu, S.A.,

More information

EXPERIMENTAL AND SIMULATION TEMPERATURE EVALUATION WHICH DETERMINE THERMAL COMFORT

EXPERIMENTAL AND SIMULATION TEMPERATURE EVALUATION WHICH DETERMINE THERMAL COMFORT EXPERIMENTAL AND SIMULATION TEMPERATURE EVALUATION WHICH DETERMINE THERMAL COMFORT ubomír Hargaš, František Drkal, Vladimír Zmrhal Department of Environmental Engineering, Faculty of Mechanical Engineering,

More information

CHAPTER 3. The sun and the seasons. Locating the position of the sun

CHAPTER 3. The sun and the seasons. Locating the position of the sun zenith 90 observer summer solstice 75 altitude angles equinox 52 winter solstice 29 Figure 3.1: Solar noon altitude angles for Melbourne SOUTH winter midday shadow WEST summer midday shadow summer EAST

More information

DYNAMIC DAYLIGHT AND SOLAR CONTROL IN TROPICAL CLIMATE

DYNAMIC DAYLIGHT AND SOLAR CONTROL IN TROPICAL CLIMATE American Journal of Applied Sciences 11 (10): 1766-1772, 2014 ISSN: 1546-9239 2014 Y.W. Lim, This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license doi:10.3844/ajassp.2014.1766.1772

More information

ABSTRACT INTRODUCTION OPTICAL CALCULATIONS

ABSTRACT INTRODUCTION OPTICAL CALCULATIONS Seventh International IBPSA Conference Rio de Janeiro, Brazil August 3-5, 2 MODELING WINDOWS IN ENERGYPLUS F. C. Winkelmann Simulation Research Group Building Technologies Department Environmental Energy

More information

Sunburned Products: Numerical Aging caused by Sun Exposition

Sunburned Products: Numerical Aging caused by Sun Exposition Sunburned Products: Numerical Aging caused by Sun Exposition Dr. Axel Müller & Teodora Vatahska HTCO GmbH Freiburg, Germany STAR Global Conference 2012 March 21 th 2012 Amsterdam, Netherlands HTCO: Expertise

More information

A design strategy for daylight control for the project Vertical City, in Rotterdam

A design strategy for daylight control for the project Vertical City, in Rotterdam DELFT UNIVERSITY OF TECHNOLOGY A design strategy for daylight control for the project Vertical City, in Rotterdam First Mentor: Tillmann Klein Second Mentor: Michela Turrin Third Mentor: Truus Hordijk

More information

A SIMPLE MODEL FOR THE DYNAMIC COMPUTATION OF BUILDING HEATING AND COOLING DEMAND. Kai Sirén AALTO UNIVERSITY

A SIMPLE MODEL FOR THE DYNAMIC COMPUTATION OF BUILDING HEATING AND COOLING DEMAND. Kai Sirén AALTO UNIVERSITY A SIMPLE MODEL FOR THE DYNAMIC COMPUTATION OF BUILDING HEATING AND COOLING DEMAND Kai Sirén AALTO UNIVERSITY September 2016 CONTENT 1. FUNDAMENTALS OF DYNAMIC ENERGY CALCULATIONS... 3 1.1. Introduction...

More information

Solar Radiation Protections on Façades: A Case Study in a Hot Semi-Humid Climate

Solar Radiation Protections on Façades: A Case Study in a Hot Semi-Humid Climate Solar Radiation Protections on Façades: A Case Study in a Hot Semi-Humid Climate ADRIANA LIRA-OLIVER 1, JORGE ROJAS 2, GUADALUPE HUELSZ 2, GUILLERMO BARRIOS 2, FRANCISCO ROJAS 2 1 3S-Consulting for Sustainable

More information

OPERATIVE TEMPERATURE SIMULATION OF ENCLOSED SPACE WITH INFRARED RADIATION SOURCE AS A SECONDARY HEATER

OPERATIVE TEMPERATURE SIMULATION OF ENCLOSED SPACE WITH INFRARED RADIATION SOURCE AS A SECONDARY HEATER OPERATIVE TEMPERATURE SIMULATION OF ENCLOSED SPACE WITH INFRARED RADIATION SOURCE AS A SECONDARY HEATER L. Hach 1, K. Hemzal 2, Y. Katoh 3 1 Institute of Applied Physics and Mathematics, Faculty of Chemical

More information

MEASUREMENT OF THE AIRFLOW AND TEMPERATURE FIELDS AROUND LIVE SUBJECTS AND THE EVALUATION OF HUMAN HEAT LOSS

MEASUREMENT OF THE AIRFLOW AND TEMPERATURE FIELDS AROUND LIVE SUBJECTS AND THE EVALUATION OF HUMAN HEAT LOSS MEASUREMENT OF THE AIRFLOW AND TEMPERATURE FIELDS AROUND LIVE SUBJECTS AND THE EVALUATION OF HUMAN HEAT LOSS GH Zhou 1, DL Loveday 1, AH Taki 2 and KC Parsons 3 1 Department of Civil and Building Engineering,

More information

Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras

Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras Energy and Buildings 38 (2006) 743 757 www.elsevier.com/locate/enbuild Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras Jan Wienold

More information

Computational Modelling of the Impact of Solar Irradiance on Chemical Degradation of Painted Wall Hangings in an Historic Interior

Computational Modelling of the Impact of Solar Irradiance on Chemical Degradation of Painted Wall Hangings in an Historic Interior Computational Modelling of the Impact of Solar Irradiance on Chemical Degradation of Painted Wall Hangings in an Historic Interior Z. Huijbregts *1, A.W.M. van Schijndel 1, H.L. Schellen 1, K. Keune 2,

More information

How to evaluate daylight. Initiated by the VELUX Group

How to evaluate daylight. Initiated by the VELUX Group Initiated by the VELUX Group Daylight in buildings Daylight in buildings is composed of a mix direct sunlight, diffuse skylight, and light reflected from the ground and surrounding elements. Direct sunlight

More information

Solar Control in Traditional Architecture, Potentials for Passive Design in Hot and Arid Climate

Solar Control in Traditional Architecture, Potentials for Passive Design in Hot and Arid Climate Solar Control in Traditional Architecture, Potentials for Passive Design in Hot and Arid Climate Wael A. Yousef Mousa, MA.ᵃ Werner Lang, Prof. Dr.-Ing.ᵇ ᵃ ᵇInstitute of Energy Efficient and Sustainable

More information

Glare and dynamic glare evaluation. Jan Wienold Fraunhofer-Institute for Solar Energy Systems, Freiburg, Germany

Glare and dynamic glare evaluation. Jan Wienold Fraunhofer-Institute for Solar Energy Systems, Freiburg, Germany Glare and dynamic glare evaluation Jan Wienold Fraunhofer-Institute for Solar Energy Systems, Freiburg, Germany Use of shading devices in non residential buildings Control strategies could be complex Light

More information

I N C L U S I V E & S U S T A I N A B L E H O U S I N G I N C A P E T O W N

I N C L U S I V E & S U S T A I N A B L E H O U S I N G I N C A P E T O W N I N C L U S I V E & S U S T A I N A B L E H O U S I N G I N C A P E T O W N Inclusive & Sustainable Housing in Cape Town Prepared by: Amy Koshy With the help of: Tommaso Bitossi Matthias Rammig C O N T

More information

Numerical and experimental analysis on Double Light Pipe, a new system for daylight distribution in interior spaces.

Numerical and experimental analysis on Double Light Pipe, a new system for daylight distribution in interior spaces. Page 1 of 6 Numerical and experimental analysis on Double Light Pipe, a new system for daylight distribution in interior spaces. Carlo Baroncini, Fabrizio Chella, Paolo Zazzini D.S.S.A.R.R. Faculty of

More information

Serge 600 COLLECTION REFLECTS SUNLIGHT OUTDOORS GLASSFIBRE OF = 5%

Serge 600 COLLECTION REFLECTS SUNLIGHT OUTDOORS GLASSFIBRE OF = 5% COLLECTION 2018-2021 REFLECTS SUNLIGHT OUTDOORS Screens that reflect & absorb solar energy outside the house. Meet OUT. Technical specifications 010010 charcoal charcoal TECHNICAL SPECIFICATION UNITY STANDARD

More information

Chapter 1 Solar Radiation

Chapter 1 Solar Radiation Chapter 1 Solar Radiation THE SUN The sun is a sphere of intensely hot gaseous matter with a diameter of 1.39 10 9 m It is, on the average, 1.5 10 11 m away from the earth. The sun rotates on its axis

More information

Chapter Seven. Solar Energy

Chapter Seven. Solar Energy Chapter Seven Solar Energy Why Studying Solar energy To know the heat gain or heat loss in a building In making energy studies In the design of solar passive homes. Thermal Radiation Solar spectrum is

More information

Daylight Glare analysis and metrics

Daylight Glare analysis and metrics Daylight Glare analysis and metrics Introduction into daylight glare evaluation Introduction into evalglare Comparison evalglare - findglare Jan Wienold, EPFL, Lausanne, Switzerland Content n Introduction

More information

PAUL RUDOLPH Oriental Masonic Gardens

PAUL RUDOLPH Oriental Masonic Gardens 1 PAUL RUDOLPH Oriental Masonic Gardens Latitude _ 41.3 N Longitude _ 72.9 W Climate: transition between Cfa _ Humid Subtropical and Dfa_ Humid Continental climate 2 Paul Rudolph INTRODUCTION Fig. 1 -

More information

Section 1: Overhang. Sizing an Overhang

Section 1: Overhang. Sizing an Overhang Section 1: Overhang A horizontal overhang is a straightforward method for shading solar glazing in summer. Passive heating strategies call for major glazed areas (solar glazing) in a building to be oriented

More information

Analysis of wind and radiant environment in street canyons for production of urban climate maps at district scale

Analysis of wind and radiant environment in street canyons for production of urban climate maps at district scale Academic Article Journal of Heat Island Institute International Vol. 12-2 (217) Analysis of wind and radiant environment in street canyons for production of urban climate maps at district scale Hideki

More information

Fundamentals of WUFI-Plus WUFI Workshop NTNU / SINTEF 2008

Fundamentals of WUFI-Plus WUFI Workshop NTNU / SINTEF 2008 Fundamentals of WUFI-Plus WUFI Workshop NTNU / SINTEF 2008 Simultaneous Calculation of Transient Hygrothermal Conditions of Indoor Spaces and Building Envelopes boundary conditions Building envelope Outdoor

More information

Astron 104 Laboratory #10 Solar Energy and the Habitable Zone

Astron 104 Laboratory #10 Solar Energy and the Habitable Zone Name: Date: Section: Astron 104 Laboratory #10 Solar Energy and the Habitable Zone Introduction The Sun provides most of the energy available in the solar system. Sunlight warms the planet and helps create

More information

Solar reflected glare affecting visual performance

Solar reflected glare affecting visual performance Proceedings of 8 th Windsor Conference: Counting the Cost of Comfort in a changing world Cumberland Lodge, Windsor, UK, 10-13 April 2014. London: Network for Comfort and Energy Use in Buildings, http://nceub.org.uk

More information

AMBIENT WELL-BEING PARAMETERS IN THE INDOOR SPACES OF OFFICE BUILDINGS. CASE STUDY

AMBIENT WELL-BEING PARAMETERS IN THE INDOOR SPACES OF OFFICE BUILDINGS. CASE STUDY PRESENT ENVIRONMENT AND SUSTAINABLE DEVELOPMENT, VOL. 6, no. 1, 2012 AMBIENT WELL-BEING PARAMETERS IN THE INDOOR SPACES OF OFFICE BUILDINGS. CASE STUDY Nicoleta Ionac 1, Adrian-Cătălin Mihoc 2, Paula Tăbleţ

More information

Solar shading for low energy buildings

Solar shading for low energy buildings Solar shading for low energy buildings FEBRUARY 2012 Edition 1 How shutters and blinds reduce the energy needs of buildings and improve their thermal and visual comfort Page 1 Solar shading for low energy

More information

Performance of Fixed Horizontal Shading Devices in South Facing Residential Buildings in Dhaka

Performance of Fixed Horizontal Shading Devices in South Facing Residential Buildings in Dhaka Global Science and Technology Journal Vol. 1. No. 1. July 2013 Issue. Pp.88-99 Performance of Fixed Horizontal Shading Devices in South Facing Residential Buildings in Dhaka Saiful Hasan Tariq* and Mahbuba

More information

Heat Transfer: A Practical Approach - Yunus A Cengel Assignment 11 Fall 2003 Tuesday, November 18, 2003 Chapter 11, Problem 49

Heat Transfer: A Practical Approach - Yunus A Cengel Assignment 11 Fall 2003 Tuesday, November 18, 2003 Chapter 11, Problem 49 Heat Transer: A Practical Approach - Yunus A Cengel Assignment Fall 00 Tuesday, November 8, 00 Chapter, Problem 9 The variation o the spectral transmissivity o a 0.6- cm-thick glass window is as given

More information

OPTIMIZATION of the GEOMETRY & MATERIAL of SOLAR WATER HEATERS.

OPTIMIZATION of the GEOMETRY & MATERIAL of SOLAR WATER HEATERS. OPTIMIZATION of the GEOMETRY & MATERIAL of SOLAR WATER HEATERS. FLAT PLATE COLLECTORS ABSORBER PLATES OPTIMIZATION OF GEOMETRY SELECTIVE SURFACES METHODS OF TESTING TO DETERMINE THE THERMAL PERFORMANCE

More information

Declarations of equivalence of Verosol sun screens. SilverScreen and EnviroScreen

Declarations of equivalence of Verosol sun screens. SilverScreen and EnviroScreen Declarations of equivalence of Verosol sun screens SilverScreen and EnviroScreen Report number D 2923-2E-RA dated May 4 th, 2015 Declarations of equivalence of Verosol sun screens SilverScreen and EnviroScreen

More information

The influence of solar radiation on the distribution of temperatures in historic masonry

The influence of solar radiation on the distribution of temperatures in historic masonry Advanced Computational Methods and Experiments in Heat Transfer XII 181 The influence of solar radiation on the distribution of temperatures in historic masonry P. Beran Institute of Theoretical and Applied

More information

Testing the performance of a green wall system on an experimental building in the summer

Testing the performance of a green wall system on an experimental building in the summer PLEA2013-29th Conference, Sustainable Architecture for a Renewable Future, Munich, Germany 10-12 September 2013 Testing the performance of a green wall system on an experimental building in the summer

More information

Baker House Dining Room: Thermal Balance Report. + Q c. + Q v. + Q s. + Q e. + Q heating. + Q appliances. =Q appliances,21h Q appliances, x H

Baker House Dining Room: Thermal Balance Report. + Q c. + Q v. + Q s. + Q e. + Q heating. + Q appliances. =Q appliances,21h Q appliances, x H Shauna Jin + Caitlin Mueller 4.401 15 March 2006 Baker House Dining Room: Thermal Balance Report For this project, we chose to analyze the thermal balance of Alvar Aalto's Baker House Dining Room. In order

More information

SENSITIVITY OF THE SOLAR HEAT GAIN COEFFICIENT OF COMPLEX FENESTRATION SYSTEMS TO THE INDOOR CONVECTION COEFFICIENT

SENSITIVITY OF THE SOLAR HEAT GAIN COEFFICIENT OF COMPLEX FENESTRATION SYSTEMS TO THE INDOOR CONVECTION COEFFICIENT SENSITIVITY OF THE SOLAR HEAT GAIN COEFFICIENT OF COMPLEX FENESTRATION SYSTEMS TO THE INDOOR CONVECTION COEFFICIENT S.S.M. Foroushani 1, J.L. Wright 1, D. Naylor 2 1 Mechanical & Mechatronics Engineering,

More information

The Electrodynamics of a Pair of PV Modules with Connected Building Resistance

The Electrodynamics of a Pair of PV Modules with Connected Building Resistance Proc. of the 3rd IASME/WSEAS Int. Conf. on Energy, Environment, Ecosystems and Sustainable Development, Agios Nikolaos, Greece, July 24-26, 2007 563 he Electrodynamics of a Pair of s with Connected Building

More information

Blockout Déco N203 COLLECTION BLOCK SUNLIGHT BLOCKOUT OF = 0% COPACO BLOCKOUT DÉCO N203

Blockout Déco N203 COLLECTION BLOCK SUNLIGHT BLOCKOUT OF = 0% COPACO BLOCKOUT DÉCO N203 Blockout Déco N203 COLLECTION 2018-2021 BLOCK SUNLIGHT BLOCKOUT OF = 0% COPACO BLOCKOUT DÉCO N203 1 Keep out sunlight completely. Strike a perfect balance between comfort, stylish and private. Meet Block.

More information

Aalborg Universitet. Published in: Energy and Buildings. Publication date: Link to publication from Aalborg University

Aalborg Universitet. Published in: Energy and Buildings. Publication date: Link to publication from Aalborg University Aalborg Universitet Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras Wienold, Jan; Christoffersen, Jens Published in: Energy and

More information

Effect of Solar Angles on Incident Energy of the Flat Collectors

Effect of Solar Angles on Incident Energy of the Flat Collectors The Journal of Energy: Engineering & Management Vol. 2, No. 4, Winter 1391, P. 12-23 Effect of Solar Angles on Incident Energy of the Flat Collectors P. Talebizadeh 1, M. A. Mehrabian 2*, M. Abdolzadeh

More information

EXPERIMENTAL DETERMINATION OF SPECTRAL AND ANGULAR DEPENDENT OPTICAL PROPERTIES OF INSULATING GLASSES

EXPERIMENTAL DETERMINATION OF SPECTRAL AND ANGULAR DEPENDENT OPTICAL PROPERTIES OF INSULATING GLASSES CISBAT 2005, Proceedings, EPFL 2005, p. 441-446 EXPERIMENTAL DETERMINATION OF SPECTRAL AND ANGULAR DEPENDENT OPTICAL PROPERTIES OF INSULATING GLASSES R. Steiner, P. Oelhafen, G. Reber and A. Romanyuk Institute

More information

Building heat system sizing

Building heat system sizing May 6th, 203 MVK60 Heat and Mass Transfer Project report Building heat system sizing Arnaud BELTOISE Dept. of Energy Sciences, Faculty of Engineering, Lund University, Box 8, 2200 Lund, Sweden . Introduction

More information