Thermal behavior and Energetic Dispersals of the Human Body under Various Indoor Air Temperatures at 50% Relative Humidity

Size: px
Start display at page:

Download "Thermal behavior and Energetic Dispersals of the Human Body under Various Indoor Air Temperatures at 50% Relative Humidity"

Transcription

1 Thermal behavior and Energetic Dispersals of the Human Body under Various Indoor Air Temperatures at 50% Relative Humidity Hakan CALISKAN Usak University, Department of Mechanical Engineering, Usak, Turkey ABSTRACT In this paper, thermal behavior and energetic dispersals of the human body under various indoor air temperatures at 50% relative humidity are investigated. The indoor air temperatures are considered as 21 C, 22 C, 23 C, 24 C and 25 C, while the room is 6x6x2.9m. The energy analysis of the human body and the effects of indoor air temperature on human body are studied. As a result, it is found that the Predicted Mean Vote (PMV) rate of the human body is near to zero at 23 C, and the Predicted Percentage of Dissatisfied (PPD) of the human body is minimum at 23 C. Considering the PMV and PPD rates, the best indoor air condition is found at 23 C indoor air temperature for human body. On the other hand, the maximum energy loss is found by radiation, while minimum energy loss is determined by evaporation of sweat. Also, the stored energy of the human body is directly proportional to the indoor air temperature. Keywords Thermal comfort; PMV; PPD; Human body; Energy; Thermodynamics INTRODUCTION Climatic factors affect the organisms. Hence, human body tries to adjust itself to the surrounding ambient condition. So, thermal comfort, which establishes a connection between the external thermal stress and the human thermoregulation capacities such as heat loss and heat storage is necessary [1]. Thermal comfort is a combination of a subjective sensation and several objective interactions with the environment. In other words, it is about how we feel and heat and mass transfer to the environment. So, comfort depends on person and environmental related situations. Human body core temperature is considered as 37ºC. It may depart a few degrees under unhealthy circumstances, particularly above that value, as with fever, or during heavy prolonged physical exercise. So, the heat is necessary to be evacuated through our skin to the environment to compensate our metabolic dissipation, with a baseline rate of about 1 W/kg, increasing with physical activity up to 5 W/kg; e.g. it is around 100 W for an adult in office-work. Generally, temperature of skin is below 33 ºC, allowing the heat outflow, but it depends a lot on external conditions, clothing, and actual and previous activity levels. Air temperature, background radiant temperature (of walls, sky, sun, etc.), air relative humidity, and wind speed are environmental effects on thermal comfort. Non-thermal environmental variables like ambient light and noise may affect the thermal sensation too [2]. If the human body is too warm, the blood vessels vasodilate and the blood flow increases through the skin, and then people begin to sweat. Sweating is a kind of cooling method. The energy required for the sweat to evaporate is obtained from the skin. A few tenths of a degrees increase in the core body temperature can stimulate a sweat production which quadruples the body s heat loss. When the human body is cold, the blood vessels begin to vasoconstriction, and the blood flow reduces through the skin. Then the shivering occurs due to the internal heat generation increasing by stimulating the muscles. Thus, human body heat production increases. This system is also very effective, and it can increase the body s heat production dramatically. The human body temperature control is a complex process. It is still not understood clearly. However, the two sensors are generally accepted to use to control the human body temperature. They are located in the skin and 109 Hakan CALISKAN

2 in the hypothalamus. The hypothalamus-sensor is a heat sensor which starts the body s cooling function when the body s core temperature exceeds 37 C. The skin-sensor is cold sensors which start the body s defense against cooling down when the skin temperature falls below 34 C. If the hot and cold sensors output signals at the same time, our brain will inhibit one or both of the body s defense reactions [3]. Energy efficient buildings can be considered effectively constructed if the occupants are comfortable. If they are not comfortable, then they can take alternative means of heating or cooling a space such as space heaters or window-mounted air conditioners that could be substantially worse than typical Heating, Ventilation and Air Conditioning (HVAC) systems. Thermal comfort is hard to measure because it is very subjective. As explained above, it generally depends on the air temperature, humidity, radiant temperature, air velocity, metabolic rates, clothing levels, humans physiology, etc. According to American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), thermal comfort is defined as that condition of mind which expresses satisfaction with the thermal environment and is assessed by subjective evaluation. It is also called to be human comfort. As a result, thermal comfort is the satisfaction of the occupants with the surrounding thermal conditions. In the thermal comfort assessment, generally the following factors are considered [4]: Metabolic rate (met): Human body The generated energy by human body. Clothing insulation (clo): Thermal insulation of the human body clothes Air temperature: The surrounding air temperature of the human body. Radiant temperature: The weighted average of all the temperatures from surfaces surrounding the human body. Air velocity: Air movement rate per time. Relative humidity: Water vapor percentage in the air. The heat transfer occurs between the environment and the human body area. If the heat leaving the occupant is greater than the heat entering the occupant, the thermal perception is cold. If the heat entering the occupant is greater than the heat leaving the occupant, the thermal perception is warm or hot. A method of describing thermal comfort was developed by Fanger [5] in 1973 and is referred to as Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD) [4]. The PMV is used for the thermal sensation of the human body and the rate changes between -3 (cold) to +3 (hot). The PMV sensation scale is tabulated in Table 1. The recommended acceptable PMV range for thermal comfort from ASHRAE is between -0.5 and +0.5 for an interior space. Table 1. Predicted Mean Vote (PMV) sensation scale Value Sensation -3 Cold -2 Cool -1 Slightly cool 0 Neutral 1 Slightly warm 2 Warm 3 Hot The PPD gives information on thermal dissatisfaction by predicted the percentage of people feeling very warm or cold in the surrounding ambient condition. These most commonly used indexes are found by Fanger [5] and adapted by (International Organization for Standardization) ISO Standard 7730 [6]. The PPD is a function of PMV, given that as PMV moves further from 0, or neutral, PPD increases. The maximum number of people dissatisfied with their comfort conditions is 100% and, as you can never please all of the 110 Hakan CALISKAN

3 people all of the time, the recommended acceptable PPD range for thermal comfort from ASHRAE standard is less than 10% persons dissatisfied for an interior space [4]. In this study, thermal behavior and energetic dispersals of the human body under various indoor air temperatures at 50% relative humidity are studied. The temperatures are considered as 21 C, 22 C, 23 C, 24 C, and 25 C. SYSTEM DESCRIPTION A human body in a room is considered as a system, while the room width and depth are 6m and height is 2.9m. In the human body, the hypothalamus of brain controls the heat balance. It takes information about temperatures of body, while thermo-receptors, such as muscle, skin, send the temperature changing to the brain. So, internal body temperature keeps constant [1,7]. The human body external heat transfer occurs by conduction, convection, radiation and evaporation of perspiration. On the other hand, the human body generates heat by metabolism and loses heat generally by evaporation and diffusion of body liquids. Some necessary system data is given in Table 2. Table 2. System data Parameter Symbol Rate Room air temperature T ra 21 C~25 C Mean radiant temperature T m 21 C~25 C Relative humidity of room air RH r 50% Air speed V air 0.1 m/s Clothing Clo 1 clo Activity Act 1 met Temperature of the cloth T cl C Temperature of the core T cr C Temperature of skin T sk C Clothing area factor f cl 1.15 Convective heat transfer coefficient h c W/m 2 K The ratio of the effective area of the human body f ef Absorption coefficient a i Radiative heat transfer coefficient of a black surface h rb 6.3 W/m 2 K Emittance of clothing surface ε cl Temperature of surface T i C Specific heat capacity of dry air c p,a J/gK Molar mass of dry air R a g/mol Gas constant R J/molK Atmospheric air pressure P Pa Specific heat capacity of water vapor c p,v J/gK Molar mass of water molecules R w g/mol Velocity of the inhaled air V 6.99 (10-5 ) m/s 111 Hakan CALISKAN Velocity of liquid water generated in body core V in w, core 1.95 (10-9 ) m/s Specific heat capacity of liquid water c p,w J/gK Density of liquid water ρ w 1000 kg/m 3 Velocity of liquid water generated in body shell as sweat 4.79 (10-9 ) m/s Velocity of the exhaled air Average convective heat transfer coefficient overclothed body surface Vw, shell V out h ccl 4.28 (10-5 ) m/s W/m 2 K

4 ANALYSIS The energy balance of the human body can be given as follows [1]: En En En En En En En En (1) M W Dif Sw Re s Loss, T Hx S where En ", M En, En W Dif, En Sw, En Res, En Loss, T, En Hx and En S are the generated energy rate by metabolism, the external work rate, the energy loss rate by water vapor diffusion through the skin, the energy loss rate by evaporation of sweat, the energy loss rate by respiration, the energy loss rate due to difference in temperature, the total heat exchange rate with radiation, convection and conduction, and the stored energy rate in the body, respectively. The generated energy rate by metabolism ( En M ) is the total of the metabolic energy rate by the person s activity ( En M, act ) and the metabolic energy rate for shivering ( En M, shiv ). En En En (2) M M, act M, shiv The metabolic energy rate by the person s activity ( En M, act ) is accepted to be W/m 2 [7]. Also, the metabolic energy rate for shivering ( En M, shiv ) is determined by; En M, shiv (19.4) 34 Tsk 37 Tcr (3) where T sk and T cr are the skin and core temperatures of the human body, respectively. The metabolic energy rate for shivering and the external work rate ( En ) are accepted to be zero [8]. The energy loss rate by water vapor diffusion through the skin ( En Dif sv, Tsk v, a W Dif ) is calculated from En P P (4) where P sv, T sk is the saturated water vapor pressure at skin temperature, and P va, is the water vapor pressure in the ambient air. The energy loss rate by evaporation of sweat ( En ) is found from En (0.42) En En (5) Sw M W The energy loss rate by respiration ( En Re s M v, a Res Sw ) is determined by; En En P (6) The energy loss rate due to difference in temperature ( En Loss, T ) can be calculated from En Loss, T En M 34 Ta (7) where T a is the ambient temperature. The total heat exchange rate with radiation, convection and conduction ( EnHx ) is determined by Tsk Tcl En Hx (8) (0.155) I cl T where sk is the skin temperature, T cl is the clothing surface temperature, I cl is the thermal insulation of the clothing. 112 Hakan CALISKAN

5 The PMV rate is found as follows: En PMV (3.155) 0.303e M L PMV where L PMV is the thermal load acting on the human body ,, (0.42) LPMV EnM EnW Psv T P sk v a EnM En W Tsk T cl En M 5867 Pv, a En M 34 Ta (0.155) Icl The PPD rate is calculated by PPD e PMV PMV (9) (10) (11) RESULTS AND DISCUSSION The energy analysis is performed to the human body in a 50% relative humidity and 21 C, 22 C, 23 C, 24 C, 25 C room conditions. The energy analysis results are given in Table 3. Table 3. Energy analysis results Indoor air temperature ( C) Energy rate by metabolism (W/m 2 ) Energy loss rate by water vapor diffusion through the skin (W/m 2 ) Energy loss rate by evaporation of sweat (W/m 2 ) Energy loss rate by respiration (W/m 2 ) Energy loss rate due to difference in temperature (W/m 2 ) Energy loss rate by radiation (W/m 2 ) Stored energy (W/m 2 ) PMV (-) PPD (%) The energy rate by metabolism is the total generated energy rate of the human body and it is found that W/m 2. The energy loss by radiation is the major heat loss of the human body for all of the indoor air conditions. The maximum energy loss rate by radiation is found at 21 C to be W/m 2, while minimum one determined at 25 C as W/m 2. Generally, the losses are inversely proportional to indoor air temperatures. On the other hand, the stored energy of the human body is directly proportional to the indoor air temperature. The maximum stored energy is calculated to be W/m 2 at 25 C, while minimum one is 11 W/m 2 at 21 C. The PMV rate is directly proportional to indoor air temperature. The changing of PMV is given in Figure 1. As is seen, the PMV rate is 0.18 at 23 C which is the best option of the human body. Because, the best PMV rate is near to zero which is neutral rate for the human body. The maximum PMV rate is determined as 1.42 at 25 C. So, the human body feels almost warm at 25 C. 113 Hakan CALISKAN

6 Fig 1: Changing of PMV. On the other hand, the PPD rate is very variable. The changing of PPD is shown in Figure 2. The PPD rate is minimum at 23 C to be 5.65% which is the minimum dissatisfied percentage of the humans. The maximum PPD value is found as 46.62% at 25 C. So, the human body fells dissatisfied at 25 C. Fig 2: Changing of PPD. CONCLUSIONS Thermal behavior and energetic dispersals of the human body under various indoor air temperatures at 50% relative humidity are investigated. The indoor air temperatures are considered as 21 C, 22 C, 23 C, 24 C and 25 C, while the room is 6x6x2.9m. The energy analysis of the human body and the effect of indoor air temperature on human body are studied. As a result, the following main conclusions can be drawn from the study: 114 Hakan CALISKAN

7 The Predicted Mean Vote (PMV) rate of the human body is near to zero at 23 C. So, the best thermal comfort condition considering PMV rate is obtained at 23 C. Because, human body feels neutral at zero PMV rate, warm at higher than zero PMV rate, and cool lower than zero PMV rate. The Predicted Percentage of Dissatisfied (PPD) of the human body is minimum at 23 C. In this regard, the best thermal comfort condition PPD rate is obtained at 23 C. Because, PPD shows the dissatisfied people percentage in given condition. It is better to be minimum. Considering the PMV and PPD rates, the best indoor air condition is determined to be 23 C for human body. Maximum energy loss is found by radiation, while minimum energy loss is obtained by evaporation of sweat. Generally, the losses are inversely proportional to indoor air temperatures. The stored energy of the human body is directly proportional to the indoor air temperature. It is maximum at 25 C, and minimum at 21 C. REFERENCES [1] H. Caliskan, Energetic and exergetic comparison of the human body for the summer season, Energy Conversion and Management, Vol. 76, pp , [2] Webserver, 2016, [3] Labee, 2016, [4] Sustainability workshop, 2016, [5] P. O. Fanger, Thermal Comfort, McGraw-Hill, New York, [6] ISO 7730, Ergonomics of The Thermal Environment-Analytical Determination and Interpretation of Thermal Comfort Using Calculation of The PMV and PPD Indices and Local Thermal Comfort Criteria, International Standard ISO 7730, Third edition, 2005:11-5. [7] B. W. Olesen, Thermal Comfort, 1982, feld.cvut.cz/vyuka/ environmental_ engineering/lectures/l10%20thermal%20comfort.pdf [8] X. Wu, J. Zhao, B. W. Olesen, L. Fang, A novel human body exergy consumption formula to determine indoor thermal conditions for optimal human performance in office buildings. Energy and Buildings, Vol. 56, pp , Hakan CALISKAN

Environmental Engineering

Environmental Engineering Environmental Engineering 1 Indoor Environment and Thermal Comfort Vladimír Zmrhal (room no. 814) Master degree course 1 st semester (winter) Dpt. of Environmental Engineering 1 Environmental Engineering

More information

Modeling Human Thermoregulation and Comfort. CES Seminar

Modeling Human Thermoregulation and Comfort. CES Seminar Modeling Human Thermoregulation and Comfort CES Seminar Contents 1 Introduction... 1 2 Modeling thermal human manikin... 2 2.1 Thermal neutrality... 2 2.2 Human heat balance equation... 2 2.3 Bioheat equation...

More information

CAE 331/513 Building Science Fall 2017

CAE 331/513 Building Science Fall 2017 CAE 331/513 Building Science Fall 2017 September 19, 2017 Human thermal comfort Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Twitter: @built_envi

More information

ISO 7730 INTERNATIONAL STANDARD

ISO 7730 INTERNATIONAL STANDARD INTERNATIONAL STANDARD ISO 7730 Third edition 2005-11-15 Ergonomics of the thermal environment Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices

More information

Principles and Applications of Building Science Dr. E Rajasekar Department of Civil Engineering Indian Institute of Technology, Roorkee

Principles and Applications of Building Science Dr. E Rajasekar Department of Civil Engineering Indian Institute of Technology, Roorkee Principles and Applications of Building Science Dr. E Rajasekar Department of Civil Engineering Indian Institute of Technology, Roorkee Lecture - 04 Thermal Comfort in Built Environment 2 In previous module,

More information

Ch. 12 Human Thermal Comfort and Indoor Air Quality

Ch. 12 Human Thermal Comfort and Indoor Air Quality Ch. 12 Human Thermal Comfort and Indoor Air Quality -2-12.1 Introduction - Temperature & Humidity Control - IAQ Indoor Air Quality : control of indoor airborne contaminants 12.2 Energy balance on the human

More information

Anna Majchrzycka THERMAL COMFORT

Anna Majchrzycka THERMAL COMFORT WEST POMERANIAN UNIVERSITY OF TECHNOLOGY, SZCZECIN, POLAND THE FACULTY OF MECHANICAL ENGINEERING AND MECHATRONICS Anna Majchrzycka THERMAL COMFORT ASHRAE STANDARD 55-66 Thermal comfort is defined as that

More information

BSE Public CPD Lecture Numerical Simulation of Thermal Comfort and Contaminant Transport in Rooms with UFAD system on 26 March 2010

BSE Public CPD Lecture Numerical Simulation of Thermal Comfort and Contaminant Transport in Rooms with UFAD system on 26 March 2010 BSE Public CPD Lecture Numerical Simulation of Thermal Comfort and Contaminant Transport in Rooms with UFAD system on 26 March 2010 Organized by the Department of Building Services Engineering, a public

More information

OPERATIVE TEMPERATURE SIMULATION OF ENCLOSED SPACE WITH INFRARED RADIATION SOURCE AS A SECONDARY HEATER

OPERATIVE TEMPERATURE SIMULATION OF ENCLOSED SPACE WITH INFRARED RADIATION SOURCE AS A SECONDARY HEATER OPERATIVE TEMPERATURE SIMULATION OF ENCLOSED SPACE WITH INFRARED RADIATION SOURCE AS A SECONDARY HEATER L. Hach 1, K. Hemzal 2, Y. Katoh 3 1 Institute of Applied Physics and Mathematics, Faculty of Chemical

More information

Air Diffusion Designing for Comfort

Air Diffusion Designing for Comfort Air Diffusion Designing for Comfort Occupant Comfort Air Diffusion Selection ADPI Air Diffusion Performance index Ventilation Effectiveness Induction Room Space Induction Design Criteria ISO7730 ASHRAE

More information

Thermodynamic analysis of human heat and mass transfer and their impact on thermal comfort

Thermodynamic analysis of human heat and mass transfer and their impact on thermal comfort International Journal of Heat and Mass Transfer 48 (05) 731 739 www.elsevier.com/locate/ijhmt Thermodynamic analysis of human heat and mass transfer and their impact on thermal comfort Matjaz Prek * Faculty

More information

Thermal Comfort. Appendices: A: Dry Heat Loss calculations. file://k:\marketing\homepage\gammel%20homepage\website\books\thermal\therm...

Thermal Comfort. Appendices: A: Dry Heat Loss calculations. file://k:\marketing\homepage\gammel%20homepage\website\books\thermal\therm... Page 1 of 25 Thermal Comfort This booklet is an introduction to thermal comfort. It explains procedures to evaluate the thermal environment and methods applied for its measurement. Contents What is Thermal

More information

SPORTSCIENCE sportsci.org News & Comment: Exercise Physiology A Spreadsheet for Partitional Calorimetry

SPORTSCIENCE sportsci.org News & Comment: Exercise Physiology A Spreadsheet for Partitional Calorimetry SPORTSCIENCE sportsci.org News & Comment: Exercise Physiology A Spreadsheet for Partitional Calorimetry Kerry Atkins MExSpSc and Martin Thompson PhD School of Exercise and Sport Science, University of

More information

Assignability of Thermal Comfort Models to nonstandard

Assignability of Thermal Comfort Models to nonstandard Department of Architecture Institute of Building Climatology Assignability of Thermal Comfort Models to nonstandard Occupants P. Freudenberg Dresden, 12.06.2013 Thermal Comfort Models: Motivation Objectives

More information

A Simulation Tool for Radiative Heat Exchangers

A Simulation Tool for Radiative Heat Exchangers Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2012 A Simulation Tool for Radiative Heat Exchangers Yunho Hwang yhhwang@umd.edu

More information

THERMAL COMFORT IN HIGHLY GLAZED BUILDINGS DETERMINED FOR WEATHER YEARS ON ACCOUNT OF SOLAR RADIATION. Dominika Knera 1 and Dariusz Heim 1

THERMAL COMFORT IN HIGHLY GLAZED BUILDINGS DETERMINED FOR WEATHER YEARS ON ACCOUNT OF SOLAR RADIATION. Dominika Knera 1 and Dariusz Heim 1 THERMAL COMFORT IN HIGHLY GLAZED BUILDINGS DETERMINED FOR WEATHER YEARS ON ACCOUNT OF SOLAR RADIATION Dominika Knera 1 and Dariusz Heim 1 1 Department of Heat and Mass Transfer, Lodz University of Technology

More information

By Marek Tuliszka D.Sc. Department of Biophysics Poznań University of Medical Sciences

By Marek Tuliszka D.Sc. Department of Biophysics Poznań University of Medical Sciences By Marek Tuliszka D.Sc. Department of Biophysics Poznań University of Medical Sciences ! CHEMICAL WORK: Secretion of hydrochloric acid (HCl) by the stomach and sodium bicarbonate (NaHCO 3 ) by the pancreas.

More information

Section 3.5 Thermal Comfort and Heat Stress

Section 3.5 Thermal Comfort and Heat Stress Section 3.5 Thermal Comfort and Heat Stress Table 3.6 Metabolic rate as a function of physical activity for a 70 kg adult man (abstracted from ASHRAE, 1997). activity metabolic rate (W) metabolic rate

More information

EXPERIMENTAL ANALYSIS OF AIR-CONDITIONING IN HOSPITAL ROOMS BY MEANS OF LIGHT RADIANT CEILINGS

EXPERIMENTAL ANALYSIS OF AIR-CONDITIONING IN HOSPITAL ROOMS BY MEANS OF LIGHT RADIANT CEILINGS EXPERIMENTAL ANALYSIS OF AIR-CONDITIONING IN HOSPITAL ROOMS BY MEANS OF LIGHT RADIANT CEILINGS Renato M. Lazzarin renato@gest.unipd.it Francesco Castellotti caste@gest.unipd.it Filippo Busato busato@gest.unipd.it

More information

Thermal comfort of closed spaces. Fundamentals of static and dynamic heat balance of human body

Thermal comfort of closed spaces. Fundamentals of static and dynamic heat balance of human body Ŕ periodica polytechnica echanical Engineering 53/1 2009 41 48 doi: 10.3311/pp.me.2009-1.06 web: http:// www.pp.bme.hu/ me c Periodica Polytechnica 2009 Thermal comfort of closed spaces. Fundamentals of

More information

Introduction: review of ISO 7933

Introduction: review of ISO 7933 ISO 7933 " interpretation of thermal stress using the Required Sweat Rate" Introduction: review of ISO 7933 Predicted Heat Strain index (PHS) MODEL J. Malchaire P. Mehnert B. Kampmann H.J. Gebhardt G.

More information

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE NPTEL NPTEL ONLINE CERTIFICATION COURSE. Refrigeration and Air-conditioning. Lecture-37 Thermal Comfort

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE NPTEL NPTEL ONLINE CERTIFICATION COURSE. Refrigeration and Air-conditioning. Lecture-37 Thermal Comfort INDIAN INSTITUTE OF TECHNOLOGY ROORKEE NPTEL NPTEL ONLINE CERTIFICATION COURSE Refrigeration and Air-conditioning Lecture-37 Thermal Comfort with Prof. Ravi Kumar Department of Mechanical and Industrial

More information

Numerical simulation of human thermal comfort in indoor environment

Numerical simulation of human thermal comfort in indoor environment Numerical simulation of human thermal comfort in indoor environment TIBERIU SPIRCU 1, IULIA MARIA CÂRSTEA 2, ION CARSTEA 3 1, 2 University of Medicine and Pharmacy "Carol Davila, Bucharest ROMANIA E_mail:spircut@yahoo.com

More information

Greenhouse Steady State Energy Balance Model

Greenhouse Steady State Energy Balance Model Greenhouse Steady State Energy Balance Model The energy balance for the greenhouse was obtained by applying energy conservation to the greenhouse system as a control volume and identifying the energy terms.

More information

THE HUMAN THERMAL COMFORT EVALUATION INSIDE THE PASSENGER COMPARTMENT

THE HUMAN THERMAL COMFORT EVALUATION INSIDE THE PASSENGER COMPARTMENT F10-C-044 THE HUMAN THERMAL COMFORT EVALUATION INSIDE THE PASSENGER COMPARTMENT 1 Ivanescu, Mariana *, 2 Neacsu, Catalin, 1 Tabacu, Stefan, 1 Tabacu, Ion 1 University of Pitesti, Automotive Department,

More information

AN OCCUPANT BEHAVIOR MODEL BASED ON ARTIFICIAL INTELLIGENCE FOR ENERGY BUILDING SIMULATION

AN OCCUPANT BEHAVIOR MODEL BASED ON ARTIFICIAL INTELLIGENCE FOR ENERGY BUILDING SIMULATION AN OCCUPANT BEHAVIOR MODEL BASED ON ARTIFICIAL INTELLIGENCE FOR ENERGY BUILDING SIMULATION Mathieu Bonte, Alexandre Perles, Bérangére Lartigue, and Françoise Thellier Université Toulouse III - Paul Sabatier,

More information

DEVELOPEMENT OF MODIFIED THERMAL COMFORT EQUATION FOR A ROOM WITH WINDOW OPENINGS AT ADJACENT WALLS

DEVELOPEMENT OF MODIFIED THERMAL COMFORT EQUATION FOR A ROOM WITH WINDOW OPENINGS AT ADJACENT WALLS DEVELOPEMENT OF MODIFIED THERMAL COMFORT EQUATION FOR A ROOM WITH WINDOW OPENINGS AT ADJACENT WALLS D.Prakash 1, P.Ravikumar 2 1 Research scholar, Mechanical Engineering department, Anna University, Tamil

More information

THERMODYNAMIC ASSESSMENT OF HUMAN THERMAL ENVIRONMENT INTERACTION

THERMODYNAMIC ASSESSMENT OF HUMAN THERMAL ENVIRONMENT INTERACTION S. Boregowda et al., Int. Journal of Design & Nature. Vol. 2, No. 4 (2007) 310 318 THERMODYNAMIC ASSESSMENT OF HUMAN THERMAL ENVIRONMENT INTERACTION S. BOREGOWDA, R. HANDY & W. HUTZEL Department of Mechanical

More information

Indoor Environment Quality. Study the world Capture the elements Environmental testing made easy. MI 6201 Multinorm. MI 6401 Poly.

Indoor Environment Quality. Study the world Capture the elements Environmental testing made easy. MI 6201 Multinorm. MI 6401 Poly. Study the world Capture the elements Environmental testing made easy MI 6401 Poly MI 6201 Multinorm MI 6301 FonS Find out more about Indoor Environment Quality parameters testing Indoor Environmental Quality

More information

An Investigation on the Human Thermal Comfort from a Glass Window

An Investigation on the Human Thermal Comfort from a Glass Window Article An Investigation on the Human Thermal Comfort from a Glass Window Nopparat Khamporn a and Somsak Chaiyapinunt b Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn niversity,

More information

THE EVALUATION ON INDOOR THERMAL COMFORT INDEX

THE EVALUATION ON INDOOR THERMAL COMFORT INDEX 03-030 The 2005 World Sustainable Building Conference, THE EVALUATION ON INDOOR THERMAL COMFORT INDEX Xie Yingbai Ph.D Yu Zhun Yang Xianliang Institute of Energy and Power Engineering, North China Electric

More information

RELATIONSHIPS BETWEEN OVERALL THERMAL SENSATION, ACCEPTABILITY AND COMFORT

RELATIONSHIPS BETWEEN OVERALL THERMAL SENSATION, ACCEPTABILITY AND COMFORT RELATIONSHIPS BETWEEN OVERALL THERMAL SENSATION, ACCEPTABILITY AND COMFORT Yufeng Zhang 1, and Rongyi Zhao 2 1 State Key Laboratory of Subtropical Building Science, South China University of Technology,

More information

MODELLING THERMAL COMFORT FOR TROPICS USING FUZZY LOGIC

MODELLING THERMAL COMFORT FOR TROPICS USING FUZZY LOGIC Eighth International IBPSA Conference Eindhoven, Netherlands August 11-14, 2003 MODELLING THERMAL COMFORT FOR TROPICS USING FUZZY LOGIC Henry Feriadi, Wong Nyuk Hien Department of Building, School of Design

More information

HD32.2 WBGT Index HD32.3 WBGT-PMV. [ GB ] - WBGT index. - PMV index and PPD

HD32.2 WBGT Index HD32.3 WBGT-PMV. [ GB ] - WBGT index. - PMV index and PPD HD32.2 WBGT Index HD32.3 WBGT-PMV [ GB ] - WBGT index. - PMV index and PPD [ GB ] [ GB ] Description HD32.2 WBGT Index is an instrument made by Delta Ohm srl for the analysis of WBGT index (Wet Bulb Glob

More information

Outdoor Thermal Comfort and Local Climate Change: Exploring Connections

Outdoor Thermal Comfort and Local Climate Change: Exploring Connections Outdoor Thermal Comfort and Local Climate Change: Exploring Connections ROBERTA COCCI GRIFONI 1, MARIANO PIERANTOZZI 2, SIMONE TASCINI 1 1 School of Architecture and Design E. Vittoria, University of Camerino,

More information

Chapter 14 Heat. Lecture PowerPoints. Chapter 14 Physics: Principles with Applications, 7 th edition Giancoli

Chapter 14 Heat. Lecture PowerPoints. Chapter 14 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 14 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Prediction of Thermal Comfort and Ventilation Efficiency for Small and Large Enclosures by Combined Simulations

Prediction of Thermal Comfort and Ventilation Efficiency for Small and Large Enclosures by Combined Simulations Institute for Thermodynamics and Building Energy Systems, Dresden University of Technology Prediction of Thermal Comfort and Ventilation Efficiency for Small and Large Enclosures by Combined Simulations

More information

AN IMPROVED MULTINODE MODEL OF HUMAN PHYSIOLOGY AND THERMAL COMFORT

AN IMPROVED MULTINODE MODEL OF HUMAN PHYSIOLOGY AND THERMAL COMFORT AN IMPROVED MULTINODE MODEL OF HUMAN PHYSIOLOGY AND THERMAL COMFORT Charlie Huizenga, Zhang Hui, Thomas Duan, Edward Arens Center for Environmental Design Research University of California, Berkeley 94720-1839,

More information

HD32.2 WBGT Index HD 32.2 INSTRUMENT FOR THE ANALYSIS OF THE WBGT INDEX

HD32.2 WBGT Index HD 32.2 INSTRUMENT FOR THE ANALYSIS OF THE WBGT INDEX HD32.2 WBGT Index HD32.2 instrument can detect simultaneously the following quantities Globe thermometer temperature Tg. Wet bulb temperature with natural ventilation Tn. Environment temperature T. Starting

More information

NUMERICAL MODELLING OF TEMPERATURE AND AIR FLOW DISTRIBUTION IN ENCLOSED ROOM

NUMERICAL MODELLING OF TEMPERATURE AND AIR FLOW DISTRIBUTION IN ENCLOSED ROOM NUMERICAL MODELLING OF TEMPERATURE AND AIR FLOW DISTRIBUTION IN ENCLOSED ROOM Igor Bonefacic 1, Bernard Frankovic 2, Ivan Vilicic 3, Vladimir Glazar 4 Faculty of Engineering, Vukovarska 58, Rijeka, Croatia,

More information

COMFORT IN CLOSED SPACES ACCORDING TO THERMAL COMFORT AND INDOOR AIR QUALITY

COMFORT IN CLOSED SPACES ACCORDING TO THERMAL COMFORT AND INDOOR AIR QUALITY PERIODICA POLYTECHNICA SER. MECH. ENG. VOL. 44, NO. 2, PP. 249 264 (2000) COMFORT IN CLOSED SPACES ACCORDING TO THERMAL COMFORT AND INDOOR AIR QUALITY Levente HERCZEG, Tamás HRUSTINSZKY and László KAJTÁR

More information

Predicted Heat Strain index (PHS) MODEL

Predicted Heat Strain index (PHS) MODEL ISO 7933 " interpretation of thermal stress using the Required Sweat Rate" Predicted Heat Strain index (PHS) MODEL B. Kampmann,, J. Malchaire Main criticisms concerned: The prediction of the skin temperature

More information

THE THERMAL ENVIRONMENT LEVEL ASSESMENT BASED ON HUMAN PERCEPTION

THE THERMAL ENVIRONMENT LEVEL ASSESMENT BASED ON HUMAN PERCEPTION THE THERMAL ENVIRONMENT LEVEL ASSESMENT BASED ON HUMAN PERCEPTION M. V. Jokl Czech Technical University, Czech Republic Corresponding email: miloslav.jokl@fsv.cvut.cz SUMMARY A new way of e ermal level

More information

Institut national des sciences appliquées de Strasbourg GENIE CLIMATIQUE ET ENERGETIQUE APPENDICES

Institut national des sciences appliquées de Strasbourg GENIE CLIMATIQUE ET ENERGETIQUE APPENDICES Institut national des sciences appliquées de Strasbourg GENIE CLIMATIQUE ET ENERGETIQUE APPENDICES DEVELOPMENT OF A TOOL, BASED ON THE THERMAL DYNAMIC SIMULATION SOFTWARE TRNSYS, WHICH RUNS PARAMETRIC

More information

Neural computing thermal comfort index for HVAC systems

Neural computing thermal comfort index for HVAC systems Neural computing thermal comfort index for HVAC systems S. Atthajariyakul, T. Leephakpreeda * School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology,

More information

Application and Analysis of Asymmetrical Hot and Cold Stimuli

Application and Analysis of Asymmetrical Hot and Cold Stimuli University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 6-29-2016 Application and Analysis of Asymmetrical Hot and Cold Stimuli Ahmad Manasrah University of South

More information

MEASUREMENT OF THE AIRFLOW AND TEMPERATURE FIELDS AROUND LIVE SUBJECTS AND THE EVALUATION OF HUMAN HEAT LOSS

MEASUREMENT OF THE AIRFLOW AND TEMPERATURE FIELDS AROUND LIVE SUBJECTS AND THE EVALUATION OF HUMAN HEAT LOSS MEASUREMENT OF THE AIRFLOW AND TEMPERATURE FIELDS AROUND LIVE SUBJECTS AND THE EVALUATION OF HUMAN HEAT LOSS GH Zhou 1, DL Loveday 1, AH Taki 2 and KC Parsons 3 1 Department of Civil and Building Engineering,

More information

Energy flows and modelling approaches

Energy flows and modelling approaches Energy flows and modelling approaches Energy flows in buildings external convection infiltration & ventilation diffuse solar external long-wave radiation to sky and ground local generation fabric heat

More information

Physical Science Chapter 5 Cont3. Temperature & Heat

Physical Science Chapter 5 Cont3. Temperature & Heat Physical Science Chapter 5 Cont3 Temperature & Heat What are we going to study? Heat Transfer Phases of Matter The Kinetic Theory of Gases Thermodynamics Specific Heat (Capacity) Specific Heat Latent Heat

More information

Personalizing Thermal Comfort in a Prototype Indoor Space

Personalizing Thermal Comfort in a Prototype Indoor Space Personalizing Thermal Comfort in a Prototype Indoor Space Sotirios D Kotsopoulos, Federico Casalegno School of Humanities Arts and Social Sciences Massachusetts Institute of Technology Cambridge, Massachusetts,

More information

Chapter 3. Basic Principles. Contents

Chapter 3. Basic Principles. Contents Chapter 3. Basic Principles Contents 3.1 Introduction 3.2 Heat 3.3 Sensible Heat 3.4 Latent Heat 3.5 Evaporative Cooling 3.6 Convection 3.7 Transport 3.8 Energy Transfer Mediums 3.9 Radiation 3.10 Greenhouse

More information

Does the rate of thermoregulatory sweating depend on the rate of change of core temperature?

Does the rate of thermoregulatory sweating depend on the rate of change of core temperature? Does the rate of thermoregulatory sweating depend on the rate of change of core temperature? Brian Farnworth 1, Michel B. DuCharme 2,3, Ollie Jay 3 and Glen Kenny 3 1. BF Scientific Inc, 2020 Bennett Rd,

More information

Heat Transfer. Conduction, Convection, and Radiation. Review: Temperature

Heat Transfer. Conduction, Convection, and Radiation. Review: Temperature Heat Transfer Conduction, Convection, and Radiation Review: Temperature! Temperature is:! The quantity that tells how hot or cold something is compared with a standard! A measure of the average kinetic

More information

Coupled CFD/Building Envelope Model for the Purdue Living Lab

Coupled CFD/Building Envelope Model for the Purdue Living Lab Proceedings of the 2012 High Performance Buildings Conference at Purdue, 2012 (Accepted) 3457, Page, 1 Coupled CFD/Building Envelope Model for the Purdue Living Lab Donghun KIM (kim1077@purdue.edu), James

More information

Vantage Pro Technical Reference

Vantage Pro Technical Reference Vantage Pro Technical Reference Davis Instruments 3465 Diablo Ave. Hayward, CA 94545 Created: 9/11/01 Calculations of Derived Variables The following parameters do not have any sensors or circuitry. They

More information

Effect on human metabolic rate of skin temperature in an office occupant

Effect on human metabolic rate of skin temperature in an office occupant Effect on human metabolic rate of skin temperature in an office occupant Rosli Abu Bakar 1,*, Norfadzilah Jusoh 1, Ahmad Rasdan Ismail 2, and Tanti Zanariah Shamshir Ali 1 1 Faculty of Mechanical Engineering,

More information

Temperature of body can be increased by doing work on it. Here W = E mgh = E internal

Temperature of body can be increased by doing work on it. Here W = E mgh = E internal Heat (C19.1-6, 10) Temperature (T) is measure of average KE of all molecules Internal energy (or Thermal Energy) is sum of total energy of all molecules. Heat is transfer of IE from one body to another.

More information

CHAPTER 3. The sun and the seasons. Locating the position of the sun

CHAPTER 3. The sun and the seasons. Locating the position of the sun zenith 90 observer summer solstice 75 altitude angles equinox 52 winter solstice 29 Figure 3.1: Solar noon altitude angles for Melbourne SOUTH winter midday shadow WEST summer midday shadow summer EAST

More information

(in m^3) 4.A 1.62 B 2.35 C 3.41 D pt 5.A B C pt

(in m^3) 4.A 1.62 B 2.35 C 3.41 D pt 5.A B C pt Mark Reeves - Physics 21 Spring 2012 1 An automobile driver fills his 17.1-L steel gasoline tank in the cool of the morning when the temperature of the tank and the gasoline is 15.0 C and the pressure

More information

Numerical Simulation of the Air Flow and Thermal Comfort in Aircraft Cabins

Numerical Simulation of the Air Flow and Thermal Comfort in Aircraft Cabins Numerical Simulation of the Air Flow and Thermal Comfort in Aircraft Cabins Mikhail Konstantinov, Waldemar Lautenschlager, Andrei Shishkin, Claus Wagner German Aerospace Center, Institute of Aerodynamics

More information

NUMERICAL ANALYSIS OF THERMAL COMFORT PARAMETERS IN LIVING QUARTERS

NUMERICAL ANALYSIS OF THERMAL COMFORT PARAMETERS IN LIVING QUARTERS acta mechanica et automatica, vol.5 no.4 (2011) NUMERICAL ANALYSIS OF THERMAL COMFORT PARAMETERS IN LIVING QUARTERS Aneta BOHOJŁO * * phd student, Faculty of Mechanical Engineering, Bialystok University

More information

Thermal comfort, physiological responses and performance during exposure to a moderate temperature drift

Thermal comfort, physiological responses and performance during exposure to a moderate temperature drift Indoor Air 2008, 17-22 August 2008, Copenhagen, Denmark - Paper ID: 555 Thermal comfort, physiological responses and performance during exposure to a moderate temperature drift Lisje Schellen 1,*, Wouter

More information

Analysis of Natural Wind Characteristics and Review of Their Correlations with Human Thermal Sense through Actual Measurements

Analysis of Natural Wind Characteristics and Review of Their Correlations with Human Thermal Sense through Actual Measurements Analysis of Natural Wind Characteristics and Review of Their Correlations with Human Thermal Sense through Actual Measurements Ki Nam Kang 1,a, Jin Yu 1,b, Doo Sam Song 2,c, Hee Jung Ham 3,d, Kook Jeong

More information

ARCH 348 BUILDING AND ENVIRONMENTAL SYSTEMS

ARCH 348 BUILDING AND ENVIRONMENTAL SYSTEMS ARCH 348 BUILDING AND ENVIRONMENTAL SYSTEMS Instructor: Prof. Dr. Uğur Atikol Web site for instructor: http://staff.emu.edu.tr/uguratikol/ Web site for the course: http://staff.emu.edu.tr/uguratikol/en/teaching/courses/arch348-building-andenvironmental-systems-in-architecture

More information

GLOBAL HEAT AND MASS TRANSPORT IN SYSTEM: NEWBORN BABY SKIN TEXTILE COMPOSITE SURROUNDING

GLOBAL HEAT AND MASS TRANSPORT IN SYSTEM: NEWBORN BABY SKIN TEXTILE COMPOSITE SURROUNDING GLOBAL HEAT AND MASS TRANSPORT IN SYSTEM: NEWBORN BABY SKIN TEXTILE COMPOSITE SURROUNDING Ryszard Korycki, Izabela Krucińska Lodz University of Technology, Lodz, Poland PROBLEM FORMULATION Neonate skin

More information

Chapter 12 Solutions. Q Reason: We ll use Equation Q = McΔT and solve for M. We are given. In each case we want to solve for.

Chapter 12 Solutions. Q Reason: We ll use Equation Q = McΔT and solve for M. We are given. In each case we want to solve for. Chapter 12 Solutions Q12.12. Reason: Assume the gas is an ideal gas, and use the ideal gas law pv = nrt. Since the number of moles doesn t change and R is a constant, then Equation 12.14 gives In each

More information

Athermal comfort, that condition of mind that expresses satisfaction

Athermal comfort, that condition of mind that expresses satisfaction Related Commercial Resources CHAPTER 8 THERMAL COMFORT Human Thermoregulation... 8.1 Energy Balance... 8.2 Thermal Exchanges with the Environment... 8.2 Engineering Data and Measurements... 8.6 Conditions

More information

Predicting Individual Thermal Comfort using Machine Learning Algorithms

Predicting Individual Thermal Comfort using Machine Learning Algorithms Predicting Individual Thermal Comfort using Machine Learning Algorithms Asma Ahmad Farhan 1, Krishna Pattipati 2, Bing Wang 1, and Peter Luh 2 Abstract thermal sensation in an environment may be delayed,

More information

SVENSK STANDARD SS-EN ISO 7730:2006

SVENSK STANDARD SS-EN ISO 7730:2006 SVENSK STANDARD SS-EN ISO 7730:2006 Fastställd 2006-01-19 Utgåva 2 Ergonomi för den termiska miljön Analytisk bestämning och bedömning av termisk komfort med hjälp av indexen PMV och PPD samt kriterier

More information

Thermal Comfort, Weather-Type, and Consumer Behavior: Influences on Visitor Attendance at Four U.S. Metropolitan Zoos

Thermal Comfort, Weather-Type, and Consumer Behavior: Influences on Visitor Attendance at Four U.S. Metropolitan Zoos Thermal Comfort, Weather-Type, and Consumer Behavior: Influences on Visitor Attendance at Four U.S. Metropolitan Zoos David R. Perkins Doctoral Candidate, ABD & NSF Graduate Fellow Department of Geography

More information

Field evaluation of the performance of a radiant heating/cooling ceiling panel system

Field evaluation of the performance of a radiant heating/cooling ceiling panel system Proceedings of 8 th Windsor Conference: Counting the Cost of Comfort in a changing world Cumberland Lodge, Windsor, UK, 1-13 April 214. London: Network for Comfort and Energy Use in Buildings, http://nceub.org.uk

More information

AR/IA 241 LN 231 Lecture 4: Fundamental of Energy

AR/IA 241 LN 231 Lecture 4: Fundamental of Energy Faculty of Architecture and Planning Thammasat University A/IA 24 LN 23 Lecture 4: Fundamental of Energy Author: Asst. Prof. Chalermwat Tantasavasdi. Heat For a specific substance, the heat given to the

More information

In a small time t: BMR; BMR BMR BMR BMR BMR The brain constitutes only 2.5% of body weight, but is responsible for 20% of the BMR (dreams). It requires a fair amount of oxygen consumption. Weight

More information

Temp 54 Dew Point 41 Relative Humidity 63%

Temp 54 Dew Point 41 Relative Humidity 63% Temp 54 Dew Point 41 Relative Humidity 63% Water in the Atmosphere Evaporation Water molecules change from the liquid to gas phase Molecules in liquids move slowly Heat energy makes them move faster When

More information

Numerical Analysis of Comfort and Energy Performance of Radiant Heat Emission Systems

Numerical Analysis of Comfort and Energy Performance of Radiant Heat Emission Systems Numerical Analysis of Comfort and Energy Performance of Radiant Heat Emission Systems. Fabian Ochs, Mara Magni, Michele Bianchi Janetti, Dietmar Siegele Unit for Energy Efficient Buildings, UIBK z / [m]....3...9

More information

Kobe University Repository : Kernel

Kobe University Repository : Kernel Kobe University Repository : Kernel タイトル Title 著者 Author(s) 掲載誌 巻号 ページ Citation 刊行日 Issue date 資源タイプ Resource Type 版区分 Resource Version 権利 Rights DOI JaLCDOI URL Thermal model of human body fitted with

More information

5. Thermal Design. Objective: Control heat flow to: Maintain comfortable indoor conditions

5. Thermal Design. Objective: Control heat flow to: Maintain comfortable indoor conditions 5. Thermal Design Objective: Control heat flow to: 2. Maintain comfortable indoor conditions 3. Reduce heating/cooling loads, which reduces operating costs 4. Control vapor movement/condensation 5. Design

More information

THERMAL COMFORT UNDER TRANSIENT METABOLIC AND DYNAMIC LOCALIZED AIRFLOW CONDITIONS COMBINED WITH NEUTRAL AND WARM AMBIENT TEMPERATURES.

THERMAL COMFORT UNDER TRANSIENT METABOLIC AND DYNAMIC LOCALIZED AIRFLOW CONDITIONS COMBINED WITH NEUTRAL AND WARM AMBIENT TEMPERATURES. THERMAL COMFORT UNDER TRANSIENT METABOLIC AND DYNAMIC LOCALIZED AIRFLOW CONDITIONS COMBINED WITH NEUTRAL AND WARM AMBIENT TEMPERATURES A Dissertation by AHMET UĞURSAL Submitted to the Office of Graduate

More information

CFD as a Tool for Thermal Comfort Assessment

CFD as a Tool for Thermal Comfort Assessment CFD as a Tool for Thermal Comfort Assessment Dimitrios Koubogiannis dkoubog@teiath.gr G. Tsimperoudis, E. Karvelas Department of Energy Technology Engineering Technological Educational Institute of Athens

More information

Research Article Predicted Thermal Sensation Index for the Hot Environment in the Spinning Workshop

Research Article Predicted Thermal Sensation Index for the Hot Environment in the Spinning Workshop Mathematical Problems in Engineering Volume 05, Article ID 98069, 8 pages http://dx.doi.org/0.55/05/98069 Research Article Predicted Thermal Sensation Index for the Hot Environment in the Spinning Workshop

More information

Topic 5 Practice Test

Topic 5 Practice Test Base your answers to questions 1 and 2 on the diagram below, which represents the greenhouse effect in which heat energy is trapped in Earth's atmosphere 1. The Earth surface that best absorbs short-wave

More information

Physiological Response of Human Body and Thermal Sensation for Irradiation and Exercise Load Changes

Physiological Response of Human Body and Thermal Sensation for Irradiation and Exercise Load Changes ICUC9-9 th International Conference on Urban Climate jointly with th Symposium on the Urban Environment Physiological Response of Human Body and Thermal Sensation for Irradiation and Exercise Load Changes

More information

Coolant. Circuits Chip

Coolant. Circuits Chip 1) A square isothermal chip is of width w=5 mm on a side and is mounted in a subtrate such that its side and back surfaces are well insulated, while the front surface is exposed to the flow of a coolant

More information

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA Dr. Walid A. Aissa Associate Professor, Mech. Engg. Dept. Faculty of Engineering

More information

ESTIMATION OF AUTOMOBILE COOLING LOADS FOR AIR CONDITIONING SYSTEM DESIGN

ESTIMATION OF AUTOMOBILE COOLING LOADS FOR AIR CONDITIONING SYSTEM DESIGN Nigerian Research Journal of Engineering and Environmental Sciences 596 Original Research Article ESTIMATION OF AUTOMOBILE COOLING LOADS FOR AIR CONDITIONING SYSTEM DESIGN *Omo-Oghogho, E., Aliu, S.A.,

More information

BIOS. Weather. 266BC Wireless Wind Chill and Humidex Thermometer. Thermomètre sans fil pour indices de refroidissement éolien et humidex

BIOS. Weather. 266BC Wireless Wind Chill and Humidex Thermometer. Thermomètre sans fil pour indices de refroidissement éolien et humidex Weather BIOS 266BC Wireless Wind Chill and Humidex Thermometer Thermomètre sans fil pour indices de refroidissement éolien et humidex Monitor/Moniteur ite r : 4. 5. 6. A. B. C. D. E. 1. 2. 3. Transmitter/Transmetteur

More information

Subjective Thermal Comfort in the Environment with Spot Cooling System

Subjective Thermal Comfort in the Environment with Spot Cooling System Subjective Thermal Comfort in the Environment with Spot ing System Hayato Ohashi 1, Hitomi Tsutsumi 1, Shin-ichi Tanabe 1, Ken-ichi Kimura 1, Hideaki Murakami 2, Koji Kiyohara 3 1 Department of Architecture,

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 [4062]-186 S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B. : (i) Answers

More information

The energy performance of an airflow window

The energy performance of an airflow window The energy performance of an airflow window B.(Bram) Kersten / id.nr. 0667606 University of Technology Eindhoven, department of Architecture Building and Planning, unit Building Physics and Systems. 10-08-2011

More information

THERMAL PROPERTIES OF MATTER

THERMAL PROPERTIES OF MATTER CHP # 8 HERMA PROPERIES OF MAER Q.1 Differentiate between heat and temperature? (Ans) Heat It can be defined as "the sum of kinetic energy of the molecules present in a substance is called heat". Heat

More information

ROOM AVERAGE VELOCITY EQUATION A TOOL TO IMPROVE DESIGN OF THERMAL COMFORT CONDITIONS

ROOM AVERAGE VELOCITY EQUATION A TOOL TO IMPROVE DESIGN OF THERMAL COMFORT CONDITIONS ROOM AVERAGE VELOCITY EQUATION A TOOL TO IMPROVE DESIGN OF THERMAL COMFORT CONDITIONS K Hagström *, O Hakkola and T Moilanen Halton Solutions, Kausala, Finland ABSTRACT For a long time PPD index defined

More information

ME 315 Final Examination Solution 8:00-10:00 AM Friday, May 8, 2009 CIRCLE YOUR DIVISION

ME 315 Final Examination Solution 8:00-10:00 AM Friday, May 8, 2009 CIRCLE YOUR DIVISION ME 315 Final Examination Solution 8:00-10:00 AM Friday, May 8, 009 This is a closed-book, closed-notes examination. There is a formula sheet at the back. You must turn off all communications devices before

More information

1. Base your answer to the following question on the weather map below, which shows a weather system that is affecting part of the United States.

1. Base your answer to the following question on the weather map below, which shows a weather system that is affecting part of the United States. 1. Base your answer to the following question on the weather map below, which shows a weather system that is affecting part of the United States. Which sequence of events forms the clouds associated with

More information

Thermal simulation of a complete vehicle using manikin models

Thermal simulation of a complete vehicle using manikin models Thermal simulation of a complete vehicle using manikin models Dr. Stefan Paulke, Dr. Daniel Köster, Dr. Regina Hass (P+Z Engineering GmbH) Dr. Viktor Bader, Dr. Stephan Menzel, Andreas Gubalke (Volkswagen

More information

R E V I E W R E P O R T

R E V I E W R E P O R T Dr hab. inż. Dorota Chwieduk, prof. PW Politechnika Warszawska Warszawa, 30.05.2018 W y d z i a ł M e c h a n i c z n y E n e r g e t y k i i L o t n i c t w a I n s t y t u t T e c h n i k i C i e p l

More information

Lecture 3: Light and Temperature

Lecture 3: Light and Temperature Lecture 3: Light and Temperature terrestrial radiative cooling Solar radiative warming (Light) Global Temperature atmosphere ocean land Light Temperature Different forms of energy Energy conservation energy,

More information

Cooling Load Calculation and Thermal Modeling for Vehicle by MATLAB

Cooling Load Calculation and Thermal Modeling for Vehicle by MATLAB Cooling Load Calculation and Thermal Modeling for Vehicle by MATLAB OumSaad Abdulsalam 1, Budi Santoso 2, Dwi Aries 2 1 P. G. Student, Department of Mechanical Engineering, Sebelas Maret University, Indonesia

More information

Change in temperature of object of mass m kg. -T i. T= T f. Q mc

Change in temperature of object of mass m kg. -T i. T= T f. Q mc PHYS1001 Physics 1 REGULAR Module 2 Thermal Physics SPECIFIC HEAT CAPACITY PHASE CHANGES CALORIMETRY Energy Mechanical energy: kinetic and potential Thermal energy: internal energy, Σ(KE + PE) Chemical

More information

Multiple Choice (2 Points Each)

Multiple Choice (2 Points Each) ATMO 336 -- Exam 1 Name Multiple Choice (2 Points Each) 1. The atmospheric greenhouse effect keeps the average surface temperature of the Earth about 60 F warmer than if there were no atmosphere. The two

More information

CZECH TECHNICAL UNIVERSITY IN PRAGUE FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF ENVIRONMENTAL ENGINEERING

CZECH TECHNICAL UNIVERSITY IN PRAGUE FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF ENVIRONMENTAL ENGINEERING CZECH TECHNICAL UNIVERSITY IN PRAGUE FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF ENVIRONMENTAL ENGINEERING APPLICABILITY OF CHILLED BEAM-SYSTEM IN THE MIDDLE EAST BACHELOR THESIS JACQUES MATTA 2 EE

More information