Introduction to Risk MAP NYC Coastal Study

Size: px
Start display at page:

Download "Introduction to Risk MAP NYC Coastal Study"

Transcription

1 Introduction to Risk MAP NYC Coastal Study FEMA REGION II October 18, 2012 Alan Springett, Senior Engineer 1

2 Agenda Components of FEMA Region II Coastal Surge Analysis Overview of entire process at a glance ADCIRC model development Comparison to SLOSH Model inputs Topography/bathymetry Land use Field reconnaissance Storm characterization & selection JPM Statistics and Synthetic Tracks Wind pressure and field modeling Surge analysis ADCIRC model validation Wave setup and surge modeling Return period analysis WHAFIS and overland wave height Wave runup Coastal hazard modeling 2

3 Why Are We Here? EST Tide Gage JPM-OS-Q Empirical Track + JPM-OS 3

4 Why Are We Here? 4

5 What Was Done? November 1983 First detailed FIS of NYC (new 2 topography up to elevation 20) 1990 s Small revision to delete unnumbered A Zones in Staten Island & Queens 1990 s Two revisions to study several small streams in Staten Island by detailed methods 2007 Updated NYC DFIRM for purpose of digitizing 5

6 What Are We Doing? 5/31/13 New preliminary DFIRM new 2 LIDAR & new coastal hydraulics 19 coastal counties in NY and NJ 9 additional counties up the Hudson Valley 6

7 Models Numerical Models SLOSH OWI PBL Hurricane Model ADCIRC-UNSWAN Surge & Wave Model UNSWAN Model Significant Wave Heights and wind vectors predicted during Hurricane Dennis on the Basin Scale grid at 50 hours into the simulation. 7

8 Sea, Lake, and Overland Surges from Hurricanes (SLOSH) 8

9 Wind Model Comparison ADCIRC & SLOSH* ADCIRC Dynamic atmospheric model. Requires five input parameters: Central Pressure, po Background Pressure, pb Radius of Maximum Winds, RMW Maximum Wind Speed, Forward Velocity, Vf Multiple number of dynamic surface friction coefficients. SLOSH Simplified parametric model. Requires three input parameters: Central Pressure, po Background Pressure, pb Radius of Maximum Winds, RMW Limited number of static surface friction coefficients. No tidal interaction Not currently run for extratropical events *From Bailey, James R., PhD.,P.E. FSAR 2.4.5, Probable Maximum Surge and Seiche Flooding 9

10 ADvanced CIRCulation Model (ADCIRC) A (PARALLEL) ADVANCED CIRCULATION MODEL FOR OCEANIC,COASTAL AND ESTUARINE WATERS The ADCIRC source code is copyrighted, by R.A. Luettich, Jr. and J.J. Westerink A system of programs solving time dependent, free surface circulation and transport problems in two and three dimensions using finite element methods and unstructured grids. 10

11 Simulating WAves Nearshore (SWAN) Tight Coupling of SWAN + ADCIRC Solves the action balance equation: Models use same unstructured mesh; Information passed dynamically SWAN is as accurate as WAM and STWAVE Coupled model is efficient to 1000s of computational cores Communication is optimized for high-performance computing: 11

12 Coastal Surge Analysis Components Acquire map data and field reconnaissance Develop model inputs for topo/bathy grid, land use, etc. Characterize the local storm climate (tropical & extra-tropical) Develop method of forward projection Create surge heights with numerical models Analyze recurrence statistics Develop 0.2%,1.0%,2.0% & 10.0% surge heights with wave set-up WHAFIS overland wave conditions & BFEs 12

13 Coastal Study Technical Advisory Panel (TAP) Technical Advisory Panel (TAP) was established to engage coastal study subject matter experts Meetings were held on: 4/14/2011, 5/10/2011 and 11/10/2011 Some of the Members: Academics and Non-Profit Agencies: Jacques Cousteau National Estuarine Research Reserve (under Rutgers University) Richard Stockton College Coastal Research Center Monmouth University Urban Coast Institute Barnegat Bay National Estuary Program Sustainable Jersey, Climate Adaption Task Force State and Local Governments: New Jersey Department of Environmental Protection New York State Department of Environmental Conservation New York City (multiple departments: Office of Long Term Planning and Sustainability, Buildings and Planning) Other Federal Agencies: NOAA; USGS; USACE; 13

14 Surge Field Reconnaissance 14

15 Hurricane Measurements Period of Record Search & Capture Areas 15

16 Storm Selection for Synoptic Climatology Thirty storms selected for synoptic climatology 1938_04 NOTNAMED* 1944_07 NOTNAMED* 1948_03 NOTNAMED 1952_03 BAKER 1953_02 BARBARA 1953_04 CAROL 1954_03 CAROL 1954_05 EDNA 1954_09 HAZEL 1955_02 CONNIE 1958_04 DAISY 1960_05 DONNA* 1961_05 ESTHER 1967_04 DORIA 1969_07 GERDA 1972_02 AGNES 1976_03 BELLE 1978_06 ELLA 1985_07 GLORIA* 1990_02 BERTHA 1991_02 BOB 1993_05 EMILY 1996_05 EDOUARD 1996_08 HORTENSE 1999_06 FLOYD 2002_08 GUSTAV 2003_09 ISABEL 2004_01 ALEX 2007_16 NOEL 2009_03 BILL All candidate storms ( ; 236 storms, ~ 8,400 snapshots) * Used as AdCIRC/UNSWAN Verification Storm 16

17 Nor easter Storm Analysis Storm Dates (Y M/D) / / / / / / / / / / / / /29* / /31* /11* / / / / / / / / / / / / / /13 * Used as AdCIRC/UNSWAN Verification Storm 17

18 ADCIRC/SWAN Mesh Nodes: 604,790 Elements: 1,188,640 Min mesh size: 70 meters 1 second time step goal 18

19 ADCIRC/SWAN Mesh 19

20 Topography Data Sources NY NYC DOITT 3 ft DEM Westchester 2 FEMA compliant contours Hudson Valley USGS NED 1/3 arc second DEM 20

21 Bathymetric Data Sources NOAA Hydrographic Surveys National Geophysical Data Center Office of Coast Survey NOAA Navigation Charts Frequently provides data in areas where digital survey data is not available (fills gaps) USACE SHOALS/CHARTS Hydrographic LiDAR Limited coverage due to light penetration in the water column USACE District Surveys (Retrieved from NAN and NAP) Limited to Federal navigation projects or project specific study areas 21

22 Shoreline and Boundary Extraction Accurate shoreline essential for seamless DEM Other uses: Boundary (ADCIRC), WHAFIS, DFIRMS Extracted and corrected for each county Upper limits of flooding generated and extracted. 22

23 Probabilistic Model for Storm Characteristics Parameter Distribution Type Distribution Parameters P (mb) Truncated Weibull* U=41.2 K=2.05 Rp (km) Lognormal median=vickery-wadhera σ lnrp =0.44 (2008)** Vf (kt) Normal mean=6+0.4 P σ=7 θ (deg) Normal*** mean=22 (23 in LI) σ=10 B Normal mean=1.1 σ=0.2 * P[ P> x] = cexp[ ( x/ u) k ]; x> P(33mb) 0 **Eq. for median: *** truncated at 26 deg for NJ 23

24 JPM-OS1 storms (final* model) *Latitude-dependent P and Rp 24

25 Nor easter Storm Analysis Storm Dates (Y M/D) / / / / / / / / / / / / /29* / /31* /11* / / / / / / / / / / / / / /13 * Used as AdCIRC/UNSWAN Verification Storm 25

26 Summary of Storm Selection Hurricanes JPM-OS with 35 Synthetic Storms each on a set of approximately 6 to 9 tracks (depending on storm size) Consider only storms with DP> 33 mb (Cat > 2) Extra-tropical Storms 30 Historic storms 12 are significant 26

27 Next Steps Forward Modeling, Return Period Analyses and Wave Parameters for WHAFIS 27

28 Example Envelope of Maximum Compute Surge Heights 159 STORM SIMULATIONS (## STORM-TYPES) PARALLEL TRACK SETS (W/ LANDFALLS BEYOND AREA) RANDOM SEMI-DIURNAL TIDE PHASES 28

29 General Flow Chart for NY/NJ Production Runs 29

30 General Flow Chart for NY/NJ Production Runs Input Checks- File correct Scanning 30

31 General Flow Chart for NY/NJ Production Runs Input Checks- File correct Scanning Local Checks Files completion Initial MEOWs Initial time series 31

32 General Flow Chart for NY/NJ Production Runs Input Checks- File correct Scanning Local Checks Files completion Initial MEOWs Initial time series Full QA/QC MEOWs plots Time-series plots Animations Automated scripts 32

33 Inclusion of Astronomical Tide New York-New Jersey area; (a) Water elevation difference (meters) of ST minus S at time of maximum ST surge; (b) water elevation deviation (meters) from linear superposition with extrapolated tides. Black line is shoreline; brown line is the limit of the model mesh. 33

34 Sum Exceedance Frequencies for Each Value of Surge Height Annual Exceedance Frequency Combined Hurricane Extra-Tropical 0.046(H'cane)+0.038(N'easter)=0.084(total) Surge Height (m) 34

35 Composite Surge/Frequency Ranking Surge Wave Height Wave Period Surge Elevation (m) Wave Height (m), Period (s) Storm Rank (based on surge) 35

36 Transect Layout and Model Setup 36

37 Overland Feature Characterization Coastal hazard analysis and overland wave modeling require information on land cover and obstructions (buildings) within the study area. Dunes, buildings, plant types and their density control overland wave dissipation. 37

38 Coastal Structure Evaluation The presence of coastal structures along a section of shoreline can affect how erosion analyses are conducted. FEMA has specific guidelines on how to evaluate and treat coastal structures in coastal hazard analysis. 38

39 Erosion Methodology and Analysis FEMA guidelines and specifications define a standard erosion methodology for dunes (i.e., the 540 rule ). A review of the geology and shoreline types will be made to determine the applicability of standard erosion methods and determine the necessity of nonstandard approaches. 39

40 Wave Height Analysis for Flood Insurance Studies (WHAFIS) Wave transformation modeling will be conducted from the shoreline and overland using FEMA s WHAFIS model. The WHAFIS model has been used in Flood Insurance Studies since 1980 to incorporate the effects of wave action on FIRMs for communities along the Atlantic and Gulf Coasts. WHAFIS is a onedimensional model that will be applied to each transect in the Region II study area. The model uses a specified Stillwater Elevation (SWEL), and the starting wave conditions as input. Simulations of wave transformations are then conducted with WHAFIS taking into account the storm-induced erosion and overland features of each transect. Output from the model includes the combined SWEL and wave height along each cross-shore transect allowing for the establishment of BFEs and flood zones from the shoreline to points inland within the study area. 40

41 Wave Runup and Over-topping 1938 Long Island Express waves hitting seawall - Photo courtesy of NASA Wave runup is defined as the maximum vertical extent of wave uprush on a beach or structure. FEMA s 2007 Guidelines and Specifications require the 2% wave runup level be computed for the feature being evaluated (cliff, coastal bluff, dune, or structure). Each transect defined within the Region II study area will be evaluated for the applicability of wave runup. 41

42 Coastal Flood Hazard Mapping Coastal flood hazard mapping is the process where the overland wave modeling results are assimilated with the topography data to delineate the boundary of the Special Flood Hazard Area (SFHA) for the 1% annual chance stillwater elevation (100-year conditions), along with mapping the location and extent of Zones VE, AE, and X. 42

43 FIRM Production 43

44 Coastal Outreach Advisory Team (COAT) The Coastal Outreach Advisory Team was established to support the New Jersey and New York City Coastal Flooding Outreach and Education Program Technical Advisory Panel (TAP) is focused on technical aspects of the flood risk program 44

45 Introduction to Risk MAP NYC Coastal Study Questions? - Contacts Alan Springett, Senior Engineer, FEMA Region II Mitigation, Risk Analysis 26 Federal Plaza, Rm 1337 New York, NY Desk Mobile Alan.Springett@fema.dhs.gov J. Andrew Martin, CFM RSC II Lead Coordinator Dewberry Management & Consulting Services 15 East 26 th St, 7 th Floor New York, NY amartin@dewberry.com 45

Location: Jacksonville, FL December 11, 2012

Location: Jacksonville, FL December 11, 2012 Technical Update Meeting Northeast Florida Surge Study Location: Jacksonville, FL December 11, 2012 Agenda 2:00 2:15 Welcome/Introductions Tucker Mahoney, FEMA Region IV Michael DelCharco, BakerAECOM 2:15

More information

Miami-Dade County Technical Update Meeting South Florida Coastal Study. May 11, 2016

Miami-Dade County Technical Update Meeting South Florida Coastal Study. May 11, 2016 Miami-Dade County Technical Update Meeting South Florida Coastal Study May 11, 2016 Welcome and Introductions FEMA Region IV Christina Lindemer Technical Lead Production and Technical Services (PTS) Contractor

More information

2016 NC Coastal Local Governments Annual Meeting

2016 NC Coastal Local Governments Annual Meeting 6 NC Coastal Local Governments Annual Meeting NCFMP Coastal Map Maintenance Flood Study Updates and Changes April, 6 Tom Langan, PE, CFM Engineering Supervisor NCEM-Risk Management - Floodplain Mapping

More information

COASTAL DATA APPLICATION

COASTAL DATA APPLICATION 2015 Coastal GeoTools Proactive By Design. Our Company Commitment COASTAL DATA APPLICATION Projecting Future Coastal Flood Risk for Massachusetts Bay Bin Wang, Tianyi Liu, Daniel Stapleton & Michael Mobile

More information

Storm Surge Analysis Update Meeting Charlotte and DeSoto Counties, Florida March 7, 2018

Storm Surge Analysis Update Meeting Charlotte and DeSoto Counties, Florida March 7, 2018 Southwest Florida Coastal Storm Surge Study Storm Surge Analysis Update Meeting Charlotte and DeSoto Counties, Florida March 7, 2018 Agenda Introductions Goals for Today SWFL Coastal Surge Study Study

More information

Storm Surge Analysis Update Meeting Cross City, Florida June 17, 2014

Storm Surge Analysis Update Meeting Cross City, Florida June 17, 2014 Big Bend Coastal Storm Surge Study Storm Surge Analysis Update Meeting Cross City, Florida June 17, 2014 Introductions Risk MAP Project Team FEMA Region IV Florida Division of Emergency Management (FDEM)

More information

FEMA REGION III COASTAL HAZARD STUDY

FEMA REGION III COASTAL HAZARD STUDY FEMA REGION III COASTAL HAZARD STUDY Impacts and Rollout June 11, 2013 Robin Danforth, FEMA Region III David Bollinger, FEMA Region III Jeff Gangai, RAMPP Christine Worley, RAMPP 1 Today s Discussion Overview

More information

Coastal Flood Risk Study Project for East Coast Central Florida Study Area

Coastal Flood Risk Study Project for East Coast Central Florida Study Area Coastal Flood Risk Study Project for East Coast Central Florida Study Area St Lucie County, Florida Flood Risk Review Meeting March 28, 2017 Introductions Risk MAP Project Team FEMA Region IV BakerAECOM,

More information

Coastal Flood Risk Study Project for Northeast Florida Study Area

Coastal Flood Risk Study Project for Northeast Florida Study Area Coastal Flood Risk Study Project for Northeast Florida Study Area Duval County, Florida Flood Risk Review Meeting September 22, 2015 Introductions Risk MAP Project Team FEMA Region IV BakerAECOM, FEMA

More information

Final Results and Outreach Lessons Learned

Final Results and Outreach Lessons Learned FEMA REGION III COASTAL HAZARD STUDY Final Results and Outreach Lessons Learned June 4, 2014 Mari Radford Christine Worley Robin Danforth David Bollinger FEMA Region III RAMPP FEMA Region III FEMA Region

More information

South Florida Coastal Storm Surge and Mapping Study

South Florida Coastal Storm Surge and Mapping Study South Florida Coastal Storm Surge and Mapping Study Presented by Christopher Bender, Ph.D., P.E., D.CE June 2, 2015 Presentation Overview FEMA risk studies outline Overview South Florida surge study Work

More information

Development of Operational Storm Surge Guidance to Support Total Water Predictions

Development of Operational Storm Surge Guidance to Support Total Water Predictions Development of Operational Storm Surge Guidance to Support Total Water Predictions J. Feyen 1, S. Vinogradov 1,2, T. Asher 3, J. Halgren 4, Y. Funakoshi 1,5 1. NOAA/NOS//Development Laboratory 2. ERT,

More information

Storm Induced Coastal Erosion for Flood Insurance Studies and Forecasting Coastal Flood Damage Impacts: Erosion, Runup & Overtopping

Storm Induced Coastal Erosion for Flood Insurance Studies and Forecasting Coastal Flood Damage Impacts: Erosion, Runup & Overtopping Storm Induced Coastal Erosion for Flood Insurance Studies and Forecasting Coastal Flood Damage Impacts: Erosion, Runup & Overtopping Jeff Gangai- Dewberry Tucker Mahoney FEMA HQ Introduction Background

More information

US Army Corps of Engineers BUILDING STRONG. Mary Cialone, Norberto Nadal-Caraballo, and Chris Massey

US Army Corps of Engineers BUILDING STRONG. Mary Cialone, Norberto Nadal-Caraballo, and Chris Massey North Atlantic Coast Comprehensive Study Storm Selection and Numerical Modeling An Overview Computing the Joint Probability of Storm Forcing Parameters from Maine to Virginia Mary Cialone, Norberto Nadal-Caraballo,

More information

Flood and Sea Level Rise Mapping Methodologies: The Way Forward

Flood and Sea Level Rise Mapping Methodologies: The Way Forward Flood and Sea Level Rise Mapping Methodologies: The Way Forward Malcolm L. Spaulding Professor Emeritus, Ocean Engineering University of Rhode Island spaulding@egr.uri.edu Interagency Coordination Meeting

More information

Georgia and Northeast Florida Coastal Storm Surge and Mapping Study: Continued Progress Amid Challenges

Georgia and Northeast Florida Coastal Storm Surge and Mapping Study: Continued Progress Amid Challenges Georgia and Northeast Florida Coastal Storm Surge and Mapping Study: Continued Progress Amid Challenges Presented by Christopher Bender, Ph.D., P.E., D.CE June 12, 2013 Presentation Overview FEMA risk

More information

Appendix A STORM SURGE AND WAVE HEIGHT ANALYSIS

Appendix A STORM SURGE AND WAVE HEIGHT ANALYSIS Appendix A STORM SURGE AND WAVE HEIGHT ANALYSIS Memo To: Jeff Robinson, P.E., GEC, Inc. From: Silong Lu, Ph.D., P.E., D.WRE, Dynamic Solutions, LLC. Date: 1/9/2014 CC: Re: Chris Wallen, Vice President,

More information

Task Order HSFE06-09-J0001 for Dallas County, Arkansas

Task Order HSFE06-09-J0001 for Dallas County, Arkansas Floodplain Mapping Technical Support Data Notebook Task Order HSFE06-09-J0001 for Dallas County, Arkansas Region II Storm Surge Project - Recurrence Interval Analysis of Coastal Storm Surge Levels and

More information

Storm Surge Analysis Update Meeting Hillsborough and Manatee Counties April 5, 2016

Storm Surge Analysis Update Meeting Hillsborough and Manatee Counties April 5, 2016 West Florida Coastal Storm Surge Study Storm Surge Analysis Update Meeting Hillsborough and Manatee Counties April 5, 2016 Agenda Introductions Goals for Today West Florida Coastal Surge Study Project

More information

SWAN+ADCIRC Mesh Flagler County

SWAN+ADCIRC Mesh Flagler County SWAN+ADCIRC Mesh Flagler County 61 SWAN+ADCIRC Mesh Flagler County 62 SWAN+ADCIRC Mesh Flagler County Pellicer Creek, FL 63 SWAN+ADCIRC Mesh Flagler County Pellicer Creek, FL 64 SWAN+ADCIRC Mesh Volusia

More information

ERDC Support for Hurricane Sandy

ERDC Support for Hurricane Sandy ERDC Support for Hurricane Sandy Chris Massey, CHL; Aaron Byrd, CHL; Nawa Pradhan, CHL; Jeff Melby, CHL; Jane Smith, CHL; Robert Walker, ITL; and Jennifer Wozencraft, JALBTCX ERDC Support for Hurricane

More information

Ed Curtis, PE, CFM, FEMA Region IX and Darryl Hatheway, CFM, AECOM ASFPM 2016, Grand Rapids, MI

Ed Curtis, PE, CFM, FEMA Region IX and Darryl Hatheway, CFM, AECOM ASFPM 2016, Grand Rapids, MI Methodology to Determine Process-Based Total Water Level Profiles in Areas Dominated by Wave Runup Ed Curtis, PE, CFM, FEMA Region IX and Darryl Hatheway, CFM, AECOM ASFPM 2016, Grand Rapids, MI Thurs.

More information

HAZUS th Annual Conference

HAZUS th Annual Conference HAZUS 2014 7 th Annual Conference VALIDATING THE HAZUS COASTAL SURGE MODEL FOR SUPERSTORM SANDY Spiridon Katehis 1 Jordan T. Hastings 1 1 University of Southern California 1 Superstorm Sandy, Oct 12 2

More information

NORTH ATLANTIC COAST COMPREHENSIVE STUDY (NACCS) STORM MODELING AND STATISTICAL ANALYSIS FOR

NORTH ATLANTIC COAST COMPREHENSIVE STUDY (NACCS) STORM MODELING AND STATISTICAL ANALYSIS FOR NORTH ATLANTIC COAST COMPREHENSIVE STUDY (NACCS) STORM MODELING AND STATISTICAL ANALYSIS FOR 237 237 217 217 200 200 80 27 252 174.59 COMPUTING 255 0 163 COASTAL 131 239 110 HAZARDS 112 62 255 255 0 0

More information

Modeling Nearshore Waves for Hurricane Katrina

Modeling Nearshore Waves for Hurricane Katrina Modeling Nearshore Waves for Hurricane Katrina Jane McKee Smith US Army Engineer Research & Development Center Coastal and Hydraulics Laboratory Outline Introduction Modeling Approach Hurricane Katrina

More information

Probabilistic Assessment of Coastal Storm Hazards

Probabilistic Assessment of Coastal Storm Hazards Resilience of Coastal Infrastructure Conference Hato Rey, PR March 8-9, 2017 Probabilistic Assessment of Coastal Storm Hazards Dr. Norberto C. Nadal-Caraballo Leader, Coastal Hazards Group Team: Victor

More information

North Carolina Coastal Flood Analysis System Hurricane Parameter Development. Submittal Number 1, Section 5

North Carolina Coastal Flood Analysis System Hurricane Parameter Development. Submittal Number 1, Section 5 North Carolina Coastal Flood Analysis System Hurricane Parameter Development Submittal Number 1, Section 5 A Draft Report for the State of North Carolina Floodplain Mapping Project Technical Report TR-08-06

More information

General background on storm surge. Pat Fitzpatrick and Yee Lau Mississippi State University

General background on storm surge. Pat Fitzpatrick and Yee Lau Mississippi State University General background on storm surge Pat Fitzpatrick and Yee Lau Mississippi State University Storm surge is an abnormal rise of water associated with a cyclone, not including tidal influences Low pressure

More information

SLOSH New Orleans Basin 2012 Update

SLOSH New Orleans Basin 2012 Update SLOSH New Orleans Basin 2012 Update Michael Koziara Science and Operations Officer National Weather Service Slidell, LA The Basics What is storm surge? What is SLOSH? Details Assumptions Inundation = Storm

More information

ERDC S COASTAL STORM MODELING SYSTEM COASTAL TEXAS, USA

ERDC S COASTAL STORM MODELING SYSTEM COASTAL TEXAS, USA ERDC S COASTAL STORM MODELING SYSTEM COASTAL TEXAS, USA Chris Massey Research Mathematician, USACE-ERDC Coastal & Hydraulics Lab Chris.Massey@usace.army.mil 1 st Int. Workshop on Waves, Storm Surge and

More information

Coastal Hazard Assessment for the Lowermost Mississippi River Management Program

Coastal Hazard Assessment for the Lowermost Mississippi River Management Program Coastal Hazard Assessment for the Lowermost Mississippi River Management Program USACE ERDC Coastal and Hydraulics Laboratory Mary Cialone Chris Massey Norberto Nadal USACE Mississippi Valley Division

More information

Storm Surge Frequency Analysis using a Modified Joint Probability Method with Optimal Sampling (JPM-OS)

Storm Surge Frequency Analysis using a Modified Joint Probability Method with Optimal Sampling (JPM-OS) Storm Surge Frequency Analysis using a Modified Joint Probability Method with Optimal Sampling (JPM-OS) Jay Ratcliff Coastal Hydraulics Lab, of Engineers (USACE) Engineering Research and Development Center

More information

Coastal Inundation Risk for SE Florida Incorporating Climate Change Impact on Hurricanes & Sea Level Rise

Coastal Inundation Risk for SE Florida Incorporating Climate Change Impact on Hurricanes & Sea Level Rise Coastal Inundation Risk for SE Florida Incorporating Climate Change Impact on Hurricanes & Sea Level Rise Y. Peter Sheng and V.A. Paramygin Justin R. Davis, Andrew Condon, Andrew Lapetina, Tianyi Liu,

More information

USACE-ERDC Coastal Storm Modeling System Updates Chris Massey, PhD

USACE-ERDC Coastal Storm Modeling System Updates Chris Massey, PhD USACE-ERDC Coastal Storm Modeling System Updates Chris Massey, PhD Research Mathematician USACE-ERDC Coastal & Hydraulics Lab Chris.Massey@usace.army.mil ERDC s Coastal Storm-Modeling System (ERDC CSTORM-MS)

More information

6 - STORM SURGES IN PUERTO RICO_Power Plants-Aguirre. Aguirre

6 - STORM SURGES IN PUERTO RICO_Power Plants-Aguirre. Aguirre 1 6 - STORM SURGES IN PUERTO RICO_Power Plants-Aguirre Aguirre Figure 1 shows a GE image of the Aguirre Electric Power Plant inside Jobos Bay. Figure 2 shows a picture of the plant looking at base level

More information

HFIP- Supported Improvements to Storm Surge Forecas6ng in 2012

HFIP- Supported Improvements to Storm Surge Forecas6ng in 2012 HFIP- Supported Improvements to Storm Surge Forecas6ng in 2012 Jesse C. Feyen (NOS/OCS), Jamie Rhome (NWS/NHC), Rick LueJch (UNC- CH), Jason Fleming (Seahorse Consul6ng), Brian Blanton (RENCI), Yuji Funakoshi

More information

Coastal Flood Hazard Mapping

Coastal Flood Hazard Mapping Coastal Flood Hazard Mapping Current Status and Update April 4, 2017 NCFMP Program Objectives Purpose: Develop, Maintain, and Disseminate current, accurate, digital flood hazard data for all of NC, to

More information

CAPE MAY COUNTY, NEW JERSEY (All Jurisdictions)

CAPE MAY COUNTY, NEW JERSEY (All Jurisdictions) VOLUME 1 OF 1 CAPE MAY COUNTY, NEW JERSEY (All Jurisdictions) COMMUNITY NAME COMMUNITY NUMBER AVALON, BOROUGH OF 345279 CAPE MAY, CITY OF 345288 CAPE MAY POINT, BOROUGH OF 345289 DENNIS, TOWNSHIP OF 340552

More information

CAMDEN COUNTY, GEORGIA

CAMDEN COUNTY, GEORGIA CAMDEN COUNTY, GEORGIA AND INCORPORATED AREAS COMMUNITY NAME COMMUNITY NUMBER CAMDEN COUNTY 130262 (UNINCORPORATED AREAS) KINGSLAND, CITY OF 130238 ST. MARYS, CITY OF 130027 WOODBINE, CITY OF 130241 CAMDEN

More information

Coastal Storms of the New Jersey Shore

Coastal Storms of the New Jersey Shore Coastal Storms of the New Jersey Shore Dr. Steven G. Decker Dept. of Environmental Sciences School of Environmental and Biological Sciences Rutgers University May 25, 2011 Overview Threats Historical Examples

More information

NOAA Storm Surge Modeling Gaps and Priorities

NOAA Storm Surge Modeling Gaps and Priorities NOAA Storm Surge Modeling Gaps and Priorities HFIP Meeting November 9 th, 2017 Laura Paulik Alaka NHC Storm Surge Unit Introduction to Probabilistic Storm Surge P-Surge is based on an ensemble of Sea,

More information

Experimental Probabilistic Hurricane Inundation Surge Height (PHISH) Guidance

Experimental Probabilistic Hurricane Inundation Surge Height (PHISH) Guidance Experimental Probabilistic Hurricane Inundation Surge Height (PHISH) Guidance DRBC Flood Advisory Committee John Kuhn - NWS/OCWWS Anne Myckow (NWS/MDL), Arthur Taylor (NWS/MDL) SLOSH Sea, Lake and Overland

More information

ERDC S COASTAL STORM MODELING SYSTEM (AND APPLICATIONS)

ERDC S COASTAL STORM MODELING SYSTEM (AND APPLICATIONS) ERDC S COASTAL STORM MODELING SYSTEM (AND APPLICATIONS) Chris Massey Research Mathematician, USACE-ERDC Coastal & Hydraulics Lab Chris.Massey@usace.army.mil November 1-2, 2017 Team Acknowledgements Hung

More information

Sea-level Rise on Cape Cod: How Vulnerable Are We? Rob Thieler U.S. Geological Survey Woods Hole, MA

Sea-level Rise on Cape Cod: How Vulnerable Are We? Rob Thieler U.S. Geological Survey Woods Hole, MA Sea-level Rise on Cape Cod: How Vulnerable Are We? Rob Thieler U.S. Geological Survey Woods Hole, MA Outline Sea-level and coastal processes Past sea-level change Predictions for the future Coastal responses

More information

The Coastal Change Analysis Program and the Land Cover Atlas. Rebecca Love NOAA Office for Coastal Management

The Coastal Change Analysis Program and the Land Cover Atlas. Rebecca Love NOAA Office for Coastal Management The Coastal Change Analysis Program and the Land Cover Atlas Rebecca Love NOAA Office for Coastal Management Natural Infrastructure = Greater Resilience NOAA C-CAP Regional Land Cover and Change coast.noaa.gov/digitalcoast/data/ccapregional

More information

A multi-tiered ADCIRC-based storm surge and wave prediction system

A multi-tiered ADCIRC-based storm surge and wave prediction system A multi-tiered ADCIRC-based storm surge and wave prediction system Brian Blanton, Renaissance Computing Institute, UNC-Chapel Hill Rick Luettich, Institute of Marine Sciences, UNC-Chapel Hill, co-pi Jason

More information

Coupled, Unstructured Grid, Wave and Circulation Models: Validation and Resolution Requirements

Coupled, Unstructured Grid, Wave and Circulation Models: Validation and Resolution Requirements Coupled, Unstructured Grid, Wave and Circulation Models: Validation and Resolution Requirements J.C. Dietrich, J.J. Westerink University of Notre Dame C. Dawson University of Texas at Austin M. Zijlema,

More information

29th Conference on Hurricanes and Tropical Meteorology, May 2010, Tucson, Arizona

29th Conference on Hurricanes and Tropical Meteorology, May 2010, Tucson, Arizona P2.96 A SIMPLE COASTLINE STORM SURGE MODEL BASED ON PRE-RUN SLOSH OUTPUTS 1. INTRODUCTION Liming Xu* FM Global Research, 1151 Boston Providence Turnpike, Norwood, MA 02062 Storm surge is an abnormal rise

More information

A Perfect Storm: The Collision of Tropical Cyclones, Climate Change and Coastal Population Growth. Jeff Donnelly Woods Hole Oceanographic Institution

A Perfect Storm: The Collision of Tropical Cyclones, Climate Change and Coastal Population Growth. Jeff Donnelly Woods Hole Oceanographic Institution A Perfect Storm: The Collision of Tropical Cyclones, Climate Change and Coastal Population Growth Jeff Donnelly Woods Hole Oceanographic Institution Recent Hurricane Trends What Might the Future Hold?

More information

PREDICTING TROPICAL CYCLONE FORERUNNER SURGE. Abstract

PREDICTING TROPICAL CYCLONE FORERUNNER SURGE. Abstract PREDICTING TROPICAL CYCLONE FORERUNNER SURGE Yi Liu 1 and Jennifer L. Irish 1 Abstract In 2008 during Hurricane Ike, a 2-m forerunner surge, early surge arrival before tropical cyclone landfall, flooded

More information

Dealing with Zone A Flood Zones. Topics of Discussion. What is a Zone A Floodplain?

Dealing with Zone A Flood Zones. Topics of Discussion. What is a Zone A Floodplain? Dealing with Zone A Flood Zones Topics of Discussion Overview of Zone A Floodplains Permitting Development in Zone A Floodplains Estimating Flood Elevations in Zone A Flood Insurance Implications Letters

More information

Storm Surge Computations for the North Carolina Sea Level Rise Risk Management Study

Storm Surge Computations for the North Carolina Sea Level Rise Risk Management Study Storm Surge Computations for the North Carolina Sea Level Rise Risk Management Study A RENCI Technical Report TR-12-04 Brian Blanton, PhD Renaissance Computing Institute (RENCI) University of North Carolina

More information

Coastal Hazards System: Interpretation and Application

Coastal Hazards System: Interpretation and Application Lessons Learned and Best Practices: Resilience of Coastal Infrastructure Hato Rey, PR March 8-9, 2017 Coastal Hazards System: Interpretation and Application Victor M. Gonzalez, P.E. Team: PI: Jeffrey A.

More information

Regional-scale understanding of the geologic character and sand resources of the Atlantic inner continental shelf, Maine to Virginia

Regional-scale understanding of the geologic character and sand resources of the Atlantic inner continental shelf, Maine to Virginia Regional-scale understanding of the geologic character and sand resources of the Atlantic inner continental shelf, Maine to Virginia Workshop on Dredging, Beach Nourishment and Bird Conservation Atlantic

More information

THC-T-2013 Conference & Exhibition

THC-T-2013 Conference & Exhibition Modeling of Shutter Coastal Protection against Storm Surge for Galveston Bay C. Vipulanandan, Ph.D., P.E., Y. Jeannot Ahossin Guezo and and B. Basirat Texas Hurricane Center for Innovative Technology (THC-IT)

More information

Mapping of Future Coastal Hazards. for Southern California. January 7th, David Revell, Ph.D. E.

Mapping of Future Coastal Hazards. for Southern California. January 7th, David Revell, Ph.D. E. Mapping of Future Coastal Hazards for Southern California January 7th, 2014 David Revell, Ph.D. drevell@esassoc.com E. Vandebroek, 2012 Outline Coastal erosion hazard zones Flood hazard zones: Coastal

More information

FLOOD INSURANCE STUDY

FLOOD INSURANCE STUDY FLOOD INSURANCE STUDY RICHMOND COUNTY, VIRGINIA AND INCORPORATED AREAS COMMUNITY NAME COMMUNITY NUMBER RICHMOND COUNTY (UNINCORPORATED AREAS) 510310 * WARSAW, TOWN OF 510115 *No Special Flood Hazard Areas

More information

Computing the Joint Probability of Hurricane Sandy and Historical Coastal Storm Forcing Parameters from Maine to Virginia

Computing the Joint Probability of Hurricane Sandy and Historical Coastal Storm Forcing Parameters from Maine to Virginia Computing the Joint Probability of Hurricane Sandy and Historical Coastal Storm Forcing Parameters from Maine to Virginia Chris Massey and Jeff Melby USACE-ERDC Coastal & Hydraulics Lab Chris.Massey@usace.army.mil

More information

North Atlantic Coast Comprehensive Study (NACCS) APPENDIX A: ENGINEERING

North Atlantic Coast Comprehensive Study (NACCS) APPENDIX A: ENGINEERING North Atlantic Coast Comprehensive Study (NACCS) APPENDIX A: ENGINEERING NORTH ATLANTIC COAST COMPREHENSIVE STUDY: RESILIENT ADAPTATION TO INCREASING RISK Appendix A - Engineering Table of Contents North

More information

B.2 Sources for Hazard Identification, Profiling, and Ranking (Section 3) Overview of Sussex County s History of Hazards

B.2 Sources for Hazard Identification, Profiling, and Ranking (Section 3) Overview of Sussex County s History of Hazards Appendix B Sources B.1 Sources for Planning Process (Section 2) FEMA. Mitigation Planning Guidance (386 Series). Available on the web at: http://www.fema.gov/plan/mitplanning/planning_resources.shtm FEMA

More information

SOMERSET COUNTY, MARYLAND

SOMERSET COUNTY, MARYLAND SOMERSET COUNTY, MARYLAND AND INCORPORATED AREAS COMMUNITY NAME CID NUMBER CRISFIELD, CITY OF 240062 PRINCESS ANNE, TOWN OF 240063 SOMERSET COUNTY (UNINCORPORATED AREAS) 240061 Somerset County PRELIMINARY:

More information

A Multi-Hazard Evaluation of Vulnerability using GIS along Cape Hatteras National Seashore, NC

A Multi-Hazard Evaluation of Vulnerability using GIS along Cape Hatteras National Seashore, NC A Multi-Hazard Evaluation of Vulnerability using GIS along Cape Hatteras National Seashore, NC Tom Allen¹, Burrell Montz¹, JP Walsh¹, Tom Crawford² ¹East Carolina University, ²Saint Louis University Presented

More information

Sea Level Rise and Hurricane Florence storm surge research methodology

Sea Level Rise and Hurricane Florence storm surge research methodology Sea Level Rise and Hurricane Florence storm surge research methodology Hurricane Florence storm surge analysis was conducted using a variety of input sources. In order to determine the maximum storm surge

More information

Forecast Predictions of Winds, Waves and Storm Surge during Hurricane Arthur (2014)

Forecast Predictions of Winds, Waves and Storm Surge during Hurricane Arthur (2014) Forecast Predictions of Winds, Waves and Storm Surge during Hurricane Arthur (2014) R Cyriac 1, JC Dietrich 1, JG Fleming 2, BO Blanton 3, RA Luettich Jr 4, C Kaiser 5 1 Dept. of Civil, Construction, and

More information

HURRICANE FRANCES CHARACTERISTICS and STORM TIDE EVALUATION

HURRICANE FRANCES CHARACTERISTICS and STORM TIDE EVALUATION HURRICANE FRANCES CHARACTERISTICS and STORM TIDE EVALUATION ((DRAFT)) By Robert Wang and Michael Manausa Sponsored by Florida Department of Environmental Protection, Bureau of Beaches and Coastal Systems

More information

Evaluation of the Storm Surge Hazard in Coastal Mississippi

Evaluation of the Storm Surge Hazard in Coastal Mississippi Evaluation of the Storm Surge Hazard in Coastal Mississippi A. Niedoroda 1, D. Resio 2, G. Toro 3, D. Divoky 4, H. Das 1, C. Reed 1 1 URS Corporation, 1625 Summit Lake Drive, Suite 200,, Tallahassee, FL,

More information

ARMSTRONG COUNTY, PA

ARMSTRONG COUNTY, PA ARMSTRONG COUNTY, PA Revised Preliminary DFIRM Mapping March 31, 2013 Kevin Donnelly, P.E., CFM GG3, Greenhorne & O Mara, Inc. Presentation Agenda Armstrong County DFIRM Overview - June 25, 2010 DFIRM

More information

Physically-based risk assessment of hurricane storm surge in a changing climate

Physically-based risk assessment of hurricane storm surge in a changing climate Physically-based risk assessment of hurricane storm surge in a changing climate Ning Lin Princeton University Department of Civil and Environmental Engineering Hurricane Ike 5 Year Workshop Rice University,

More information

Phase II Storm Surge Analysis

Phase II Storm Surge Analysis Phase II Storm Surge Analysis Post 45 Project, Charleston, SC Prepared for: USACE Charleston District Charleston, SC Prepared by: Water Environment Consultants Mount Pleasant, SC October 21, 2016 Table

More information

Draft for Discussion 11/11/2016

Draft for Discussion 11/11/2016 Coastal Risk Consulting (CRC) Climate Vulnerability Assessment for Village of Key Biscayne Deliverable 1.1 in Statement of Work. Preliminary Vulnerability Assessment Identifying Flood Hotspots Introduction...

More information

Identification and Selection of Representative Storm Events from a Probabilistic Storm Data Base

Identification and Selection of Representative Storm Events from a Probabilistic Storm Data Base Identification and Selection of Representative Storm Events from a Probabilistic Storm Data Base by Mark B. Gravens and Dylan R. Sanderson PURPOSE: This Coastal and Hydraulics Engineering Technical Note

More information

MISSISSIPPI COASTAL IMPROVEMENTS

MISSISSIPPI COASTAL IMPROVEMENTS MISSISSIPPI COASTAL IMPROVEMENTS PROGRAM (MsCIP) Comprehensive Barrier 237 27 200 237 27 200 Island 237 Restoration 27 200 Plan 80 9 27 252 74.59 255 255 255 0 0 0 63 63 63 3 32 22 239 65 53 0 35 20 2

More information

COASTAL FLOODING IMPACT REPORT (100-YEAR RETURN PERIOD EVENT) CORDECO DISCOVERY BAY RESORT & MARINA BO. ESPINAL, AGUADA, P.R.

COASTAL FLOODING IMPACT REPORT (100-YEAR RETURN PERIOD EVENT) CORDECO DISCOVERY BAY RESORT & MARINA BO. ESPINAL, AGUADA, P.R. COASTAL FLOODING IMPACT REPORT (100-YEAR RETURN PERIOD EVENT) CORDECO DISCOVERY BAY RESORT & MARINA BO. ESPINAL, AGUADA, P.R. submitted to CORDECO NORTHWEST CORP. 2305 LAUREL ST. SAN JUAN, P.R. 00913 by

More information

Boston Coastal Flooding Analysis and Mapping

Boston Coastal Flooding Analysis and Mapping Boston Coastal Flooding Analysis and Mapping Philip Orton, Dara Mendeloff, Jane Mills, Malgosia Madajewicz Funding This research was funded by the National Oceanic and Atmospheric Administration (NOAA)

More information

Robert Weaver, Donald Slinn 1

Robert Weaver, Donald Slinn 1 1 1 Robert Weaver, Donald Slinn 1 Department of Civil and Coastal Engineering, University of Florida, Gainesville, Florida Supported by the US Office of Naval Research AGU Fall Meeting 2002 Poster OS72A-0342

More information

Risk Identification using Hazus

Risk Identification using Hazus Risk Identification using Hazus City of Boston, Suffolk County, MA Dave Shortman, GISP, CFM 6/21/2016 Agenda Objective Project Location Hazus Overview Hazus Level 2 Risk Assessment Comparison and Reporting

More information

MODELLING CATASTROPHIC COASTAL FLOOD RISKS AROUND THE WORLD

MODELLING CATASTROPHIC COASTAL FLOOD RISKS AROUND THE WORLD MODELLING CATASTROPHIC COASTAL FLOOD RISKS AROUND THE WORLD Nicola Howe Christopher Thomas Copyright 2016 Risk Management Solutions, Inc. All Rights Reserved. June 27, 2016 1 OUTLINE MOTIVATION What we

More information

Simulation of storm surge and overland flows using geographical information system applications

Simulation of storm surge and overland flows using geographical information system applications Coastal Processes 97 Simulation of storm surge and overland flows using geographical information system applications S. Aliabadi, M. Akbar & R. Patel Northrop Grumman Center for High Performance Computing

More information

HURRICANE CHARLEY CHARACTERISTICS and STORM TIDE EVALUATION

HURRICANE CHARLEY CHARACTERISTICS and STORM TIDE EVALUATION HURRICANE CHARLEY CHARACTERISTICS and STORM TIDE EVALUATION By Robert Wang, Michael Manausa And Jenny Cheng Sponsored by Florida Department of Environmental Protection, Bureau of Beaches and Coastal Systems

More information

FLOOD INSURANCE STUDY

FLOOD INSURANCE STUDY FLOOD INSURANCE STUDY CHARLES CITY COUNTY, VIRGINIA AND INCORPORATED AREAS COMMUNITY NAME COMMUNITY NUMBER CHARLES CITY COUNTY (UNINCORPORATED AREAS) 510198 Charles City County REVISED DATE Preliminary

More information

FLOOD INSURANCE STUDY

FLOOD INSURANCE STUDY FLOOD INSURANCE STUDY NEW KENT COUNTY, VIRGINIA AND INCORPORATED AREAS COMMUNITY NAME COMMUNITY NUMBER NEW KENT COUNTY (UNINCORPORATED AREAS) 510306 New Kent REVISED DATE Preliminary Date: January 31,

More information

HURRICANE IVAN CHARACTERISTICS and STORM TIDE EVALUATION

HURRICANE IVAN CHARACTERISTICS and STORM TIDE EVALUATION HURRICANE IVAN CHARACTERISTICS and STORM TIDE EVALUATION By Robert Wang and Michael Manausa Sponsored by Florida Department of Environmental Protection, Bureau of Beaches and Coastal Systems Submitted

More information

SECTION 5: RISK ASSESSMENT FLOOD. Table of Contents

SECTION 5: RISK ASSESSMENT FLOOD. Table of Contents Table of Contents SECTION 5 Risk Assessment... 5-1 5.1 Hazard Profile... 5-1 5.2 Hazard Description... 5-1 Previous Occurrences and Losses... 5-39 Probability of Future Occurrences... 5-56 Climate Change

More information

CITY OF PORTSMOUTH, VIRGINIA (INDEPENDENT CITY)

CITY OF PORTSMOUTH, VIRGINIA (INDEPENDENT CITY) CITY OF PORTSMOUTH, VIRGINIA (INDEPENDENT CITY) City of Portsmouth PRELIMINARY JANUARY 13, 2014 REVISED: Federal Emergency Management Agency FLOOD INSURANCE STUDY NUMBER 515529V000B NOTICE TO FLOOD INSURANCE

More information

From Vulnerability to Resilience And the Tools to Get There. Out of Harm s Way Partnership for the Delaware Estuary August 1, 2012

From Vulnerability to Resilience And the Tools to Get There. Out of Harm s Way Partnership for the Delaware Estuary August 1, 2012 From Vulnerability to Resilience And the Tools to Get There Out of Harm s Way Partnership for the Delaware Estuary August 1, 2012 Today s Presentation Tour of New Jersey Challenges Definitions so we re

More information

Specification of Tropical Cyclone Parameters From Aircraft Reconnaissance. Andrew Cox and Vincent Cardone Oceanweather Inc.

Specification of Tropical Cyclone Parameters From Aircraft Reconnaissance. Andrew Cox and Vincent Cardone Oceanweather Inc. Specification of Tropical Cyclone Parameters From Aircraft Reconnaissance Andrew Cox and Vincent Cardone Oceanweather Inc. Cos Cob, CT, USA Motivation This paper is part of on-going work to improve the

More information

HVX-HURREVAC (Beta) Webinar Series

HVX-HURREVAC (Beta) Webinar Series HVX-HURREVAC (Beta) Webinar Series Day 1 - An introduction to HURREVAC and the new web-based HVX platform 2018 HVX-HURREVAC Webinar Series 1. Intro to HURREVAC and General Overview of the Program (August

More information

Developing Coastal Erosion Hazard Area Maps for Lakes Ontario and Erie New York State Department of Environmental Conservation (DEC)

Developing Coastal Erosion Hazard Area Maps for Lakes Ontario and Erie New York State Department of Environmental Conservation (DEC) ASFPM 2012 Annual Conference Developing Coastal Erosion Hazard Area Maps for Lakes Ontario and Erie New York State Department of Environmental Conservation (DEC) Jeff Burm, CFM Elena Drei-Horgan, PhD,

More information

HURRICANE JEANNE CHARACTERISTICS and STORM TIDE EVALUATION

HURRICANE JEANNE CHARACTERISTICS and STORM TIDE EVALUATION HURRICANE JEANNE CHARACTERISTICS and STORM TIDE EVALUATION ((DRAFT)) By Robert Wang and Michael Manausa Sponsored by Florida Department of Environmental Protection, Bureau of Beaches and Coastal Systems

More information

ADCIRC Based Storm Surge Analysis of Sea Level Rise in the Corpus Christi Bay Area

ADCIRC Based Storm Surge Analysis of Sea Level Rise in the Corpus Christi Bay Area the Corpus Christi Bay Area Publication CBBEP 86 Project Number 1306 July 2013 Prepared by ARCADIS U.S., Inc. 630 Plaza Drive Suite 200 Highlands Ranch, Colorado 80129 Submitted to: Coastal Bend Bays &

More information

Coastal and Hydraulics Laboratory

Coastal and Hydraulics Laboratory ERDC/CHL TR-15-14 North Atlantic Coast Comprehensive Study (NACCS) Coastal Storm Model Simulations: Waves and Water Levels Coastal and Hydraulics Laboratory Mary A. Cialone, T. Chris Massey, Mary E. Anderson,

More information

Regional Wave Modeling & Evaluation for the North Atlantic Coast Comprehensive Study (NACCS)

Regional Wave Modeling & Evaluation for the North Atlantic Coast Comprehensive Study (NACCS) Regional Wave Modeling & Evaluation for the North Atlantic Coast Comprehensive Study (NACCS) R.E. Jensen, A. Cialone, T.J. Hesser and J.M. Smith USACE ERDC Coastal and Hydraulics Laboratory 14 th Waves

More information

GREENE COUNTY, PA. Revised Preliminary DFIRM Mapping FEMA. Kevin Donnelly, P.E., CFM GG3, Greenhorne & O Mara, Inc. April 10, 2013

GREENE COUNTY, PA. Revised Preliminary DFIRM Mapping FEMA. Kevin Donnelly, P.E., CFM GG3, Greenhorne & O Mara, Inc. April 10, 2013 GREENE COUNTY, PA Revised Preliminary DFIRM Mapping April 10, 2013 Kevin Donnelly, P.E., CFM GG3, Greenhorne & O Mara, Inc. Presentation Agenda Greene County DFIRM Overview September 30, 2010 DFIRM Countywide

More information

Glossary. ARC: American Red Cross. ASOS: Automated Surface Observing System (NWS & FAA) ATM: Abbreviated Transportation Model

Glossary. ARC: American Red Cross. ASOS: Automated Surface Observing System (NWS & FAA) ATM: Abbreviated Transportation Model A AFN Access and Functional Needs. People who may have additional needs before, during, and after an incident in functional areas, including but not limited to: maintaining independence, communication,

More information

Bathymetry Data and Models: Best Practices

Bathymetry Data and Models: Best Practices Bathymetry Data and Models: Best Practices Barry Eakins & Lisa Taylor The NOAA National Geophysical Data Center Over 600 data types - from the core of the Earth to the surface of the Sun NGDC Bathymetry

More information

Comparative Analysis of Hurricane Vulnerability in New Orleans and Baton Rouge. Dr. Marc Levitan LSU Hurricane Center. April 2003

Comparative Analysis of Hurricane Vulnerability in New Orleans and Baton Rouge. Dr. Marc Levitan LSU Hurricane Center. April 2003 Comparative Analysis of Hurricane Vulnerability in New Orleans and Baton Rouge Dr. Marc Levitan LSU Hurricane Center April 2003 In order to compare hurricane vulnerability of facilities located in different

More information

Summary Visualizations for Coastal Spatial Temporal Dynamics

Summary Visualizations for Coastal Spatial Temporal Dynamics Summary Visualizations for Coastal Spatial Temporal Dynamics October 24 2011 Providence, RI Sidharth Thakur 1, Laura Tateosian 2, Helena Mitasova, Eric Hardin, and Margery Overton 1. sthakur@renci.org,

More information

North Atlantic Coast Comprehensive Study Storm Simulation and Statistical Analysis Part II Production System

North Atlantic Coast Comprehensive Study Storm Simulation and Statistical Analysis Part II Production System North Atlantic Coast Comprehensive Study Storm Simulation and Statistical Analysis Part II Production System Chris Massey, Jay Ratcliff, and Mary Cialone USACE-ERDC Coastal & Hydraulics Lab Chris.Massey@usace.army.mil

More information

Mapping, monitoring, and modeling: USGS Coastal and Marine Geology activities along the Northeast coast

Mapping, monitoring, and modeling: USGS Coastal and Marine Geology activities along the Northeast coast Mapping, monitoring, and modeling: USGS Coastal and Marine Geology activities along the Northeast coast Coastal and Marine Geology Program Woods Hole Coastal and Marine Science Center St. Petersburg Coastal

More information

ASFPM - Rapid Floodplain Mapping

ASFPM - Rapid Floodplain Mapping ASFPM - Nicole Cominoli Hydraulic Engineer USACE - Omaha District mary.n.cominoli@usace.army.mil June 3, 2015 US Army Corps of Engineers Mitigation = Risk Informed Decisions 2 The National Flood Insurance

More information