Estimation of seasonal runoff using remote sensing satellite data

Size: px
Start display at page:

Download "Estimation of seasonal runoff using remote sensing satellite data"

Transcription

1 Remote Sensing and Geographic nformation Systems for Design and Operation of Water Resources Systems (Proceedings of Rabat Symposium S3, April 1997). AHS Pub!, no. 242, Estimation of seasonal runoff using remote sensing satellite data A. UNAL SORMAN METU, Civil Engineering Department, Water Resources Centre, Ankara, Turkey CEMAL SAYDAM TUB1TAKBLTEN, Remote Sensing Centre, Ankara, Turkey Abstract Snow hydrology has been a relatively less investigated part of the hydrologie cycle. n the last two decades there has been a growing interest and scientific research to study the role of melting snow for the estimation of runoff mainly contributing to the storage in large reservoirs and to make the procedure operational on a real time basis. The paper describes a project related to satellite snow cover mapping and snowmelt runoff computations, which is currently carried out in eastern Turkey. NTRODUCTON This study was initiated in 1996 through the NATO SfS fund support in order to study areal snow cover, its depth and water equivalent using a geographic information system (GS) database in conjunction with NOAA satellite imagery and ground measurements as well as hydrologie models for eastern Turkey. Such an approach has never been attempted in Turkey before because of a lack of financial support and unavailability of the satellite images. The daily availability, the easy access and the low costs make NOAA/AVHRR data advantageous especially in view of operational monitoring of snow covered areas in large scale basins. Convective methods of snow monitoring have been conducted with point measurement techniques at a microscale (<10 2 m). However, such point measurement techniques are rather difficult to implement at a meso or macroscale (> 10 4 m). Therefore, remote sensing (RS) and GS techniques provide a potentially efficient tool to measure the snow cover over large areas. RS and GS have the potential to provide input data for hydrologie models for runoff forecasting. Practical applications in recent years have shown that remotely sensed model variables are an important source of information for hydrologie models in order to make them operational. Seasonal snowmelt runoff estimates are extremely important in mountainous regions with semiarid climatic conditions, e.g. in eastern Turkey. Knowing the seasonal discharge volume in advance increases the flexibility in planning and operation of water resources systems as well as various water management decisions. For example, the optimum operation of Keban, Karakaya and Ataturk Dams which are located in the Euphrates River basin in Turkey (Fig. 1) depends on the estimated seasonal discharge volumes resulting from snowmelt during the spring months.

2 104 A. Unal Sorman & Cemal Say dam a z w o w J u >. en H O c_> c/] G boundary sin boundary Dam and reservo CO a x> a H 1 to CD,J2 Xi CO 3 <U pa co «

3 Estimation of seasonal runoff using remote sensing satellite data 105 OBJECTVES OF THE RESEARCH n this study, remotely sensed snow cover data obtained by the NOAA (AVHRR) system are used in regression analyses as the main predictor variable to estimate the runoff from snowmelt. One of the major contributors of water to the Keban Dam is the Karasu River which joins the Euphrates River at Keban Dam near the city of Elazig. Snowmelt from mid March to June contributes 6570% of the total annual runoff. The main focus of this paper is the determination of the snow covered areas and snow depth variations during the melting season using NO A A/AVHRR images, point measurements and a GS database. CURRENT RS/GS FACLTES AT THE MDDLE EAST TECHNCAL UNVERSTY (METU) At METU in Ankara, processing and analysis of RS/GS requirements as well as achieving and image processing is carried out by the TUBTAKBLTEN Remote Sensing Centre. The RSCentre is equipped with a SUN/Spark10 workstation with UNX operating system running software packages such as ARC/NFO and Arcview. n addition a A0 size digitizing tablet, an ink jet plotter and A4 laser printers which are linked to the SUN workstation via a network are available. The RSCentre will also be equipped with a real time NOAA AVHRR/HRPT (High Resolution Picture Transmission) receiving station. The installation and operation of a METEOSAT/WEFAX receiver for transmitting AVHRR data from the nstitute of Marine Sciences (MS) will be implemented. All data will be transferred and stored on CDROMs for further analysis. The MS which is located on the Mediterranean coast of Turkey has been receiving AVHRR data since 1994 within the context of the NATO SfS TUBlacksea project. The present collaboration with this institute provides access to existing NOAA (AVHRR) images if they are needed. METHODOLOGY n 1996 the AVHRR/HRPT data were received on a daily basis at MS. The data have been archived on 8 mm exabyte tapes and processed by a RS analyst. The processing of visible and near infrared bands under clear sky conditions will be performed next in order to detect the areal extend of snow cover over the Karasu River basin. The snow covered area will be used to derive the potential snow water equivalent by collecting additional snow data from ground observations. The depth, the density and the snow water equivalent of the snow cover are collected at limited numbers of snow courses by governmental organizations during the winter months at the time of maximum snow accumulation. Once the snow line is determined on satellite images, the information will be supported by ground observations undertaken by governmental organizations. The existing facilities at the RSCentre and the realtime receiving station which have been established are going to be used in the near future to process, analyse and

4 106 A. Unal Sorman & Cemal Say dam interpret NOAA AVHRR data which will be coupled with a digital terrain model (DTM). Digitized map data for the Karasu River basin at a scale of 1: have been received from the General Directorate of Military Mapping Service. Records from meteorological and climate stations were obtained from the State Meteorological Organization (SMO), runoff and snow data records (depth, density and snow water equivalent) were provided by the General Directorate of Electrical Power Research Survey and Development (EE) directly responsible to governmental organizations in charge of collection of ground survey data concerning snow and meteorological/climatological data. GS AND THE DATABASE Ground observations of snow depth, density and water equivalent are the primary data source for the calibration of the regression model. The runoff measurements collected at several gauges provide the database for the actual hydrologie information during snowmelt conditions that can be tied to the point observations of snow depth. On the other hand, topography, vegetation and landuse information from other data sources assembled in a GS will aid estimating the snow depth variation at a basin scale. Topographic components of the database include elevation, slope, aspect, basin boundaries and river networks. The topographic components are extracted using a digital terrain model (DTM) of the Karasu River basin. The DTM, the channel network and hydrological attributes are presented in Figs 2(a)(d) for a subbasin controlled by the runoff station The DTMs for the Karasu River and its tributary were produced by digitizing 50 m contour intervals from the topographic map storing the data as ARC/NFO files. The files were transferred to the SUN/Sparc workstation for registration on the national grid system (NGS). After that it is possible to undertake quantitative analysis using statistical techniques as areaelevation (hypsometric) curve analysis, slope aspect analysis as well as slopeexposure (combined effect of aspect and slope) analysis. The results of slope and aspect analyses can be taken into account in the snow line assessment in order to separate snow linealtitude for different aspects. The combined effect influences the snow distribution because of the variation of solar radiation per unit area is considered. NOAA/AVHRR DATA t is well known that NOAA/AVHRR data are transmitted to the Earth twice a day in five different channels. Daily AVHRR snow cover maps permit the development of RS applications in hydrology and water resources because of their low costs and frequent availability. The ground measured snow depths at representative locations will be correlated with the relative snow reflectance of the AVHRR visible bands. Therefore snow cover maps for the entire study area can be produced by supervised classification (Baumgartner, 1990; Baumgartner & Rango, 1995). Under cloudfree weather conditions, the daily AVHRR data will be useful for snow cover estimations using the visible and near infrared spectral bands. Such

5 Estimation of seasonal runoff using remote sensing satellite data 107 A! U o u > H ai Mli»Sb «Q o O

6 108 A. Unal Sorman & Cental Say dam weather conditions are now being sought for the winter months of the hydrologie year 1996 to derive snow cover maps for early model calibration. However, the correlation of snow reflectance and snow depth is restricted to shallow snow packs. Therefore, passive microwave data from the Special Sensor Microwave mager (SSM/) can be useful for the determination of snow depth and for the assessment of the snow water equivalent of dry snow even under cloudy conditions (Bailey et al., 1993). The analysis of AVHRR data will be useful for studies at regional (basin) scales in combination with a GS database. Comparable snow maps derived from SSM/ data can provide additional information especially by partially cloudy and overcast conditions. The areas of NOAA images which are partially cloud covered by can be replaced with information on snow covered and snow free areas through GS interpolations or with snow cover products from the SSM/ data analysis. The usefulness of each data source as discussed above under different atmospheric conditions is summarized in Table 1 : Table 1 Data source and cloud coverage. Data source Cloud free Partial cloud cover Total cloud cover AVHRR x AVHRR + GS x x SSM/ x x x The percentage of snow covered area is needed as input for snowmelt computations with the Snowmelt Runoff Model (SRM) (Martinec et al., 1994). Based on AVHRR image classification, it will be possible to obtain such data after the establishment of the satellite receiving station at METU. Up to now only images from 1994 till present, received by the nstitute of Marine Sciences (MS) can be processed to derive snow cover maps. For the evaluation, the spectral bands 1, 3 and 4 will be used. The reason for this selection is that band 3 and band 4 are indicators of the snow/cloud discrimination while band 1 describes only the snowpack (Lucas & Harrison, 1989; Baumgartner, 1990). ANALYSS OF RESULTS As a first step the relationship between snow cover variability and elevation, slope and aspect were investigated using a DTM. t is known that there is strong relationship between snow cover and elevation. n mountainous terrain there is a linear trend between snow depth and elevation (US Army Corps of Engineers, 1956). However, elevation alone is not sufficient to account for snow depth variations because other basin parameters (slope and aspect, vegetation and landuse) also influence the deposition of snow. Snow depth variations due to slope and aspect variations are important not only during the snowfall event, but also influence the snow cover distribution after the event. Such an analysis is done using oneway and twoway variance tests. The snow water equivalent values collected from six snow measuring stations throughout the recording period are processed for this analysis. The results shown in Tables 2a and

7 Estimation of seasonal runoff using remote sensing satellite data 109 a «= <s (N «1 is OS V ~ < en H 00 ~< if fc H H ^ O as as g.rt fi K.J C3 i l l 1 _; ^. CS S J "* en ^ V»H il s 5 1? A 5 «H > ^.2 S W "' a g.2 QQ n c~«ws 2 w w w H

8 110 A. Unal Sorman & Cemal Saydam 26/4/96 LU Z3 > LATTUDE,LONGTUDE 30/4/ LATTUDE.LONGTUDE 1/5/ LATTUDE,LONG!TUDE 50 Km Fig. 3 NOAA/AVHRR images with reflectance of snow data along on a trajectory for 26 April 1996, 30 April 1996 and 1 May 1996.

9 Estimation of seasonal runoff using remote sensing satellite data 111 2b indicate that there is a very high correlation between the snow water equivalent and the elevation. Models for snowmelt runoff estimation A mathematical relationship between the brightness level of the snow coverage on three consecutive days in 1996 is derived. As a result the variations of reflectance of snow are estimated with respect to time and space. Figure 3 shows this along a southwestnortheast trajectory of the basin boundary. A regression model is set up to get a first estimation of snowmelt runoff caused by factors such as snow depth or snow water equivalent and other available hydrologie records (runoff, precipitation) as well as the mean air temperature observed during spring and autumn. The input data matrix includes five predictor variables to represent the snow water equivalent at five snow gauging stations and a criterion variable, which is the snowmelt runoff depth for the four month period from March to June. This statistical operation is repeated for each of the runoff gauging stations (EE2154, EE2151 and EE2119) for which runoff records were available. A stepwise regression analysis is performed in order to develop the prediction model no. 1. A summary of this analysis is given in Table 3 for the runoff station EE2154 with a drainage basin size of 2886 km 2. The results of a similar regression analysis are presented in the same table showing the correlation between the depth of snowmelt runoff and the other independent parameters such as the runoff depth at the upstream gauging station (DS2101) and of all other predictor variables representing the snow water Table 3 Stepwise regression summary for snowmelt runoff depth at RGS2154; criterion variable g 254, with a drainage area of A = 2886 km 2. Partial regression coefficient Variable ntered Station D Station type Elev. R R 2 AR 2 s, SA F bo bi bj bj b4 MODEL 1 x s x 2 X, X, Kll K13 K08 K ~ ~ MODEL 2 X» x, X! Quoi Kll K08 RGS X, K x 2 K : Snow gauging station RGS : Runoff gauging station R = Correlation coef. R 2 = Determination coef. AR 2 = Difference Sc = Standard error Se / S, = mprovementtatio F = Fratio bo Regression constant bi bî bj D4 = Partial regression coef.

10 112 A. Unal Sorman & Cemal Say dam equivalent. The selection of the parameters in model no. 2 depends on the magnitude of the partial F at each step. Other selection criteria for the best model were the correlation coefficient (R), the standard error of estimate (S e ), the rationality of the intercept (b 0 ) and the rationality of the slope coefficients (Z?,s). CONCLUSONS (a) Satellite based RS has great potential in applications to determine the areal snow cover for large mountainous regions in Turkey. (b) Quantitative monitoring of snow covered areas with NOAA/AVHRR data can be improved with new hardware and software systems with the capabilities of today's computer technology. (c) Geocoding of the satellite data to the National Coordinate System enables overlaying and other analysis within the GS. (d) Categorization of AVHRR data for snow depth needs further investigation and the incorporation of ground measurements and GS data which provide a successful basis for monitoring the snow depth not only for cloud free days but also for partially cloudy days. REFERENCES Bailey J. O, Barrett, E. C, Beaumont, M. J. &. Herschy, R. W. (1993) Remote Sensing of Snow by Satellite. NRA, Bristol, R and D Project no 207. Baumgartner, M. F. (1990) Snowmelt runoff simulations based on snow cover mapping using digital Landsat MSS and NOAAdata. Tech. Report HL16, US Dept of Agriculture, ARS, Hydrology Lab. Baumgartner, M. F. & Rango, A. (1995) A microcomputer based Alpine snow cover analysis system. Phologram. Engng and Remote Sensing, 61(12), Lucas, R. M. & Harrison, A. R. (1989) A satellite technique for operational snow monitoring in the UK. Final Report, RSU, University of Bristol, UK. Martinec, J., Rango, A. & Roberts, R. (1994) Snowmelt Runoff Model User's Manual, (ed. by M. F. Baumgartner). Geographica Benensia no. P29, Dept of Geography, Univ. of Bern, Switzerland. US Army Corps of Engineers (1956) Snow Hydrology. US Dept of Commerce, Washington DC, USA.

RELATIVE IMPORTANCE OF GLACIER CONTRIBUTIONS TO STREAMFLOW IN A CHANGING CLIMATE

RELATIVE IMPORTANCE OF GLACIER CONTRIBUTIONS TO STREAMFLOW IN A CHANGING CLIMATE Proceedings of the Second IASTED International Conference WATER RESOURCE MANAGEMENT August 20-22, 2007, Honolulu, Hawaii, USA ISGN Hardcopy: 978-0-88986-679-9 CD: 978-0-88-986-680-5 RELATIVE IMPORTANCE

More information

A HISTORICAL PERSPECTIVE ON THE SNOW STUDIES IN TURKEY. Prof.Dr. A. Ünal ŞORMAN 1,2

A HISTORICAL PERSPECTIVE ON THE SNOW STUDIES IN TURKEY. Prof.Dr. A. Ünal ŞORMAN 1,2 A HISTORICAL PERSPECTIVE ON THE SNOW STUDIES IN TURKEY Prof.Dr. A. Ünal ŞORMAN 1,2 Aynur Şensoy 3, Arda Şorman 3, Gökçen Uysal 3, Cansaran Ertaş 3, Bulut Akkol 3, Cihan Çoşkun 3 1 N e a r E a s t U n i

More information

EVALUATION AND MONITORING OF SNOWCOVER WATER RESOURCES IN CARPATHIAN BASINS USING GEOGRAPHIC INFORMATION AND SATELLITE DATA

EVALUATION AND MONITORING OF SNOWCOVER WATER RESOURCES IN CARPATHIAN BASINS USING GEOGRAPHIC INFORMATION AND SATELLITE DATA EVALUATION AND MONITORING OF SNOWCOVER WATER RESOURCES IN CARPATHIAN BASINS USING GEOGRAPHIC INFORMATION AND SATELLITE DATA Gheorghe Stancalie, Simona Catana, Anisoara Iordache National Institute of Meteorology

More information

The Importance of Snowmelt Runoff Modeling for Sustainable Development and Disaster Prevention

The Importance of Snowmelt Runoff Modeling for Sustainable Development and Disaster Prevention The Importance of Snowmelt Runoff Modeling for Sustainable Development and Disaster Prevention Muzafar Malikov Space Research Centre Academy of Sciences Republic of Uzbekistan Water H 2 O Gas - Water Vapor

More information

Using MODIS imagery to validate the spatial representation of snow cover extent obtained from SWAT in a data-scarce Chilean Andean watershed

Using MODIS imagery to validate the spatial representation of snow cover extent obtained from SWAT in a data-scarce Chilean Andean watershed Using MODIS imagery to validate the spatial representation of snow cover extent obtained from SWAT in a data-scarce Chilean Andean watershed Alejandra Stehr 1, Oscar Link 2, Mauricio Aguayo 1 1 Centro

More information

Operational snowmelt runoff forecasting in the Spanish Pyrenees using the snowmelt runoff model

Operational snowmelt runoff forecasting in the Spanish Pyrenees using the snowmelt runoff model HYDROLOGICAL PROCESSES Hydrol. Process. 16, 1583 1591 (22) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 1.12/hyp.122 Operational snowmelt runoff forecasting in the Spanish

More information

Modelling runoff from large glacierized basins in the Karakoram Himalaya using remote sensing of the transient snowline

Modelling runoff from large glacierized basins in the Karakoram Himalaya using remote sensing of the transient snowline Remote Sensing and Hydrology 2000 (Proceedings of a symposium held at Santa Fe, New Mexico, USA, April 2000). IAHS Publ. no. 267, 2001. 99 Modelling runoff from large glacierized basins in the Karakoram

More information

ESTIMATING SNOWMELT CONTRIBUTION FROM THE GANGOTRI GLACIER CATCHMENT INTO THE BHAGIRATHI RIVER, INDIA ABSTRACT INTRODUCTION

ESTIMATING SNOWMELT CONTRIBUTION FROM THE GANGOTRI GLACIER CATCHMENT INTO THE BHAGIRATHI RIVER, INDIA ABSTRACT INTRODUCTION ESTIMATING SNOWMELT CONTRIBUTION FROM THE GANGOTRI GLACIER CATCHMENT INTO THE BHAGIRATHI RIVER, INDIA Rodney M. Chai 1, Leigh A. Stearns 2, C. J. van der Veen 1 ABSTRACT The Bhagirathi River emerges from

More information

Prediction of Snow Water Equivalent in the Snake River Basin

Prediction of Snow Water Equivalent in the Snake River Basin Hobbs et al. Seasonal Forecasting 1 Jon Hobbs Steve Guimond Nate Snook Meteorology 455 Seasonal Forecasting Prediction of Snow Water Equivalent in the Snake River Basin Abstract Mountainous regions of

More information

INFLUENCE OF SNOW COVER RECESSION ON AN ALPINE ECOLOGICAL SYSTEM *)

INFLUENCE OF SNOW COVER RECESSION ON AN ALPINE ECOLOGICAL SYSTEM *) INFLUENCE OF SNOW COVER RECESSION ON AN ALPINE ECOLOGICAL SYSTEM *) Markus Keller and Klaus Seidel Institut fuer Kommunikationstechnik der ETHZ CH 8092 Zuerich, Switzerland ABSTRACT In a worldwide UNESCO-program

More information

HyMet Company. Streamflow and Energy Generation Forecasting Model Columbia River Basin

HyMet Company. Streamflow and Energy Generation Forecasting Model Columbia River Basin HyMet Company Streamflow and Energy Generation Forecasting Model Columbia River Basin HyMet Inc. Courthouse Square 19001 Vashon Hwy SW Suite 201 Vashon Island, WA 98070 Phone: 206-463-1610 Columbia River

More information

Water information system advances American River basin. Roger Bales, Martha Conklin, Steve Glaser, Bob Rice & collaborators UC: SNRI & CITRIS

Water information system advances American River basin. Roger Bales, Martha Conklin, Steve Glaser, Bob Rice & collaborators UC: SNRI & CITRIS Water information system advances American River basin Roger Bales, Martha Conklin, Steve Glaser, Bob Rice & collaborators UC: SNRI & CITRIS Opportunities Unprecedented level of information from low-cost

More information

Watershed simulation and forecasting system with a GIS-oriented user interface

Watershed simulation and forecasting system with a GIS-oriented user interface HydroGIS 96: Application of Geographic Information Systems in Hydrology and Water Resources Management (Proceedings of the Vienna Conference, April 1996). IAHS Publ. no. 235, 1996. 493 Watershed simulation

More information

Novel Snotel Data Uses: Detecting Change in Snowpack Development Controls, and Remote Basin Snow Depth Modeling

Novel Snotel Data Uses: Detecting Change in Snowpack Development Controls, and Remote Basin Snow Depth Modeling Novel Snotel Data Uses: Detecting Change in Snowpack Development Controls, and Remote Basin Snow Depth Modeling OVERVIEW Mark Losleben and Tyler Erickson INSTAAR, University of Colorado Mountain Research

More information

Central Asia Regional Flash Flood Guidance System 4-6 October Hydrologic Research Center A Nonprofit, Public-Benefit Corporation

Central Asia Regional Flash Flood Guidance System 4-6 October Hydrologic Research Center A Nonprofit, Public-Benefit Corporation http://www.hrcwater.org Central Asia Regional Flash Flood Guidance System 4-6 October 2016 Hydrologic Research Center A Nonprofit, Public-Benefit Corporation FFGS Snow Components Snow Accumulation and

More information

Flood Forecasting Tools for Ungauged Streams in Alberta: Status and Lessons from the Flood of 2013

Flood Forecasting Tools for Ungauged Streams in Alberta: Status and Lessons from the Flood of 2013 Flood Forecasting Tools for Ungauged Streams in Alberta: Status and Lessons from the Flood of 2013 John Pomeroy, Xing Fang, Kevin Shook, Tom Brown Centre for Hydrology, University of Saskatchewan, Saskatoon

More information

Graduate Courses Meteorology / Atmospheric Science UNC Charlotte

Graduate Courses Meteorology / Atmospheric Science UNC Charlotte Graduate Courses Meteorology / Atmospheric Science UNC Charlotte In order to inform prospective M.S. Earth Science students as to what graduate-level courses are offered across the broad disciplines of

More information

SNOW AND GLACIER HYDROLOGY

SNOW AND GLACIER HYDROLOGY SNOW AND GLACIER HYDROLOGY by PRATAP SINGH National Institute of Hydrology, Roorkee, India and VIJAY P. SINGH Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge,

More information

Effects of forest cover and environmental variables on snow accumulation and melt

Effects of forest cover and environmental variables on snow accumulation and melt Effects of forest cover and environmental variables on snow accumulation and melt Mariana Dobre, William J. Elliot, Joan Q. Wu, Timothy E. Link, Ina S. Miller Abstract The goal of this study was to assess

More information

MONITORING OF SEASONAL SNOW COVER IN YAMUNA BASIN OF UTTARAKAHND HIMALAYA USING REMOTE SENSING TECHNIQUES

MONITORING OF SEASONAL SNOW COVER IN YAMUNA BASIN OF UTTARAKAHND HIMALAYA USING REMOTE SENSING TECHNIQUES MONITORING OF SEASONAL SNOW COVER IN YAMUNA BASIN OF UTTARAKAHND HIMALAYA USING REMOTE SENSING TECHNIQUES Anju Panwar, Devendra Singh Uttarakhand Space Application Centre, Dehradun, India ABSTRACT Himalaya

More information

Storm and Runoff Calculation Standard Review Snowmelt and Climate Change

Storm and Runoff Calculation Standard Review Snowmelt and Climate Change Storm and Runoff Calculation Standard Review Snowmelt and Climate Change Presented by Don Moss, M.Eng., P.Eng. and Jim Hartman, P.Eng. Greenland International Consulting Ltd. Map from Google Maps TOBM

More information

THE USE OF MERIS SPECTROMETER DATA IN SEASONAL SNOW MAPPING

THE USE OF MERIS SPECTROMETER DATA IN SEASONAL SNOW MAPPING THE USE OF MERIS SPECTROMETER DATA IN SEASONAL SNOW MAPPING Miia Eskelinen, Sari Metsämäki The Finnish Environment Institute Geoinformatics and Land use division P.O.Box 140, FI 00251 Helsinki, Finland

More information

An Overview of Operations at the West Gulf River Forecast Center Gregory Waller Service Coordination Hydrologist NWS - West Gulf River Forecast Center

An Overview of Operations at the West Gulf River Forecast Center Gregory Waller Service Coordination Hydrologist NWS - West Gulf River Forecast Center National Weather Service West Gulf River Forecast Center An Overview of Operations at the West Gulf River Forecast Center Gregory Waller Service Coordination Hydrologist NWS - West Gulf River Forecast

More information

January 2011 Calendar Year Runoff Forecast

January 2011 Calendar Year Runoff Forecast January 2011 Calendar Year Runoff Forecast 2010 Runoff Year Calendar Year 2010 was the third highest year of runoff in the Missouri River Basin above Sioux City with 38.8 MAF, behind 1978 and 1997 which

More information

Souris River Basin Spring Runoff Outlook As of March 15, 2018

Souris River Basin Spring Runoff Outlook As of March 15, 2018 Souris River Basin Spring Runoff Outlook As of March 15, 2018 Prepared by: Flow Forecasting & Operations Planning Water Security Agency Basin Conditions Summer rainfall in 2017 in the Saskatchewan portion

More information

Presented by Jerry A. Gomez, P.E. National Hydropower Association Northeast Regional Meeting - September 17, 2009

Presented by Jerry A. Gomez, P.E. National Hydropower Association Northeast Regional Meeting - September 17, 2009 Presented by Jerry A. Gomez, P.E. National Hydropower Association Northeast Regional Meeting - September 17, 2009 Defining Probable Maximum Precipitation (PMP) PMP is the theoretically greatest depth of

More information

HYDROLOGIC AND WATER RESOURCES EVALUATIONS FOR SG. LUI WATERSHED

HYDROLOGIC AND WATER RESOURCES EVALUATIONS FOR SG. LUI WATERSHED HYDROLOGIC AND WATER RESOURCES EVALUATIONS FOR SG. LUI WATERSHED 1.0 Introduction The Sg. Lui watershed is the upper part of Langat River Basin, in the state of Selangor which located approximately 20

More information

Regionalization in Hydrology (Proceedings of a conference held at Braunschweig, March 1997). IAHS Publ. no. 254,

Regionalization in Hydrology (Proceedings of a conference held at Braunschweig, March 1997). IAHS Publ. no. 254, Regionalization in Hydrology (Proceedings of a conference held at Braunschweig, March 1997). IAHS Publ. no. 254, 1999. 131 Regionalization of évapotranspiration modelling using multitemporal spectral unmixing

More information

Snowmelt runoff forecasts in Colorado with remote sensing

Snowmelt runoff forecasts in Colorado with remote sensing Hydrology in Mountainous Regions. I - Hydrologjcal Measurements; the Water Cycle (Proceedings of two Lausanne Symposia, August 1990). IAHS Publ. no. 193, 1990. Snowmelt runoff forecasts in Colorado with

More information

Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting

Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting IOP Conference Series: Earth and Environmental Science Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting To cite this article: Ph Stanzel et al

More information

ENGRG Introduction to GIS

ENGRG Introduction to GIS ENGRG 59910 Introduction to GIS Michael Piasecki March 17, 2014 Lecture 08: Terrain Analysis Outline: Terrain Analysis Earth Surface Representation Contour TIN Mass Points Digital Elevation Models Slope

More information

Determination of flood risks in the yeniçiftlik stream basin by using remote sensing and GIS techniques

Determination of flood risks in the yeniçiftlik stream basin by using remote sensing and GIS techniques Determination of flood risks in the yeniçiftlik stream basin by using remote sensing and GIS techniques İrfan Akar University of Atatürk, Institute of Social Sciences, Erzurum, Turkey D. Maktav & C. Uysal

More information

Evaluating and improving the developed algorithms for effective snow cover mapping on mountainous terrain for hydrological applications

Evaluating and improving the developed algorithms for effective snow cover mapping on mountainous terrain for hydrological applications Satellite Application Facility for Hydrology Final Report on the Visiting Scientist activities: Evaluating and improving the developed algorithms for effective snow cover mapping on mountainous terrain

More information

Snowcover interaction with climate, topography & vegetation in mountain catchments

Snowcover interaction with climate, topography & vegetation in mountain catchments Snowcover interaction with climate, topography & vegetation in mountain catchments DANNY MARKS Northwest Watershed Research Center USDA-Agricultural Agricultural Research Service Boise, Idaho USA RCEW

More information

VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING

VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING Niilo Siljamo, Otto Hyvärinen Finnish Meteorological Institute, Erik Palménin aukio 1, P.O.Box 503, FI-00101 HELSINKI Abstract Hydrological

More information

The following information is provided for your use in describing climate and water supply conditions in the West as of April 1, 2003.

The following information is provided for your use in describing climate and water supply conditions in the West as of April 1, 2003. Natural Resources Conservation Service National Water and Climate Center 101 SW Main Street, Suite 1600 Portland, OR 97204-3224 Date: April 8, 2003 Subject: April 1, 2003 Western Snowpack Conditions and

More information

Commentary on comparison of MODIS snow cover and albedo products with ground observations over the mountainous terrain of Turkey

Commentary on comparison of MODIS snow cover and albedo products with ground observations over the mountainous terrain of Turkey Author(s) 2007. This work is licensed under a Creative Commons License. Hydrology and Earth System Sciences Commentary on comparison of MODIS snow cover and albedo products with ground observations over

More information

Summary of the 2017 Spring Flood

Summary of the 2017 Spring Flood Ottawa River Regulation Planning Board Commission de planification de la régularisation de la rivière des Outaouais The main cause of the exceptional 2017 spring flooding can be described easily in just

More information

Hydrologic Modelling of the Upper Malaprabha Catchment using ArcView SWAT

Hydrologic Modelling of the Upper Malaprabha Catchment using ArcView SWAT Hydrologic Modelling of the Upper Malaprabha Catchment using ArcView SWAT Technical briefs are short summaries of the models used in the project aimed at nontechnical readers. The aim of the PES India

More information

ENGRG Introduction to GIS

ENGRG Introduction to GIS ENGRG 59910 Introduction to GIS Michael Piasecki November 17, 2017 Lecture 11: Terrain Analysis Outline: Terrain Analysis Earth Surface Representation Contour TIN Mass Points Digital Elevation Models Slope

More information

IMPLEMENTATION OF AN ICE JAM PREDICTOR WITH USER INTERFACE

IMPLEMENTATION OF AN ICE JAM PREDICTOR WITH USER INTERFACE Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice Dunedin, New Zealand, 2nd 6th December 2002 International Association of Hydraulic Engineering and Research IMPLEMENTATION

More information

Missouri River Basin Water Management

Missouri River Basin Water Management Missouri River Basin Water Management US Army Corps of Engineers Missouri River Navigator s Meeting February 12, 2014 Bill Doan, P.E. Missouri River Basin Water Management US Army Corps of Engineers BUILDING

More information

MODELING STUDIES WITH HEC-HMS AND RUNOFF SCENARIOS IN YUVACIK BASIN, TURKIYE

MODELING STUDIES WITH HEC-HMS AND RUNOFF SCENARIOS IN YUVACIK BASIN, TURKIYE MODELING STUDIES WITH HEC-HMS AND RUNOFF SCENARIOS IN YUVACIK BASIN, TURKIYE Yener, M.K. Şorman, A.Ü. Department of Civil Engineering, Middle East Technical University, 06531 Ankara/Türkiye Şorman, A.A.

More information

Application of Satellite Data for Flood Forecasting and Early Warning in the Mekong River Basin in South-east Asia

Application of Satellite Data for Flood Forecasting and Early Warning in the Mekong River Basin in South-east Asia MEKONG RIVER COMMISSION Vientiane, Lao PDR Application of Satellite Data for Flood Forecasting and Early Warning in the Mekong River Basin in South-east Asia 4 th World Water Forum March 2006 Mexico City,

More information

SNOW COVER DURATION MAPS IN ALPINE REGIONS FROM REMOTE SENSING DATA

SNOW COVER DURATION MAPS IN ALPINE REGIONS FROM REMOTE SENSING DATA SNOW COVER DURATION MAPS IN ALPINE REGIONS FROM REMOTE SENSING DATA D. Brander, K. Seidel, M. Zurflüh and Ch. Huggel Computer Vision Group, Communication Technology Laboratory, ETH, Zurich, Switzerland,

More information

Paper presented at the 9th AGILE Conference on Geographic Information Science, Visegrád, Hungary,

Paper presented at the 9th AGILE Conference on Geographic Information Science, Visegrád, Hungary, Paper presented at the 9th AGILE Conference on Geographic Information Science, Visegrád, Hungary, 2006 21 Validation of MODIS Snowcover Products in Romania. Methodology and conclusions C. Flueraru, G.

More information

PLANNED UPGRADE OF NIWA S HIGH INTENSITY RAINFALL DESIGN SYSTEM (HIRDS)

PLANNED UPGRADE OF NIWA S HIGH INTENSITY RAINFALL DESIGN SYSTEM (HIRDS) PLANNED UPGRADE OF NIWA S HIGH INTENSITY RAINFALL DESIGN SYSTEM (HIRDS) G.A. Horrell, C.P. Pearson National Institute of Water and Atmospheric Research (NIWA), Christchurch, New Zealand ABSTRACT Statistics

More information

Investigation of Relationship Between Rainfall and Vegetation Index by Using NOAA/AVHRR Satellite Images

Investigation of Relationship Between Rainfall and Vegetation Index by Using NOAA/AVHRR Satellite Images World Applied Sciences Journal 14 (11): 1678-1682, 2011 ISSN 1818-4952 IDOSI Publications, 2011 Investigation of Relationship Between Rainfall and Vegetation Index by Using NOAA/AVHRR Satellite Images

More information

Studying snow cover in European Russia with the use of remote sensing methods

Studying snow cover in European Russia with the use of remote sensing methods 40 Remote Sensing and GIS for Hydrology and Water Resources (IAHS Publ. 368, 2015) (Proceedings RSHS14 and ICGRHWE14, Guangzhou, China, August 2014). Studying snow cover in European Russia with the use

More information

MODULE 8 LECTURE NOTES 2 REMOTE SENSING APPLICATIONS IN RAINFALL-RUNOFF MODELLING

MODULE 8 LECTURE NOTES 2 REMOTE SENSING APPLICATIONS IN RAINFALL-RUNOFF MODELLING MODULE 8 LECTURE NOTES 2 REMOTE SENSING APPLICATIONS IN RAINFALL-RUNOFF MODELLING 1. Introduction The most common application of the remote sensing techniques in the rainfall-runoff studies is the estimation

More information

Appendix D. Model Setup, Calibration, and Validation

Appendix D. Model Setup, Calibration, and Validation . Model Setup, Calibration, and Validation Lower Grand River Watershed TMDL January 1 1. Model Selection and Setup The Loading Simulation Program in C++ (LSPC) was selected to address the modeling needs

More information

Missouri River Basin Water Management Monthly Update

Missouri River Basin Water Management Monthly Update Missouri River Basin Water Management Monthly Update Participating Agencies 255 255 255 237 237 237 0 0 0 217 217 217 163 163 163 200 200 200 131 132 122 239 65 53 80 119 27 National Oceanic and Atmospheric

More information

REMOTE SENSING OF SNOW COVER FOR OPERATIONAL FORECASTS *

REMOTE SENSING OF SNOW COVER FOR OPERATIONAL FORECASTS * REMOTE SENSING OF SNOW COVER FOR OPERATIONAL FORECASTS * K. Seidel, J. Martinec, C. Steinmeier and W. Bruesch Remote Sensing Group Institute for Communication Technology Swiss Federal Institute of Technology

More information

Short Communication Mapping snow characteristics based on snow observation probability

Short Communication Mapping snow characteristics based on snow observation probability INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 27: 1277 1286 (27) Published online 22 May 27 in Wiley InterScience (www.interscience.wiley.com) DOI: 1.12/joc.1494 Short Communication Mapping snow

More information

Using satellite-derived snow cover data to implement a snow analysis in the Met Office global NWP model

Using satellite-derived snow cover data to implement a snow analysis in the Met Office global NWP model Using satellite-derived snow cover data to implement a snow analysis in the Met Office global NWP model Pullen, C Jones, and G Rooney Met Office, Exeter, UK amantha.pullen@metoffice.gov.uk 1. Introduction

More information

Climatology of rainfall observed from satellite and surface data in the Mediterranean basin

Climatology of rainfall observed from satellite and surface data in the Mediterranean basin Remote Sensing and Geographic Information Systems for Design and Operation of Water Resources Systems (Proceedings of Rabat Symposium S3, April 1997). IAHS Publ. no. 242, 1997 165 Climatology of rainfall

More information

KEY WORDS: Palmer Meteorological Drought Index, SWAP, Kriging spatial analysis and Digital Map.

KEY WORDS: Palmer Meteorological Drought Index, SWAP, Kriging spatial analysis and Digital Map. PALMER METEOROLOGICAL DROUGHT CLASSIFICATION USING TECHNIQUES OF GEOGRAPHIC INFORMATION SYSTEM IN THAILAND S. Baimoung, W. Waranuchit, S. Prakanrat, P. Amatayakul, N. Sukhanthamat, A. Yuthaphan, A. Pyomjamsri,

More information

The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season.

The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season. The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season. Izabela Dyras, Bożena Łapeta, Danuta Serafin-Rek Satellite Research Department, Institute of Meteorology and

More information

Modeling of peak inflow dates for a snowmelt dominated basin Evan Heisman. CVEN 6833: Advanced Data Analysis Fall 2012 Prof. Balaji Rajagopalan

Modeling of peak inflow dates for a snowmelt dominated basin Evan Heisman. CVEN 6833: Advanced Data Analysis Fall 2012 Prof. Balaji Rajagopalan Modeling of peak inflow dates for a snowmelt dominated basin Evan Heisman CVEN 6833: Advanced Data Analysis Fall 2012 Prof. Balaji Rajagopalan The Dworshak reservoir, a project operated by the Army Corps

More information

Drought Monitoring with Hydrological Modelling

Drought Monitoring with Hydrological Modelling st Joint EARS/JRC International Drought Workshop, Ljubljana,.-5. September 009 Drought Monitoring with Hydrological Modelling Stefan Niemeyer IES - Institute for Environment and Sustainability Ispra -

More information

CARFFG System Development and Theoretical Background

CARFFG System Development and Theoretical Background CARFFG Steering Committee Meeting 15 SEPTEMBER 2015 Astana, KAZAKHSTAN CARFFG System Development and Theoretical Background Theresa M. Modrick, PhD Hydrologic Research Center Key Technical Components -

More information

Enabling Climate Information Services for Europe

Enabling Climate Information Services for Europe Enabling Climate Information Services for Europe Report DELIVERABLE 6.5 Report on past and future stream flow estimates coupled to dam flow evaluation and hydropower production potential Activity: Activity

More information

RUNOFF FORECASTS IN AN ALPINE CATCHMENT BY SATELLITE SNOW COVER MONITORING

RUNOFF FORECASTS IN AN ALPINE CATCHMENT BY SATELLITE SNOW COVER MONITORING BIWl-TR-115 MAY 1990 RUNOFF FORECASTS IN AN ALPINE CATCHMENT BY SATELLITE SNOW COVER MONITORING R. Baumann, U. Burkart, K. Seidel Research sponsored by the Swiss National Science Foundation Electric Company

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION Mean annual precipitation (MAP) is perhaps the most widely used variable in hydrological design, water resources planning and agrohydrology. In the past two decades one of the basic

More information

P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES. Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski #

P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES. Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski # P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski # *Cooperative Institute for Meteorological Satellite Studies, University of

More information

An investigation of sampling efficiency using historical data. Patrick Didier Advisor: Justine Blanford

An investigation of sampling efficiency using historical data. Patrick Didier Advisor: Justine Blanford An investigation of sampling efficiency using historical data Patrick Didier Advisor: Justine Blanford Overview Introduction to Airborne Snow Survey program Goals of the Capstone Project Methods and Expected

More information

Oregon Water Conditions Report May 1, 2017

Oregon Water Conditions Report May 1, 2017 Oregon Water Conditions Report May 1, 2017 Mountain snowpack in the higher elevations has continued to increase over the last two weeks. Statewide, most low and mid elevation snow has melted so the basin

More information

Precipitation processes in the Middle East

Precipitation processes in the Middle East Precipitation processes in the Middle East J. Evans a, R. Smith a and R.Oglesby b a Dept. Geology & Geophysics, Yale University, Connecticut, USA. b Global Hydrology and Climate Center, NASA, Alabama,

More information

Digital Elevation Models. Using elevation data in raster format in a GIS

Digital Elevation Models. Using elevation data in raster format in a GIS Digital Elevation Models Using elevation data in raster format in a GIS What is a Digital Elevation Model (DEM)? Digital representation of topography Model based on scale of original data Commonly a raster

More information

CHANGE DETECTION USING REMOTE SENSING- LAND COVER CHANGE ANALYSIS OF THE TEBA CATCHMENT IN SPAIN (A CASE STUDY)

CHANGE DETECTION USING REMOTE SENSING- LAND COVER CHANGE ANALYSIS OF THE TEBA CATCHMENT IN SPAIN (A CASE STUDY) CHANGE DETECTION USING REMOTE SENSING- LAND COVER CHANGE ANALYSIS OF THE TEBA CATCHMENT IN SPAIN (A CASE STUDY) Sharda Singh, Professor & Programme Director CENTRE FOR GEO-INFORMATICS RESEARCH AND TRAINING

More information

Development of the Canadian Precipitation Analysis (CaPA) and the Canadian Land Data Assimilation System (CaLDAS)

Development of the Canadian Precipitation Analysis (CaPA) and the Canadian Land Data Assimilation System (CaLDAS) Development of the Canadian Precipitation Analysis (CaPA) and the Canadian Land Data Assimilation System (CaLDAS) Marco L. Carrera, Vincent Fortin and Stéphane Bélair Meteorological Research Division Environment

More information

INTERPOLATING SURFACE AIR TEMPERATURE FOR USE IN SEMI-DISTRIBUTED SNOWMELT RUNOFF MODELS

INTERPOLATING SURFACE AIR TEMPERATURE FOR USE IN SEMI-DISTRIBUTED SNOWMELT RUNOFF MODELS INTERPOLATING SURFACE AIR TEMPERATURE FOR USE IN SEMI-DISTRIBUTED SNOWMELT RUNOFF MODELS Best Poster Award, WSC 2005 - T. R. Blandford, B. J. Harshburger, K. S. Humes, B. C. Moore, V. P. Walden 1 ABSTRACT

More information

Zachary Holden - US Forest Service Region 1, Missoula MT Alan Swanson University of Montana Dept. of Geography David Affleck University of Montana

Zachary Holden - US Forest Service Region 1, Missoula MT Alan Swanson University of Montana Dept. of Geography David Affleck University of Montana Progress modeling topographic variation in temperature and moisture for inland Northwest forest management Zachary Holden - US Forest Service Region 1, Missoula MT Alan Swanson University of Montana Dept.

More information

Modelling and Data Assimilation Needs for improving the representation of Cold Processes at ECMWF

Modelling and Data Assimilation Needs for improving the representation of Cold Processes at ECMWF Modelling and Data Assimilation Needs for improving the representation of Cold Processes at ECMWF presented by Gianpaolo Balsamo with contributions from Patricia de Rosnay, Richard Forbes, Anton Beljaars,

More information

Flood Risk Assessment

Flood Risk Assessment Flood Risk Assessment February 14, 2008 Larry Schick Army Corps of Engineers Seattle District Meteorologist General Assessment As promised, La Nina caused an active winter with above to much above normal

More information

Preliminary Runoff Outlook February 2018

Preliminary Runoff Outlook February 2018 Preliminary Runoff Outlook February 2018 Prepared by: Flow Forecasting & Operations Planning Water Security Agency General Overview The Water Security Agency (WSA) is preparing for 2018 spring runoff including

More information

Application of a statistical method for medium-term rainfall prediction

Application of a statistical method for medium-term rainfall prediction Climate Variability and Change Hydrological Impacts (Proceedings of the Fifth FRIEND World Conference held at Havana, Cuba, November 2006), IAHS Publ. 308, 2006. 275 Application of a statistical method

More information

The indicator can be used for awareness raising, evaluation of occurred droughts, forecasting future drought risks and management purposes.

The indicator can be used for awareness raising, evaluation of occurred droughts, forecasting future drought risks and management purposes. INDICATOR FACT SHEET SSPI: Standardized SnowPack Index Indicator definition The availability of water in rivers, lakes and ground is mainly related to precipitation. However, in the cold climate when precipitation

More information

Investigation of Monthly Pan Evaporation in Turkey with Geostatistical Technique

Investigation of Monthly Pan Evaporation in Turkey with Geostatistical Technique Investigation of Monthly Pan Evaporation in Turkey with Geostatistical Technique Hatice Çitakoğlu 1, Murat Çobaner 1, Tefaruk Haktanir 1, 1 Department of Civil Engineering, Erciyes University, Kayseri,

More information

Gridding of precipitation and air temperature observations in Belgium. Michel Journée Royal Meteorological Institute of Belgium (RMI)

Gridding of precipitation and air temperature observations in Belgium. Michel Journée Royal Meteorological Institute of Belgium (RMI) Gridding of precipitation and air temperature observations in Belgium Michel Journée Royal Meteorological Institute of Belgium (RMI) Gridding of meteorological data A variety of hydrologic, ecological,

More information

Development of the Hydrologic Model

Development of the Hydrologic Model Kick-off meeting on enhancing hydrological data management and exchange procedures Water and Climate Adaptation Plan (WATCAP) for Sava River Basin Development of the Hydrologic Model David Heywood Team

More information

Automatic mapping of snow cover depletion curves using optical remote sensing data under conditions of frequent cloud cover and temporary snow

Automatic mapping of snow cover depletion curves using optical remote sensing data under conditions of frequent cloud cover and temporary snow HYDROLOGICAL PROCESSES Hydrol. Process. (2007) Published online in Wiley InterScience (www.interscience.wiley.com).6891 Automatic mapping of snow cover depletion curves using optical remote sensing data

More information

Monitoring Sea Surface temperature change at the Caribbean Sea, using AVHRR images. Y. Santiago Pérez, and R. Mendez Yulfo

Monitoring Sea Surface temperature change at the Caribbean Sea, using AVHRR images. Y. Santiago Pérez, and R. Mendez Yulfo Monitoring Sea Surface temperature change at the Caribbean Sea, using AVHRR images. Y. Santiago Pérez, and R. Mendez Yulfo Department of Geology, University of Puerto Rico Mayagüez Campus, P.O. Box 9017,

More information

Land Data Assimilation at NCEP NLDAS Project Overview, ECMWF HEPEX 2004

Land Data Assimilation at NCEP NLDAS Project Overview, ECMWF HEPEX 2004 Dag.Lohmann@noaa.gov, Land Data Assimilation at NCEP NLDAS Project Overview, ECMWF HEPEX 2004 Land Data Assimilation at NCEP: Strategic Lessons Learned from the North American Land Data Assimilation System

More information

1.Introduction 2.Relocation Information 3.Tourism 4.Population & Demographics 5.Education 6.Employment & Income 7.City Fees & Taxes 8.

1.Introduction 2.Relocation Information 3.Tourism 4.Population & Demographics 5.Education 6.Employment & Income 7.City Fees & Taxes 8. 1.Introduction 2.Relocation Information 3.Tourism 4.Population & Demographics 5.Education 6.Employment & Income 7.City Fees & Taxes 8.Recreation & Activities 9.Climate Data 10.Economic Development History

More information

4. GIS Implementation of the TxDOT Hydrology Extensions

4. GIS Implementation of the TxDOT Hydrology Extensions 4. GIS Implementation of the TxDOT Hydrology Extensions A Geographic Information System (GIS) is a computer-assisted system for the capture, storage, retrieval, analysis and display of spatial data. It

More information

VIC Hydrology Model Training Workshop Part II: Building a model

VIC Hydrology Model Training Workshop Part II: Building a model VIC Hydrology Model Training Workshop Part II: Building a model 11-12 Oct 2011 Centro de Cambio Global Pontificia Universidad Católica de Chile Ed Maurer Civil Engineering Department Santa Clara University

More information

Operational Perspectives on Hydrologic Model Data Assimilation

Operational Perspectives on Hydrologic Model Data Assimilation Operational Perspectives on Hydrologic Model Data Assimilation Rob Hartman Hydrologist in Charge NOAA / National Weather Service California-Nevada River Forecast Center Sacramento, CA USA Outline Operational

More information

2 nd Asia CryoNet Workshop Current methods of measurement of the cryosphere in Asia consistency and issues

2 nd Asia CryoNet Workshop Current methods of measurement of the cryosphere in Asia consistency and issues 2 nd Asia CryoNet Workshop Current methods of measurement of the cryosphere in Asia consistency and issues Dongqi Zhang, Cunde Xiao, Vladimir Aizen and Wolfgang Schöner Feb.5, 2016, Salekhard, Russia 1.

More information

Basic Hydrologic Science Course Understanding the Hydrologic Cycle Section Six: Snowpack and Snowmelt Produced by The COMET Program

Basic Hydrologic Science Course Understanding the Hydrologic Cycle Section Six: Snowpack and Snowmelt Produced by The COMET Program Basic Hydrologic Science Course Understanding the Hydrologic Cycle Section Six: Snowpack and Snowmelt Produced by The COMET Program Snow and ice are critical parts of the hydrologic cycle, especially at

More information

Missouri River Basin Water Management Monthly Update

Missouri River Basin Water Management Monthly Update Missouri River Basin Water Management Monthly Update Participating Agencies 255 255 255 237 237 237 0 0 0 217 217 217 163 163 163 200 200 200 131 132 122 239 65 53 80 119 27 National Oceanic and Atmospheric

More information

SNOWMELT RUNOFF ESTIMATION OF A HIMALIYAN WATERSHED THROUGH REMOTE SENSING, GIS AND SIMULATION MODELING

SNOWMELT RUNOFF ESTIMATION OF A HIMALIYAN WATERSHED THROUGH REMOTE SENSING, GIS AND SIMULATION MODELING SNOWMELT RUNOFF ESTIMATION OF A HIMALIYAN WATERSHED THROUGH REMOTE SENSING, GIS AND SIMULATION MODELING A. Alam g, *, A. H. Sheikh g, S. A. Bhat g, A. M.Shah g g Department of Geology & Geophysics University

More information

Monitoring snow-covered areas using NOAA- AVHRR data in the eastern part of Turkey

Monitoring snow-covered areas using NOAA- AVHRR data in the eastern part of Turkey Hydrologicul Sciences~Journal~~des Sciences Hydrologiques, 47(2) April 2002 243 Monitoring snow-covered areas using NOAA- AVHRR data in the eastern part of Turkey ZUHAL AKYÛREK Geodetic and Geographic

More information

1.6 TRENDS AND VARIABILITY OF SNOWFALL AND SNOW COVER ACROSS NORTH AMERICA AND EURASIA. PART 2: WHAT THE DATA SAY

1.6 TRENDS AND VARIABILITY OF SNOWFALL AND SNOW COVER ACROSS NORTH AMERICA AND EURASIA. PART 2: WHAT THE DATA SAY 1.6 TRENDS AND VARIABILITY OF SNOWFALL AND SNOW COVER ACROSS NORTH AMERICA AND EURASIA. PART 2: WHAT THE DATA SAY David A. Robinson* Rutgers University, Department of Geography, Piscataway, New Jersey

More information

Souris River Basin Spring Runoff Outlook As of March 1, 2019

Souris River Basin Spring Runoff Outlook As of March 1, 2019 Souris River Basin Spring Runoff Outlook As of March 1, 2019 Prepared by: Flow Forecasting & Operations Planning Water Security Agency Basin Conditions Summer rainfall in 2018 over the Saskatchewan portion

More information

Regional influence on road slipperiness during winter precipitation events. Marie Eriksson and Sven Lindqvist

Regional influence on road slipperiness during winter precipitation events. Marie Eriksson and Sven Lindqvist Regional influence on road slipperiness during winter precipitation events Marie Eriksson and Sven Lindqvist Physical Geography, Department of Earth Sciences, Göteborg University Box 460, SE-405 30 Göteborg,

More information

4.5 Comparison of weather data from the Remote Automated Weather Station network and the North American Regional Reanalysis

4.5 Comparison of weather data from the Remote Automated Weather Station network and the North American Regional Reanalysis 4.5 Comparison of weather data from the Remote Automated Weather Station network and the North American Regional Reanalysis Beth L. Hall and Timothy. J. Brown DRI, Reno, NV ABSTRACT. The North American

More information

Upper Missouri River Basin December 2017 Calendar Year Runoff Forecast December 5, 2017

Upper Missouri River Basin December 2017 Calendar Year Runoff Forecast December 5, 2017 Upper Missouri River Basin December 2017 Calendar Year Runoff Forecast December 5, 2017 Calendar Year Runoff Forecast Explanation and Purpose of Forecast U.S. Army Corps of Engineers, Northwestern Division

More information

Forecasting of Optical Turbulence in Support of Realtime Optical Imaging and Communication Systems

Forecasting of Optical Turbulence in Support of Realtime Optical Imaging and Communication Systems Forecasting of Optical Turbulence in Support of Realtime Optical Imaging and Communication Systems Randall J. Alliss and Billy Felton Northrop Grumman Corporation, 15010 Conference Center Drive, Chantilly,

More information

THE RAINWATER HARVESTING SYMPOSIUM 2015

THE RAINWATER HARVESTING SYMPOSIUM 2015 THE RAINWATER HARVESTING SYMPOSIUM 2015 Remote Sensing for Rainwater Harvesting and Recharge Estimation under Data Scarce Conditions Taye Alemayehu Ethiopian Institute of Water Resources, Metameta Research

More information