Rainfall and Design Storms

Size: px
Start display at page:

Download "Rainfall and Design Storms"

Transcription

1 Methods in Stormwater Management Using HydroCAD Rainfall and Design Storms H03 Rainfall and Design Storms.pdf 1

2 Topics Covered 1. Rainfall characteristics 2. Rainfall sources 3. Design Storms 4. Example: Design Storm for Echo Valley WS 2

3 Outcomes 1. Be able to select a design rainfall based upon storm duration and frequency 2. Be able to select an appropriate rainfall data source 3. Be able to create a design storm for a specific location, return period and duration using HydroCAD. 3

4 1. Rainfall Characteristics A. Volume B. Intensity C. Duration D. Frequency E. Spatial/Geographic 4

5 A. Volume Total amount of rainfall falling during an event Expressed as inches Really a volume: rainfall depth x watershed area More correctly expressed as acre-inches B. Intensity Rate of rainfall falling during an event Expressed as inches/hour (depth/time) Really a flow: intensity (ft/s) x watershed area (ft 2 ) More correctly expressed as ft 3 /s 5

6 C. Duration Total time period of rainfall event Expressed as minutes or hours (typically) Defines the critical storm for watershed response 6

7 Volume, Intensity and Duration Largest intensity: 0.57 inches/hour Rainfall (in/hr) Total storm volume: Sum all intensities times the time step gives 5.41 inches Time (hours) Storm duration: 24 one-hour time steps equals 24 hrs 7

8 C. Frequency How often does this rainfall depth/intensity occur? Return period (years) Based upon probability of occurrence (statistics) Requires long-term rainfall records D. Spatial/Geographic Variation Rainfall intensity and volume varies with location Local variation: Watersheds > 1 mi 2 Regional/state: PA, MD, VA, etc. IDF curves National variation: NRCS Type I, IA, II, III National variation: NOAA Type A, B, C, D 8

9 Volume Duration Frequency Chart 9

10 Intensity Duration Frequency Chart 10

11 National variation: NRCS Type I, IA, II, III 11

12 National variation: NRCS Type I, IA, II and III 12

13 National variation: NOAA Type A, B, C and D 13

14 2. Rainfall Data Sources A. TP-40 (TR-55, 1986) B. NOAA Atlas 14 C. PennDOT Pub

15 A. TP-40 (TR-55, 1986, Appendix B) 15

16 B. NOAA ATLAS

17 ATLAS 14 Data 17

18 ATLAS 14 Data State College, PA

19 C. PennDOT Pub. 584 Pennsylvania Variation of Atlas 14 Step 1: Select appropriate Region Map from Table 7A.1 19

20 Step 2: From regions map, select appropriate region (1-5) 20

21 Step 3: From regions rainfall curves, read rainfall intensities using return period and storm duration OR.. 21

22 Step 3: From region rainfall tables, read rainfall depths using return period and storm duration 22

23 Example 1: Estimate 1-yr, 10-yr and 100-yr 24-hr rainfall depths for State College, PA Use Map F for all three return periods 23

24 Example 1: Estimate 1-yr, 10-yr and 100-yr rainfall depths for State College, PA Use Region 2 Rainfall Data 24

25 Region 2 VDF (volume) Table

26 Example 1: Estimate 1-yr, 10-yr and 100-yr rainfall depths for State College, PA Summary Results Storm duration: 24 hours Return Period... TP Pub Atlas 14 1-yr yr yr

27 3. Design Storms A. Definitions B. Design Storm Graphics C. Design Storm Characteristics D. Limitations of Design Storms E. Constructing a Design Storm 27

28 3. Design Storms A. Definitions Design Rainfall: total rainfall depth over some duration Design Storm: hyetograph, or time distribution, of the design rainfall over a specific duration 28

29 B. Design Storm Graphic Simple alternating-block design storm Rainfall Intensity (in/hr) Area = Design Rainfall Total Time (hours) 29

30 Duration (minutes) Duration (minutes) 30 Rainfall Intensity (in/hr) Runoff Rate (ft 3 /s)

31 C. Design Storm Characteristics Design storms are used in absence of actual rainfall records in the design area A design storm is synthesized from pieces of extreme rainfall taken from many actual storm events in region Sequencing and distribution is arranged somewhat arbitrarily to form a design storm, aka hyetograph 31

32 D. Limitations of Design Storms Runoff peaks are assumed to have same return period as the design storm. Doesn t happen that way! Runoff peaks from design storms may not agree with those from observed rainfalls having the same approximate return period The use of a design storm implies a single-event analysis; it does not account for changes in soil moisture during the inter-event times 32

33 E. Constructing a Design Storm Example: Develop an 80 minute, 10-year design storm for Region 5. Use the following PA Region 5 chart (1986). Steps: 1. From the depth vs. duration chart, obtain 10-year rainfall amounts for durations of 10, 20, 30,, 80 minutes (put in column 2) 2. Compute the incremental rainfall amounts between consecutive durations (put in column 3) 3. Rearrange the rainfall increments from column 3 in a quasisymmetrical pattern (put in column 4) 4. Compute the rain intensities during the time increments, dividing column 4 by the 10 minute time step and multiplying by 60 minutes (put in column 5) 33

34 Region 5 Depth-Duration Chart 34

35 - 10 x 60 From Depth- Duration Chart 35

36 Finished Design Storm Hyetograph 36

37 4. Example: Design Storm for Echo Valley WS 37

38 Atlas 14 Data for Echo Valley WS

39 Design Storms in HydroCAD for Echo Valley 1. Calculation Settings 2. Rainfall tab 3. Storm Type: Type II 24 hr 4. Storm Duration: 24 hr 5. Back-to-Back Storms: 1 6. Depth: AMC: 2 8. Rainfall Event Name: 25-yr 9. Click Apply and OK to save 39

40 Summary Topics 1. Rainfall characteristics 2. Rainfall sources 3. Design Storms 4. Example: Design Storm for Echo Valley WS Outcomes 1. Be able to select a design rainfall based upon storm duration and frequency 2. Be able to select an appropriate rainfall data source 3. Be able to create a design storm for a specific location, return period and duration using HydroCAD. 40

Jones Creek Case Study

Jones Creek Case Study Jones Creek Case Study Introduction In this case study we will examine the fictitious watershed of Jones Creek. This watershed has one confluence and can therefore be divided into three subbasins. The

More information

Design Storms for Hydrologic Analysis

Design Storms for Hydrologic Analysis Design Storms for Hydrologic Analysis Course Description This course is designed to fulfill two hours of continuing education credit for Professional Engineers. Its objective is to provide students with

More information

Precipitation Rabi H. Mohtar

Precipitation Rabi H. Mohtar Precipitation Rabi H. Mohtar The objectives of this module are to present and analyze: 1) Precipitation forms, characteristics, and measurements 2) Intensity, Duration, Frequency (IDF) curves and rainfall

More information

Rainfall Analysis. Prof. M.M.M. Najim

Rainfall Analysis. Prof. M.M.M. Najim Rainfall Analysis Prof. M.M.M. Najim Learning Outcome At the end of this section students will be able to Estimate long term mean rainfall for a new station Describe the usage of a hyetograph Define recurrence

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 2 (AP-2) GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 2 (AP-2) GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT YATES ASH POND 2 (AP-2) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

TXHYETO.XLS: A Tool To Facilitate Use of Texas- Specific Hyetographs for Design Storm Modeling. Caroline M. Neale Texas Tech University

TXHYETO.XLS: A Tool To Facilitate Use of Texas- Specific Hyetographs for Design Storm Modeling. Caroline M. Neale Texas Tech University TXHYETO.XLS: A Tool To Facilitate Use of Texas- Specific Hyetographs for Design Storm Modeling Caroline M. Neale Texas Tech University Acknowledgements Funding and direction provided by the Texas Department

More information

HEC-HMS Lab 4 Using Frequency Storms in HEC-HMS

HEC-HMS Lab 4 Using Frequency Storms in HEC-HMS HEC-HMS Lab 4 Using Frequency Storms in HEC-HMS Created by Venkatesh Merwade (vmerwade@purdue.edu) Learning outcomes The objective of this lab is to learn how HEC-HMS is used to determine design flow by

More information

New NOAA Precipitation-Frequency Atlas for Wisconsin

New NOAA Precipitation-Frequency Atlas for Wisconsin New NOAA Precipitation-Frequency Atlas for Wisconsin #215966 Presentation to the Milwaukee Metropolitan Sewerage District Technical Advisory Team January 16, 2014 Michael G. Hahn, P.E., P.H. SEWRPC Chief

More information

Section 4: Model Development and Application

Section 4: Model Development and Application Section 4: Model Development and Application The hydrologic model for the Wissahickon Act 167 study was built using GIS layers of land use, hydrologic soil groups, terrain and orthophotography. Within

More information

George Mason University Department of Civil, Environmental and Infrastructure Engineering

George Mason University Department of Civil, Environmental and Infrastructure Engineering George Mason University Department of Civil, Environmental and Infrastructure Engineering Dr. Celso Ferreira Prepared by Lora Baumgartner December 2015 Revised by Brian Ross July 2016 Exercise Topic: Getting

More information

2012 Rainfall, Runoff, Water Level & Temperature Beebe Lake Wright County, MN (# )

2012 Rainfall, Runoff, Water Level & Temperature Beebe Lake Wright County, MN (# ) www.fixmylake.com 18029 83 rd Avenue North Maple Grove, MN 55311 mail@freshwatersci.com (651) 336-8696 2012 Rainfall, Runoff, Water Level & Temperature Beebe Lake Wright County, MN (#86-0023) Prepared

More information

An Alternative Temporal Rainfall Distribution for Hydrologic Analysis and Design

An Alternative Temporal Rainfall Distribution for Hydrologic Analysis and Design An Alternative Temporal Rainfall Distribution for Hydrologic Analysis and Design Joseph P. Wilson, PE, PH Wilson Hydro, LLC PhD Candidate Missouri University of Science Technology Rolla, Missouri Sorry

More information

WMS 10.1 Tutorial GSSHA Applications Precipitation Methods in GSSHA Learn how to use different precipitation sources in GSSHA models

WMS 10.1 Tutorial GSSHA Applications Precipitation Methods in GSSHA Learn how to use different precipitation sources in GSSHA models v. 10.1 WMS 10.1 Tutorial GSSHA Applications Precipitation Methods in GSSHA Learn how to use different precipitation sources in GSSHA models Objectives Learn how to use several precipitation sources and

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -30 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -30 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -30 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture IDF relationship Procedure for creating

More information

Chapter 5 CALIBRATION AND VERIFICATION

Chapter 5 CALIBRATION AND VERIFICATION Chapter 5 CALIBRATION AND VERIFICATION This chapter contains the calibration procedure and data used for the LSC existing conditions model. The goal of the calibration effort was to develop a hydraulic

More information

Homework 10. Logan Dry Canyon Detention Basin Design Case Study Date: 4/14/14 Due: 4/25/14

Homework 10. Logan Dry Canyon Detention Basin Design Case Study Date: 4/14/14 Due: 4/25/14 Homework 10. Logan Dry Canyon Detention Basin Design Case Study Date: 4/14/14 Due: 4/25/14 Section 1: Case Study Introduction This case study serves as an integrative problem based learning exercise. In

More information

Depth-Duration Frequency (DDF) and Depth-Area- Reduction Factors (DARF)

Depth-Duration Frequency (DDF) and Depth-Area- Reduction Factors (DARF) Spatial Analysis of Storms Using GIS Brian Hoblit, Steve Zelinka, Cris Castello, and David Curtis Abstract Point data from rain gages have been historically used to develop depth-area relationships, design

More information

Results of Intensity-Duration- Frequency Analysis for Precipitation and Runoff under Changing Climate

Results of Intensity-Duration- Frequency Analysis for Precipitation and Runoff under Changing Climate Results of Intensity-Duration- Frequency Analysis for Precipitation and Runoff under Changing Climate Supporting Casco Bay Region Climate Change Adaptation RRAP Eugene Yan, Alissa Jared, Julia Pierce,

More information

Intensity-Duration-Frequency (IDF) Curves Example

Intensity-Duration-Frequency (IDF) Curves Example Intensity-Duration-Frequency (IDF) Curves Example Intensity-Duration-Frequency (IDF) curves describe the relationship between rainfall intensity, rainfall duration, and return period (or its inverse, probability

More information

Objectives: After completing this assignment, you should be able to:

Objectives: After completing this assignment, you should be able to: Data Analysis Assignment #1 Evaluating the effects of watershed land use on storm runoff Assignment due: 21 February 2013, 5 pm Objectives: After completing this assignment, you should be able to: 1) Calculate

More information

Kije Sipi. Kije Sipi Ltd. Weather Radar Derived Rainfall Areal Reduction Factors

Kije Sipi. Kije Sipi Ltd. Weather Radar Derived Rainfall Areal Reduction Factors Ltd Weather Radar Derived Rainfall Areal Reduction Factors J. P. Jolly 1, D. I. Jobin 1, S. Lodewyk 2 1. Ltd, Ottawa ON, Canada 2. City of Edmonton, Edmonton AB Canada ABSTRACT Rainfall Areal Reduction

More information

Appendix B Equations and Examples

Appendix B Equations and Examples Equations and Examples Purpose The purpose of this appendix is to provide background equations and example problems for clarity of calculations used throughout the manual. This appendix is divided into

More information

CIVE322 BASIC HYDROLOGY

CIVE322 BASIC HYDROLOGY CIVE322 BASIC HYDROLOGY Homework No.3 Solution 1. The coordinates of four precipitation gauging stations are A = (3,4), B = (9,4), C = (3,12), and D = (9,12). The observed precipitation amounts at these

More information

INTRODUCTION TO HYDROLOGIC MODELING USING HEC-HMS

INTRODUCTION TO HYDROLOGIC MODELING USING HEC-HMS INTRODUCTION TO HYDROLOGIC MODELING USING HEC-HMS By Thomas T. Burke, Jr., PhD, PE Luke J. Sherry, PE, CFM Christopher B. Burke Engineering, Ltd. October 8, 2014 1 SEMINAR OUTLINE Overview of hydrologic

More information

Stormwater Guidelines and Case Studies. CAHILL ASSOCIATES Environmental Consultants West Chester, PA (610)

Stormwater Guidelines and Case Studies. CAHILL ASSOCIATES Environmental Consultants West Chester, PA (610) Stormwater Guidelines and Case Studies CAHILL ASSOCIATES Environmental Consultants West Chester, PA (610) 696-4150 www.thcahill.com Goals and Challenges for Manual State Stormwater Policy More Widespread

More information

+ ( f o. (t) = f c. f c. )e kt (1)

+ ( f o. (t) = f c. f c. )e kt (1) CIVE Basic Hydrology Jorge A. Ramírez Computations Example Assume that the time evolution of the infiltration capacity for a given soil is governed by Horton's equation (Note that this equation assumes

More information

Volume 1, Chapter 4 Rainfall

Volume 1, Chapter 4 Rainfall Volume 1, Chapter 4 Rainfall Users Guidance: If a UDFCD Section number in this chapter is skipped: It was adopted as is; please refer to that Section in the corresponding UDFCD Manual, Volume, Chapter

More information

Extreme Rain all Frequency Analysis for Louisiana

Extreme Rain all Frequency Analysis for Louisiana 78 TRANSPORTATION RESEARCH RECORD 1420 Extreme Rain all Frequency Analysis for Louisiana BABAK NAGHAVI AND FANG XIN Yu A comparative study of five popular frequency distributions and three parameter estimation

More information

The Beleaguered Figure 15

The Beleaguered Figure 15 The Beleaguered Figure 15 TFMA 2015 Fall Technical Summit After the Floods: Texas Rising Craig Loftin, PE, CFM US Weather Bureau Technical Paper No. 40, Figure 15 Village Creek Watershed 1 100-Year 30-Minute

More information

The Beleaguered Figure 15 TFMA 2015 Fall Technical Summit After the Floods: Texas Rising

The Beleaguered Figure 15 TFMA 2015 Fall Technical Summit After the Floods: Texas Rising The Beleaguered Figure 15 TFMA 2015 Fall Technical Summit After the Floods: Texas Rising Craig Loftin, PE, CFM US Weather Bureau Technical Paper No. 40, Figure 15 Village Creek Watershed 100-Year 30-Minute

More information

Technical Memorandum

Technical Memorandum Tucson Office 3031 West Ina Road Tucson, AZ 85741 Tel 520.297.7723 Fax 520.297.7724 www.tetratech.com Technical Memorandum To: Kathy Arnold From: Ronson Chee/Greg Hemmen Company: Rosemont Copper Company

More information

STREUVER FIDELCO CAPPELLI, LLC YONKERS DOWNTOWN DEVELOPMENT PHASE 1. DRAFT ENVIRONMENTAL IMPACT STATEMENT For: PALISADES POINT

STREUVER FIDELCO CAPPELLI, LLC YONKERS DOWNTOWN DEVELOPMENT PHASE 1. DRAFT ENVIRONMENTAL IMPACT STATEMENT For: PALISADES POINT STREUVER FIDELCO CAPPELLI, LLC YONKERS DOWNTOWN DEVELOPMENT PHASE 1 DRAFT ENVIRONMENTAL IMPACT STATEMENT For: PALISADES POINT Prepared by: PAULUS, SOKOLOWSKI & SARTOR STORMWATER MANAGEMENT 1. Methodology

More information

Storm rainfall. Lecture content. 1 Analysis of storm rainfall 2 Predictive model of storm rainfall for a given

Storm rainfall. Lecture content. 1 Analysis of storm rainfall 2 Predictive model of storm rainfall for a given Storm rainfall Lecture content 1 Analysis of storm rainfall 2 Predictive model of storm rainfall for a given max rainfall depth 1 rainfall duration and return period à Depth-Duration-Frequency curves 2

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -29 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -29 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -29 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Goodness of fit Chi-square test χ

More information

Drainage Analysis. Appendix F

Drainage Analysis. Appendix F Drainage Analysis Appendix F Golden View Drive Elizabeth Street LMORE CREEK Ricky Road Rabbit Creek Road LITTLE RABBIT CREEK East 156th Avenue MOA Project #10-026 Golden View Drive Intersection

More information

Impacts of Updated Design Rainfall Values on Louisiana Infrastructure

Impacts of Updated Design Rainfall Values on Louisiana Infrastructure Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 9-1-2018 Impacts of Updated Design Rainfall Values on Louisiana Infrastructure Mario Durbic mdurbi3@lsu.edu Follow this

More information

HYDROLOGY REPORT Tentative Tract No. 5978

HYDROLOGY REPORT Tentative Tract No. 5978 ATTACHMENT 5 October 2016 HYDROLOGY REPORT Tentative Tract No. 5978 City of Simi Valley County of Ventura Prepared For: Landsea Holdings Corporation 7525 Irvine Center Drive Suite 200 Irvine, CA 92618

More information

Monte Carlo Simulations for Probabilistic Flood Hazard Assessment

Monte Carlo Simulations for Probabilistic Flood Hazard Assessment Monte Carlo Simulations for Probabilistic Flood Hazard Assessment Jemie Dababneh, Ph.D., P.E., 1 and Mark Schwartz, P.E. 1 1 RIZZO Associates, Monroeville, Pennsylvania Presentation to PSA 2017 International

More information

David R. Vallee Hydrologist-in-Charge NOAA/NWS Northeast River Forecast Center

David R. Vallee Hydrologist-in-Charge NOAA/NWS Northeast River Forecast Center David R. Vallee Hydrologist-in-Charge NOAA/NWS Northeast River Forecast Center Record flooding along the Shawsheen River during the 2006 Mother s Day Floods Calibrate and implement a variety of hydrologic

More information

Statistical Analysis of Climatological Data to Characterize Erosion Potential: 2. Precipitation Events in Eastern Oregon/Washington

Statistical Analysis of Climatological Data to Characterize Erosion Potential: 2. Precipitation Events in Eastern Oregon/Washington E jiyu), Statistical Analysis of Climatological Data to Characterize Erosion Potential:. Precipitation Events in Eastern Oregon/Washington Special Report September Agricultural Experiment Station Oregon

More information

USDA NRCS Implementation of NOAA Atlas 14. NRCS Work to Implement NOAA Atlas 14

USDA NRCS Implementation of NOAA Atlas 14. NRCS Work to Implement NOAA Atlas 14 USDA NRCS Implementation of NOAA Atlas 1 An Equal Opportunity Provider and Employer Annette Humpal, P.E. USDA NRCS Hydraulic Engineer Background: NRCS Work to Implement NOAA Atlas 1 NRCS Priority to work

More information

Module 1. Lecture 2: Weather and hydrologic cycle (contd.)

Module 1. Lecture 2: Weather and hydrologic cycle (contd.) Lecture 2: Weather and hydrologic cycle (contd.) Hydrology Hydor + logos (Both are Greek words) Hydor means water and logos means study. Hydrology is a science which deals with the occurrence, circulation

More information

Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1

Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1 Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1 What is a linear equation? It sounds fancy, but linear equation means the same thing as a line. In other words, it s an equation

More information

Notes: Space for as many as two segments per flow type can be used for each worksheet. Include a map, schematic, or description of flow segments.

Notes: Space for as many as two segments per flow type can be used for each worksheet. Include a map, schematic, or description of flow segments. Worksheet 3: Time of Concentration (Tc) or travel time (Tt) Project By Date Location Checked Date Check one: Present Developed Check one: Tc Tt through subarea Notes: Space for as many as two segments

More information

Updated Precipitation Frequency Estimates for Minnesota

Updated Precipitation Frequency Estimates for Minnesota 1 Updated Precipitation Frequency Estimates for Minnesota Presenter: Authors: (alphabetical order) Sanja Perica, Director Hydrometeorological Design Studies Center (HDSC), Office of Hydrology, National

More information

Workshop: Build a Basic HEC-HMS Model from Scratch

Workshop: Build a Basic HEC-HMS Model from Scratch Workshop: Build a Basic HEC-HMS Model from Scratch This workshop is designed to help new users of HEC-HMS learn how to apply the software. Not all the capabilities in HEC-HMS are demonstrated in the workshop

More information

ARTICLE 5 (PART 2) DETENTION VOLUME EXAMPLE PROBLEMS

ARTICLE 5 (PART 2) DETENTION VOLUME EXAMPLE PROBLEMS ARTICLE 5 (PART 2) DETENTION VOLUME EXAMPLE PROBLEMS Example 5.7 Simple (Detention Nomograph) Example 5.8 Offsite and Unrestricted Areas (HEC-HMS) Example 5.9 Ponds in Series w/ Tailwater (HEC-HMS) Example

More information

Weighting of Field Monitoring Data With Probability Distributions of Daily Rainfall

Weighting of Field Monitoring Data With Probability Distributions of Daily Rainfall Weighting of Field Monitoring Data With Probability Distributions of Daily Rainfall Abstract James H. Lenhart, PE, D.WRE and Scott A. de Ridder CONTECH Stormwater Solutions, 11835 NE Glenn Widing Drive,

More information

RAINFALL FREQUENCY ANALYSIS FOR NEW BRAUNFELS, TX (or Seems like we ve been having lots of 100-yr storms)

RAINFALL FREQUENCY ANALYSIS FOR NEW BRAUNFELS, TX (or Seems like we ve been having lots of 100-yr storms) RAINFALL FREQUENCY ANALYSIS FOR NEW BRAUNFELS, TX (or Seems like we ve been having lots of 100-yr storms) Presented By: SAUL NUCCITELLI, PE, CFM (LAN) BLAKE KRONKOSKY, EIT (LAN) JIM KLEIN, PE (CITY OF

More information

Unit 7 Probability M2 13.1,2,4, 5,6

Unit 7 Probability M2 13.1,2,4, 5,6 + Unit 7 Probability M2 13.1,2,4, 5,6 7.1 Probability n Obj.: I will be able to determine the experimental and theoretical probabilities of an event, or its complement, occurring. n Vocabulary o Outcome

More information

Technical Memorandum. City of Salem, Stormwater Management Design Standards. Project No:

Technical Memorandum. City of Salem, Stormwater Management Design Standards. Project No: Technical Memorandum 6500 SW Macadam Avenue, Suite 200 Portland, Oregon, 97239 Tel: 503-244-7005 Fax: 503-244-9095 Prepared for: Project Title: City of Salem, Oregon City of Salem, Stormwater Management

More information

The effectiveness of the Natural Resource Conservation Service (NRCS) and Huff rainfall distribution methods for use in detention basin design

The effectiveness of the Natural Resource Conservation Service (NRCS) and Huff rainfall distribution methods for use in detention basin design Scholars' Mine Masters Theses Student Theses and Dissertations Spring 2010 The effectiveness of the Natural Resource Conservation Service (NRCS) and Huff rainfall distribution methods for use in detention

More information

Updating Probable Maximum Precipitation for the Tennessee Valley Authority

Updating Probable Maximum Precipitation for the Tennessee Valley Authority Updating Probable Maximum Precipitation for the Tennessee Valley Authority Bill Kappel, President/Senior Meteorologist Applied Weather Associates, Monument, CO www.appliedweatherassociates.com Mike Eiffe,

More information

******************* Project Description ******************* File Name... NAAF Stormwater Improvement Project 11_21_2014.SPF

******************* Project Description ******************* File Name... NAAF Stormwater Improvement Project 11_21_2014.SPF Autodesk Storm and Sanitary Analysis 2014 - Version 8.1.62 (Build 1) ----------------- *** Project Description *** File Name... NAAF Stormwater Improvement Project 11_21_2014.SPF Analysis Options Flow

More information

Probable Maximum Precipitation Study

Probable Maximum Precipitation Study Probable Maximum Precipitation Study Virginia Floodplain Management Association Workshop Thursday, October 29, 2015 Robert T. Bennett, PE, RA, CFM DCR Dam Safety & Floodplain Management Definition (4VAC50-20-50.H)

More information

Hydrology and Hydraulics Design Report. Background Summary

Hydrology and Hydraulics Design Report. Background Summary To: National Park Services Montezuma Castle National Monument Richard Goepfrich, Facility Manager From: Multicultural Technical Engineers Date: Tuesday - February 13, 2018 Subject: 30% Hydrology and Hydraulics

More information

Typical Hydrologic Period Report (Final)

Typical Hydrologic Period Report (Final) (DELCORA) (Final) November 2015 (Updated April 2016) CSO Long-Term Control Plant Update REVISION CONTROL REV. NO. DATE ISSUED PREPARED BY DESCRIPTION OF CHANGES 1 4/26/16 Greeley and Hansen Pg. 1-3,

More information

Lecture 2: Precipitation

Lecture 2: Precipitation 2-1 GEOG415 Lecture 2: Precipitation Why do we study precipitation? Precipitation measurement -- depends on the study purpose. Non-recording (cumulative) Recording (tipping bucket) Important parameters

More information

Detailed Storm Rainfall Analysis for Hurricane Ivan Flooding in Georgia Using the Storm Precipitation Analysis System (SPAS) and NEXRAD Weather Radar

Detailed Storm Rainfall Analysis for Hurricane Ivan Flooding in Georgia Using the Storm Precipitation Analysis System (SPAS) and NEXRAD Weather Radar Detailed Storm Rainfall Analysis for Hurricane Ivan Flooding in Georgia Using the Storm Precipitation Analysis System (SPAS) and NEXRAD Weather Radar Ed Tomlinson, PhD and Bill Kappel Applied Weather Associates

More information

City of Columbia BMP Manual. Detailed Unified Sizing Criteria Example Wet Pond Design

City of Columbia BMP Manual. Detailed Unified Sizing Criteria Example Wet Pond Design City of Columbia BMP Manual Detailed Unified Sizing Criteria Example Wet Pond Design April 17, 2013 Wet Pond Example: Unified Sizing Criteria Methodology Base Data Location: Rome, GA Site Drainage Area

More information

Basic Hydraulics June 2007

Basic Hydraulics  June 2007 Basic Hydraulics www.concrete-pipe.org June 2007 2007 Overview Open Channel Flow Manning Equation Basic Culvert Design Sanitary Sewer Design Flow, Velocity Stormwater Sewer Design Flow, Velocity 2 Open

More information

CSO Data Approaches and Options

CSO Data Approaches and Options CSO Data Approaches and Options Background: During the phase V model calibration in 2010, Tetra Tech developed the CSO data for all 64 CSOs in the bay watershed for 1985-2009. With the available monitoring

More information

FHWA - HIGHWAY HYDROLOGY

FHWA - HIGHWAY HYDROLOGY The unit peak discharge is computed with Equation 5.6 by interpolating c 0, c, and c Table 5.5 using a type II distribution. The peak discharge is also calculated as follows. from Variable SI Unit U Unit.5444

More information

Extreme Events: What Do the Data Say?

Extreme Events: What Do the Data Say? Extreme Events: What Do the Data Say? Objectives: Students will be able to: compare a typical and extreme weather event using precipitation and streamflow data use descriptive statistics (measures of central

More information

Terrestrial Flood Risk and Climate Change in the Yallahs River, Jamaica. An assessment of future flood risk. projections of future climate

Terrestrial Flood Risk and Climate Change in the Yallahs River, Jamaica. An assessment of future flood risk. projections of future climate Terrestrial Flood Risk and Climate Change in the Yallahs River, Jamaica An assessment of future flood risk using hydrodynamic models driven by projections of future climate Matthew Wilson1, Arpita Mandal2,

More information

APPENDIX B Hydrologic Model Spring Event

APPENDIX B Hydrologic Model Spring Event Jock River Flood Risk Mapping (within the City of Ottawa) Hydrology Report July 2004 PageB1 APPENDIX B Hydrologic Model Spring Event Snowmelt+Rainfall Calibration and Validation Results Design Events Explanation

More information

LESSON HEC-HMS

LESSON HEC-HMS LESSON 2.2 - HEC-HMS Introduction: TEAM 8 SCS method: The input data: Thiessen Polygons: Concentration Lag Time: SCS Method: Calculation of CN: Result figures: CONSTRUCTING HYDROGRAPH WITH HEC-HMS: Rainfall

More information

This site will utilize an infiltration berm to manage the two-year/24-hour volume increase.

This site will utilize an infiltration berm to manage the two-year/24-hour volume increase. Gates TETRA TECH, INC. By: RH Date: 1/30/2017 Subject: Gates Road Checked By: JB Date: 2/1/2017 PCSM Design and Evaluation PURPOSE: The purpose of these calculations is to design a Post-Construction Stormwater

More information

Lessons Learned and Shared

Lessons Learned and Shared Lessons Learned and Shared Plan for the worst. Hope for the best. Remember that hope is not a strategy. Agnes 8 Lessons 1. Identify Susceptible Communities 2. Develop a Plan 3. Threat Recognition 4. Review

More information

This site will utilize an infiltration berm to manage the two-year/24-hour volume increase.

This site will utilize an infiltration berm to manage the two-year/24-hour volume increase. High Street TETRA TECH, INC. By: RH Date: 1/30/2017 Subject: High Street Checked By: JB Date: 2/1/2017 PCSM Design and Evaluation PURPOSE: The purpose of these calculations is to design a Post-Construction

More information

Storm Report : September 27, 2014

Storm Report : September 27, 2014 True-color Visible Satellite, Sep. 27, 2014 2:00 PM MST Flood Control District of Maricopa County Engineering Division, Flood Warning Branch Storm Report : September 27, 2014 Initial Release: 10/10/2014

More information

LITERATURE REVIEW. History. In 1888, the U.S. Signal Service installed the first automatic rain gage used to

LITERATURE REVIEW. History. In 1888, the U.S. Signal Service installed the first automatic rain gage used to LITERATURE REVIEW History In 1888, the U.S. Signal Service installed the first automatic rain gage used to record intensive precipitation for short periods (Yarnell, 1935). Using the records from this

More information

Statistical Analysis of Climatological Data to Characterize Erosion Potential: 6. Joint Precipitation and Freezing Events in Eastern Oregon/Washington

Statistical Analysis of Climatological Data to Characterize Erosion Potential: 6. Joint Precipitation and Freezing Events in Eastern Oregon/Washington 5 Statistical Analysis of Climatological Data to Characterize Erosion Potential: 6. Joint Precipitation and Freezing Events in Eastern Oregon/Washington ecial Report 69 April 98 Agricultural Experiment

More information

Rainfall-Flood Hazard along the Cagayan River in Carmen

Rainfall-Flood Hazard along the Cagayan River in Carmen -Flood Hazard along the Cagayan River in Carmen Things to watch out for when rain falls intensity 12 December 2013, Cagayan de Oro City Hall 3 +1 main questions I What do we need to understand about rainfall

More information

Technical Notes: Magnitude and Return Period of 2004 Hurricane Rainfall in Florida

Technical Notes: Magnitude and Return Period of 2004 Hurricane Rainfall in Florida Journal of Floodplain Management Floodplain Management Association NOV. 2005 Vol. 5, No. 1 Glenn Tootle 1 Thomas Mirti 2 Thomas Piechota 3 Technical Notes: Magnitude and Return Period of 2004 Hurricane

More information

USGS ATLAS. BACKGROUND

USGS ATLAS. BACKGROUND USGS ATLAS. BACKGROUND 1998. Asquith. DEPTH-DURATION FREQUENCY OF PRECIPITATION FOR TEXAS. USGS Water-Resources Investigations Report 98 4044. Defines the depth-duration frequency (DDF) of rainfall annual

More information

EROSION CONTROL NARRATIVE

EROSION CONTROL NARRATIVE EROSION CONTROL NARRATIVE Erosion and sediment control has been designed for the Willow Bend Phase I Subdivision according to UDFCD and the City of Thornton criteria, in order to minimize erosion and sediment

More information

Joint Occurrence and Probabilities of Tides and Rainfall

Joint Occurrence and Probabilities of Tides and Rainfall Joint Occurrence and Probabilities of Tides and Rainfall City of Virginia Beach, Virginia CIP 7-030, PWCN-15-0014, Work Orders 2 and 5A Final Report Date: October 9, 2017 Submitted to: City of Virginia

More information

This site will utilize an infiltration berm to manage the two-year/24-hour volume increase.

This site will utilize an infiltration berm to manage the two-year/24-hour volume increase. Gates TETRA TECH, INC. By: RH Date: 11/11/2016 Subject: Gates Road Checked By: JB Date: 11/13/2016 PCSM Design and Evaluation PURPOSE: The purpose of these calculations is to design a Post-Construction

More information

Sediment Capture in Pervious Concrete Pavement tsystems: Effects on Hydrological Performance and Suspended Solids

Sediment Capture in Pervious Concrete Pavement tsystems: Effects on Hydrological Performance and Suspended Solids Concrete Sustainability Conference April 14 th 2010, Tempe, AZ Sediment Capture in Pervious Concrete Pavement tsystems: Effects on Hydrological l Performance and Suspended Solids Discharge Luis A. Mata,

More information

APPENDIX B HYDROLOGY

APPENDIX B HYDROLOGY APPENDIX B HYDROLOGY TABLE OF CONTENTS 1.0 INTRODUCTION... 1 2.0 PROBABLE MAXIMUM PRECIPITATION (PMP)... 1 3.0 DESIGN FLOW CALCULATION... 1 4.0 DIVERSION CHANNEL SIZING... 2 5.0 REFERENCES... 4 LIST OF

More information

Indiana County Flash Flood of 22 June 2017

Indiana County Flash Flood of 22 June 2017 Indiana County Flash Flood of 22 June 2017 By Richard H. Grumm National Weather Service State College, PA 1. Overview Slow moving thunderstorms brought 3 to 4 inches of rainfall to Indiana County, PA during

More information

Format of CLIGEN weather station statistics input files. for CLIGEN versions as of 6/2001 (D.C. Flanagan).

Format of CLIGEN weather station statistics input files. for CLIGEN versions as of 6/2001 (D.C. Flanagan). Format of CLIGEN weather station statistics input files for CLIGEN versions 4.1-5.1 as of 6/2001 (D.C. Flanagan). updated 12/11/2008 - Jim Frankenberger These files are also known as CLIGEN state files

More information

A Study on Storm Water Drainage System of Annanagara and Ashokanagara of Shimoga City Karnataka India

A Study on Storm Water Drainage System of Annanagara and Ashokanagara of Shimoga City Karnataka India A Study on Storm Water Drainage System of Annanagara and Ashokanagara of Shimoga City Karnataka India Veena D Savanth Lecturer, Department of Civil Engineering Jain Institute of Technology, Davanagere,

More information

WMS 9.0 Tutorial GSSHA Modeling Basics Infiltration Learn how to add infiltration to your GSSHA model

WMS 9.0 Tutorial GSSHA Modeling Basics Infiltration Learn how to add infiltration to your GSSHA model v. 9.0 WMS 9.0 Tutorial GSSHA Modeling Basics Infiltration Learn how to add infiltration to your GSSHA model Objectives This workshop builds on the model developed in the previous workshop and shows you

More information

ACTIVITY. Weather Radar Investigation. Additional Activities

ACTIVITY. Weather Radar Investigation. Additional Activities ACTIVITY Introduction Approach Activity Weather Radar Investigation Radar is an important weather observing tool 1. Construct a Radar Screen slide chart by used to locate areas of precipitation and to

More information

Changes to Extreme Precipitation Events: What the Historical Record Shows and What It Means for Engineers

Changes to Extreme Precipitation Events: What the Historical Record Shows and What It Means for Engineers Changes to Extreme Precipitation Events: What the Historical Record Shows and What It Means for Engineers Geoffrey M Bonnin National Oceanic and Atmospheric Administration National Weather Service Office

More information

Rainfall Lab. Forest Water Resources Spring 20XX

Rainfall Lab. Forest Water Resources Spring 20XX Rainfall Lab Forest Water Resources Spring 20XX Introduction The most simplistic way to understand rainfall in a particular area is to look at the area s average annual rainfall. That simple statistic

More information

Hydrologic Modeling System HEC-HMS

Hydrologic Modeling System HEC-HMS Hydrologic Engineering Center Hydrologic Modeling System HEC-HMS Quick Start Guide Version 3.3 September 2008 Approved for Public Release Distribution Unlimited CPD-74D REPORT DOCUMENTATION PAGE Form Approved

More information

Alex J. Cannon Climate Research Division Environment and Climate Change Canada GEWEX Open Science Conference Canmore, AB May 9, 2018

Alex J. Cannon Climate Research Division Environment and Climate Change Canada GEWEX Open Science Conference Canmore, AB May 9, 2018 Projected intensification of sub-daily rainfall extremes in convection-permitting climate model simulations over North America: Implications for future Intensity-Duration-Frequency curves Alex J. Cannon

More information

RAINFALL CHARACTERIZATION IN AN ARID AREA

RAINFALL CHARACTERIZATION IN AN ARID AREA Engineering Journal of Qatar University, Vol. 4, 1991, p. 35-50. RAINFALL CHARACTERIZATION IN AN ARID AREA Abdallah S. Bazaraa and Shamim Ahmed Department of Civil Engineering Qatar University, Doha, Qatar.

More information

Urban Hydrology for Small Watersheds

Urban Hydrology for Small Watersheds United States Department of Agriculture Natural Resources Conservation Service Conservation Engineering Division Urban Hydrology for Small Watersheds TR-55 Technical Release 55 June 1986 To show bookmarks

More information

Time distribution of rainfall, December 1977 (M.S. thesis)

Time distribution of rainfall, December 1977 (M.S. thesis) Lehigh University Lehigh Preserve Fritz Laboratory Reports Civil and Environmental Engineering 1977 Time distribution of rainfall, December 1977 (M.S. thesis) Robert A. Putt Follow this and additional

More information

Three main areas of work:

Three main areas of work: Task 2: Climate Information 1 Task 2: Climate Information Three main areas of work: Collect historical and projected weather and climate data Conduct storm surge and wave modeling, sea-level rise (SLR)

More information

NRC Workshop Probabilistic Flood Hazard Assessment (PFHA) Jan 29-31, Mel Schaefer Ph.D. P.E. MGS Engineering Consultants, Inc.

NRC Workshop Probabilistic Flood Hazard Assessment (PFHA) Jan 29-31, Mel Schaefer Ph.D. P.E. MGS Engineering Consultants, Inc. Stochastic Event Flood Model (SEFM) Stochastic Modeling of Extreme Floods A Hydrological Tool for Analysis of Extreme Floods Mel Schaefer Ph.D. P.E. MGS Engineering Consultants, Inc. Olympia, WA NRC Workshop

More information

SOUTH MOUNTAIN WEATHER STATION: REPORT FOR QUARTER 2 (APRIL JUNE) 2011

SOUTH MOUNTAIN WEATHER STATION: REPORT FOR QUARTER 2 (APRIL JUNE) 2011 SOUTH MOUNTAIN WEATHER STATION: REPORT FOR QUARTER 2 (APRIL JUNE) 2011 Prepared for ESTANCIA BASIN WATERSHED HEALTH, RESTORATION AND MONITORING STEERING COMMITTEE c/o CLAUNCH-PINTO SOIL AND WATER CONSERVATION

More information

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture - 13

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture - 13 Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur Lecture - 13 Good morning friends and welcome to the video course on Advanced Hydrology. In

More information

DRAINAGE REPORT FOR THORNTON SELF STORAGE THORNTON, COLORADO

DRAINAGE REPORT FOR THORNTON SELF STORAGE THORNTON, COLORADO DRAINAGE REPORT FOR THORNTON SELF STORAGE THORNTON, COLORADO Prepared by: Bowman Consulting 603 Park Point Dr. Suite 100 Golden, CO 80401 (303)-801-2900 June 29, 2015 Revised August 14, 2015 CERTIFICATE

More information

Stormwater Capacity Analysis for Westover Branch Watershed

Stormwater Capacity Analysis for Westover Branch Watershed Stormwater Capacity Analysis for Westover Branch Watershed Pimmit Run Little Pimmit Run, Mainstem Stohman's Run Gulf Branch Pimmit Run Tributary Little Pimmit Run, W. Branch Little Pimmit Run, E. Branch

More information

Investigation IV: Seasonal Precipitation and Seasonal Surface Runoff in the US

Investigation IV: Seasonal Precipitation and Seasonal Surface Runoff in the US Investigation IV: Seasonal Precipitation and Seasonal Surface Runoff in the US Purpose Students will consider the seasonality of precipitation and surface runoff and think about how the time of year can

More information