Engineering Challenges in Quantum Dot Displays

Size: px
Start display at page:

Download "Engineering Challenges in Quantum Dot Displays"

Transcription

1 Engineering Challenges in Quantum Dot Displays Any great technology that pushes the boundaries of performance also has a set of challenges to overcome. Quantum dot displays are not an exception. Whether we consider QDCF or QD-EL there are a range of challenges, such as the requirements of in-cell polarizer development, air processing, and custom quantum dot-polymer mixtures. Addressing these issues will require quantum dots to become more stable during the manufacturing process. Let's examine the obstacles of the most recent approaches to QD implementation QD-PL on-pixel (QDPR) and QD-EL configurations as well as the developments in the display space aimed to resolve these. Challenges with Quantum Dot Color Filter (QDCF) panels 1. Low quantum efficiency As QDCF approach requires high concentrations of the quantum dots, the issue of the low efficiency comes up because of the reabsorption of emitted protons. Quantum dots suffer from the overlap between absorption and emission resulting in the efficiency to drop. As discussed in Quantum Dot Fundamentals, only a few materials are suitable for producing visible QD semiconductors with high quantum efficiency, with the most efficient one being cadmium selenide (CdSe). As the use of cadmium is restricted by regulations due to its toxic properties, manufacturers are still in search of Cd-free materials with high photoluminescence quantum yield. 2. Need for in-cell polarizer Quantum dots depolarize light and non-polarized light cannot pass through the top polarizer without causing the screen to malfunction. Therefore, the second polarizer needs to precede the quantum dot layer in the optical path. This means that the in-cell polarizer needs to be developed for QDCF application. 01 Engineering Challenges in Quantum Dot Displays

2 3. Manufacturing process The manufacturing of the quantum dot color filters is the massive challenge for the industry. Although we have seen substantial improvements in quantum dot strength and stability, in order to mass produce QDCFs, quantum dots need to become stable in air, water and heat resistant as manufacturing involve multiple curing, washing and baking steps. QDCF design also requires quantum dots to have ultra-high absorption in a thin layer to avoid the blue light leakage issue in the red and green sub-pixels. There are a few possibilities for QDCF manufacturing: Use photoresist embedded with quantum dots (QDPR) because this is a subtractive process, this method is quite expensive 02 Engineering Challenges in Quantum Dot Displays

3 Use inkjet printing this is an additive method and manufacturers are getting close to creating sub-pixel structures that meet size and performance requirements Use nano-imprint lithography this method allows for creating nano-scale patterns through mechanical deformation of imprint resist and curing them by heat or UV-light 03 Engineering Challenges in Quantum Dot Displays

4 Challenges with Quantum Dot Electro-Luminescent (QD-EL) panels 1. Low external quantum efficiency The main challenge in QD-EL display configuration is the low external quantum efficiency (EQE). Similar to the QD-PL displays, quantum efficiency issue is also relevant to the electro-emissive quantum dot application. It's a challenge to find new Cd-free materials with high external quantum yields for blue quantum dot emitters. Reduced EQE is also due to the imbalance in charge injection and structural issues causing non-radiative energy transfer (FRET). There are some options being researched to improve on EQE through enhancements to quantum dot design or QD-EL structure: Establishing core-shell interfacial control allowing for the formation of the alloyed interface and insertion of the intermediate shell Creating larger-sized quantum dots with a thicker shell for improved stability Using ZnMgO instead of ZnO as the electron-transmit layer, allowing for better charge balance, higher conduction band level, and suppression of exciton quenching Using mixed or stacked hole transport layers to enable better hole transport Introducing the insulating interlayer between the electron transfer layer and emission layer allowing for control over the electron injection and reducing leakage current to improve efficiency 04 Engineering Challenges in Quantum Dot Displays

5 A roadmap for the future of QD displays As you can see, the future is bright for quantum dot technology in displays. While the size of the challenge of taking the advanced QD technologies to the mass production and making manufacturing process viable and cost-effective, is commensurate with the performance and efficiency benefits, it's not a small task for the leading display players. Samsung Display is currently a leading manufacturer of quantum dot enabled displays globally. Here is how we see the QD display space will evolve. Broadly speaking, the evolution will take place in three phases: 1. Photo-enhanced displays adoption of devices utilizing quantum dot enhancement film (QDEF) 2. Photo-emissive displays implementation of quantum dots in color filters (QDCF) 3. Electro-emissive displays using electroluminescent mechanisms of quantum dots (QD-EL) 05 Engineering Challenges in Quantum Dot Displays

6 Quantum dot technology in displays is developing very quickly. As it can utilize existing supply chains, QD displays will scale quickly and move from the realm of ultra high-end market to the mid-high end. While challenges in the commercialization of advanced technologies are massive, the display community knows precisely what problems need solving and have made a significant leap towards these advancements. When QD-EL is commercialized, it will replace LCD and OLED in large format display market for both TV and digital signage applications. 06 Engineering Challenges in Quantum Dot Displays

Quantum Dots for Advanced Research and Devices

Quantum Dots for Advanced Research and Devices Quantum Dots for Advanced Research and Devices spectral region from 450 to 630 nm Zero-D Perovskite Emit light at 520 nm ABOUT QUANTUM SOLUTIONS QUANTUM SOLUTIONS company is an expert in the synthesis

More information

TABLE OF CONTENTS 1 RESEARCH SCOPE AND METHODOLOGY Report scope Market definition Categorization...

TABLE OF CONTENTS 1 RESEARCH SCOPE AND METHODOLOGY Report scope Market definition Categorization... TABLE OF CONTENTS 1 RESEARCH SCOPE AND METHODOLOGY... 15 1.1 Report scope... 15 1.2 Market definition... 15 1.2.1 Categorization.... 16 1.3 Research methodology... 17 1.4 Assumptions and limitations...

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION High-Efficiency Light-Emitting Devices based on Quantum Dots with Tailored Nanostructures Yixing Yang 1, Ying Zheng 1, Weiran Cao 2, Alexandre Titov 1, Jake Hyvonen 1, Jiangeng Xue 2*, Paul H. Holloway

More information

Quantum Dot Technology for Low-Cost Space Power Generation for Smallsats

Quantum Dot Technology for Low-Cost Space Power Generation for Smallsats SSC06-VI- Quantum Dot Technology for Low-Cost Space Power Generation for Smallsats Theodore G. DR Technologies, Inc. 7740 Kenamar Court, San Diego, CA 92020 (858)677-230 tstern@drtechnologies.com The provision

More information

Spectroscopic Study of FTO/CdSe (MPA)/ZnO Artificial Atoms Emitting White Color

Spectroscopic Study of FTO/CdSe (MPA)/ZnO Artificial Atoms Emitting White Color Spectroscopic Study of FTO/CdSe (MPA)/ZnO Artificial Atoms Emitting White Color Batal MA *, and Alyamani K Department of Physics, College of Science, Aleppo, Syria * Corresponding author: Batal MA, Department

More information

Luminescence basics. Slide # 1

Luminescence basics. Slide # 1 Luminescence basics Types of luminescence Cathodoluminescence: Luminescence due to recombination of EHPs created by energetic electrons. Example: CL mapping system Photoluminescence: Luminescence due to

More information

Scienza e Tecnologia dei Materiali Ceramici. Modulo 2: Materiali Nanostrutturati

Scienza e Tecnologia dei Materiali Ceramici. Modulo 2: Materiali Nanostrutturati Università degli Studi di Trieste Dipartimento di Ingegneria e Architettura A.A. 2016-2017 Scienza e Tecnologia dei Materiali Ceramici Modulo 2: Materiali Nanostrutturati - Lezione 5 - Vanni Lughi vlughi@units.it

More information

Quantum Dot Spectrum Converter Coverglass for Enhanced High Efficiency Photovoltaics

Quantum Dot Spectrum Converter Coverglass for Enhanced High Efficiency Photovoltaics Quantum Dot Spectrum Converter Coverglass for Enhanced High Efficiency Photovoltaics Theodore G. Stern DR Technologies, Inc. San Diego, CA 92020 Business Area Manager Space Power, Optical and Thermal Products

More information

Introduction. Fang-Chung Chen Department of Photonics and Display Institute National Chiao Tung University. Organic light-emitting diodes

Introduction. Fang-Chung Chen Department of Photonics and Display Institute National Chiao Tung University. Organic light-emitting diodes rganic light-emitting diodes Introduction Fang-Chung Chen Department of Photonics and Display Institute National Chiao Tung University rganic light-emitting diodes --The emerging technology LED Displays

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2012.63 Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control Liangfeng Sun, Joshua J. Choi, David Stachnik, Adam C. Bartnik,

More information

TECHNICAL INFORMATION. Quantum Dot

TECHNICAL INFORMATION. Quantum Dot Quantum Dot Quantum Dot is the nano meter sized semiconductor crystal with specific optical properties originates from the phenomenon which can be explained by the quantum chemistry and quantum mechanics.

More information

High efficiency all-solution-processed LEDs based on dot-in-rod colloidal heterostructures with polar polymer injecting layers

High efficiency all-solution-processed LEDs based on dot-in-rod colloidal heterostructures with polar polymer injecting layers Supporting Information High efficiency all-solution-processed LEDs based on dot-in-rod colloidal heterostructures with polar polymer injecting layers Andrea Castelli, Francesco Meinardi, Mariacecilia Pasini,

More information

Electroluminescence from Silicon and Germanium Nanostructures

Electroluminescence from Silicon and Germanium Nanostructures Electroluminescence from silicon Silicon Getnet M. and Ghoshal S.K 35 ORIGINAL ARTICLE Electroluminescence from Silicon and Germanium Nanostructures Getnet Melese* and Ghoshal S. K.** Abstract Silicon

More information

OLEDs and PLEDs Nele Schumacher Incoherent Lightsources - Prof. Thomas Jüstel

OLEDs and PLEDs Nele Schumacher Incoherent Lightsources - Prof. Thomas Jüstel OLEDs and PLEDs 28.5.2014 Nele Schumacher Incoherent Lightsources - Prof. Thomas Jüstel Contents 1. History 2. Working principle 4. Preparation of multilayer devices 5. Advantages and disadvantages 6.

More information

Plasmon enhanced UV electroluminescence in SiO 2 with percolating conduction sustained by free-exciton emitting SnO 2 nanoparticles

Plasmon enhanced UV electroluminescence in SiO 2 with percolating conduction sustained by free-exciton emitting SnO 2 nanoparticles Dipartimento di Scienza dei Materiali Università di Milano-Bicocca TITLE Plasmon enhanced UV electroluminescence in O 2 with percolating conduction sustained by free-exciton emitting SnO 2 nanoparticles

More information

University of South Florida Development of a Smart Window for Green Buildings in Florida

University of South Florida Development of a Smart Window for Green Buildings in Florida University of South Florida Development of a Smart Window for Green Buildings in Florida PI: Dr. Sarath Witanachchi Students: Marak Merlak, Ph.D Description: This proposal is aimed at developing a smart

More information

Organic LEDs part 6. Exciton Recombination Region in Organic LEDs. Handout: Bulovic, et al., Chem. Phys. Lett. 287, 455 (1998); 308, 317 (1999).

Organic LEDs part 6. Exciton Recombination Region in Organic LEDs. Handout: Bulovic, et al., Chem. Phys. Lett. 287, 455 (1998); 308, 317 (1999). Organic LEDs part 6 Exciton Recombination Region in Organic LEDs White OLED Flexible OLEDs Solvation Effect Solid State Solvation Handout: Bulovic, et al., Chem. Phys. Lett. 287, 455 (1998); 308, 317 (1999).

More information

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF Content Introduction to XEOL Application of XEOL Development and Application of XEOL in STXM

More information

Morphology of CdSe/ZnS core/shell QDs coated on textured surface with SiN X film of a

Morphology of CdSe/ZnS core/shell QDs coated on textured surface with SiN X film of a Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplementary/supporting information Morphology of CdSe/ZnS core/shell QDs coated on textured

More information

Luminescence Process

Luminescence Process Luminescence Process The absorption and the emission are related to each other and they are described by two terms which are complex conjugate of each other in the interaction Hamiltonian (H er ). In an

More information

i) impact of interchain interactions

i) impact of interchain interactions i) impact of interchain interactions multiple experimental observations: in dilute solutions or inert matrices: the photoluminescence quantum yield of a given conjugated polymers can be very large: up

More information

Technologies VII. Alternative Lithographic PROCEEDINGS OF SPIE. Douglas J. Resnick Christopher Bencher. Sponsored by. Cosponsored by.

Technologies VII. Alternative Lithographic PROCEEDINGS OF SPIE. Douglas J. Resnick Christopher Bencher. Sponsored by. Cosponsored by. PROCEEDINGS OF SPIE Alternative Lithographic Technologies VII Douglas J. Resnick Christopher Bencher Editors 23-26 February 2015 San Jose, California, United States Sponsored by SPIE Cosponsored by DNS

More information

Semiconductor quantum dots

Semiconductor quantum dots Semiconductor quantum dots Quantum dots are spherical nanocrystals of semiconducting materials constituted from a few hundreds to a few thousands atoms, characterized by the quantum confinement of the

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

Particle Size Analysis with Differential Centrifugal Sedimentation. Marc Steinmetz Sales & Support Manager CPS Instruments Europe

Particle Size Analysis with Differential Centrifugal Sedimentation. Marc Steinmetz Sales & Support Manager CPS Instruments Europe Particle Size Analysis with Differential Centrifugal Sedimentation Marc Steinmetz Sales & Support Manager CPS Instruments Europe What is important to you from a particle sizing technique? Many people talk

More information

Opto-electronic Characterization of Perovskite Thin Films & Solar Cells

Opto-electronic Characterization of Perovskite Thin Films & Solar Cells Opto-electronic Characterization of Perovskite Thin Films & Solar Cells Arman Mahboubi Soufiani Supervisors: Prof. Martin Green Prof. Gavin Conibeer Dr. Anita Ho-Baillie Dr. Murad Tayebjee 22 nd June 2017

More information

In a metal, how does the probability distribution of an electron look like at absolute zero?

In a metal, how does the probability distribution of an electron look like at absolute zero? 1 Lecture 6 Laser 2 In a metal, how does the probability distribution of an electron look like at absolute zero? 3 (Atom) Energy Levels For atoms, I draw a lower horizontal to indicate its lowest energy

More information

Techniken der Oberflächenphysik (Techniques of Surface Physics)

Techniken der Oberflächenphysik (Techniques of Surface Physics) Techniken der Oberflächenphysik (Techniques of Surface Physics) Prof. Yong Lei & Dr. Yang Xu (& Liying Liang) Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de;

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) Introduction of optical properties of nano-carbon materials

Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) Introduction of optical properties of nano-carbon materials Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) J Kazunari Matsuda Institute of Advanced Energy, Kyoto University Introduction of optical properties of nano-carbon materials

More information

Self-Assembled InAs Quantum Dots

Self-Assembled InAs Quantum Dots Self-Assembled InAs Quantum Dots Steve Lyon Department of Electrical Engineering What are semiconductors What are semiconductor quantum dots How do we make (grow) InAs dots What are some of the properties

More information

Electron Emission from Diamondoids: a DMC Study. Neil D. Drummond Andrew J. Williamson Richard J. Needs and Giulia Galli

Electron Emission from Diamondoids: a DMC Study. Neil D. Drummond Andrew J. Williamson Richard J. Needs and Giulia Galli Electron Emission from Diamondoids: a DMC Study Neil D. Drummond Andrew J. Williamson Richard J. Needs and Giulia Galli October 18, 2005 1 Semiconductor Nanoparticles for Optoelectronic Devices (I) The

More information

Inverted Quantum-dot Light-Emitting Diode with Solution-Processed Aluminum-Zinc- Oxide as Cathode Buffer

Inverted Quantum-dot Light-Emitting Diode with Solution-Processed Aluminum-Zinc- Oxide as Cathode Buffer Normalized Absorbance (a.u.) Normalized PL Intensity (a.u.) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is The Royal Society of Chemistry 22 SUPPORTING INFORMATION

More information

INVESTIGATIONS OF Mn, Fe, Ni AND Pb DOPED

INVESTIGATIONS OF Mn, Fe, Ni AND Pb DOPED INVESTIGATIONS OF Mn, Fe, Ni AND Pb DOPED ZINC SULPHIDE NANOPARTICLES A thesis submitted to the University of Pune FOR THE DEGREE OF DOCTOR of PHILOSOPHY IN PHYSICS by PRAMOD H. BORSE DEPARTMENT OF PHYSICS

More information

PHYSICS nd TERM Outline Notes (continued)

PHYSICS nd TERM Outline Notes (continued) PHYSICS 2800 2 nd TERM Outline Notes (continued) Section 6. Optical Properties (see also textbook, chapter 15) This section will be concerned with how electromagnetic radiation (visible light, in particular)

More information

Revisited Wurtzite CdSe Synthesis : a Gateway for the Versatile Flash Synthesis of Multi-Shell Quantum Dots and Rods

Revisited Wurtzite CdSe Synthesis : a Gateway for the Versatile Flash Synthesis of Multi-Shell Quantum Dots and Rods Supporting Information for Revisited Wurtzite CdSe Synthesis : a Gateway for the Versatile Flash Synthesis of Multi-Shell Quantum Dots and Rods Emile Drijvers, 1,3 Jonathan De Roo, 2 Pieter Geiregat, 1,3

More information

Quantum Dots: Applications in Modern. Technology

Quantum Dots: Applications in Modern. Technology Quantum Dots 1 Quantum Dots: Applications in Modern Technology K. Li and R. Lan Optical Engineering Dr. K. Daneshvar July 13, 2007 Quantum Dots 2 Abstract: As technology moves forward, the need for semiconductors

More information

Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr 3 Films

Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr 3 Films Supporting information Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr 3 Films Li Song,, Xiaoyang Guo, *, Yongsheng Hu, Ying Lv, Jie Lin, Zheqin

More information

Goal for next generation solar cells: Efficiencies greater than Si with low cost (low temperature) processing

Goal for next generation solar cells: Efficiencies greater than Si with low cost (low temperature) processing Multi-junction cells MBE growth > 40% efficient Expensive Single crystal Si >20% efficient expensive Thin film cells >10% efficient Less expensive Toxic materials Polymers

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

Semiconductor nanocrystals

Semiconductor nanocrystals Semiconductor nanocrystals Image of fluorescence in various sized Cadmium Selenide Quantum Dots. (Dr. D. Talapin, University of Hamburg, http://www.chemie.unihamburg.de/pc/weller/). Applications: Biology

More information

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Luminescence Spectroscopy of Semiconductors IVAN PELANT Institute ofphysics, v.v.i. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Department of Chemical Physics and Optics Charles University,

More information

Spiro-Configured Bifluorenes: Highly Efficient Emitter for UV Organic Light-Emitting Device and Host Material for Red Electrophosphorescence

Spiro-Configured Bifluorenes: Highly Efficient Emitter for UV Organic Light-Emitting Device and Host Material for Red Electrophosphorescence Spiro-Configured Bifluorenes: Highly Efficient Emitter for UV Organic Light-Emitting Device and Host Material for Red Electrophosphorescence Ken-Tsung Wong,* a Yuan-Li Liao, a Yu-Ting Lin, b Hai-Ching

More information

Forming Gradient Multilayer (GML) Nano Films for Photovoltaic and Energy Storage Applications

Forming Gradient Multilayer (GML) Nano Films for Photovoltaic and Energy Storage Applications Forming Gradient Multilayer (GML) Nano Films for Photovoltaic and Energy Storage Applications ABSTRACT Boris Gilman and Igor Altman Coolsol R&C, Mountain View CA For successful implementation of the nanomaterial-based

More information

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample.

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample. Luminescence Topics Radiative transitions between electronic states Absorption and Light emission (spontaneous, stimulated) Excitons (singlets and triplets) Franck-Condon shift(stokes shift) and vibrational

More information

NNIN Nanotechnology Education

NNIN Nanotechnology Education NNIN Nanotechnology Education Name: Date: Class: Student Worksheet Part 1: Synthesizing CdSe Quantum Dots (with Answers in Red) The following synthesis must be performed in a fume hood, and the students

More information

Structure Property Relationships of. Organic Light-Emitting Diodes. Michael Kochanek May 19, 2006 MS&E 542 Flexible Electronics

Structure Property Relationships of. Organic Light-Emitting Diodes. Michael Kochanek May 19, 2006 MS&E 542 Flexible Electronics Structure Property Relationships of Organic Light-Emitting Diodes Michael Kochanek May 19, 2006 MS&E 542 Flexible Electronics Introduction Many of today s solid-state inorganic microelectronic devices

More information

LASER. Light Amplification by Stimulated Emission of Radiation

LASER. Light Amplification by Stimulated Emission of Radiation LASER Light Amplification by Stimulated Emission of Radiation Laser Fundamentals The light emitted from a laser is monochromatic, that is, it is of one color/wavelength. In contrast, ordinary white light

More information

Physics of Organic Semiconductor Devices: Materials, Fundamentals, Technologies and Applications

Physics of Organic Semiconductor Devices: Materials, Fundamentals, Technologies and Applications Physics of Organic Semiconductor Devices: Materials, Fundamentals, Technologies and Applications Dr. Alex Zakhidov Assistant Professor, Physics Department Core faculty at Materials Science, Engineering

More information

Supporting Information. Single-Layer Halide Perovskite Light-Emitting. Diodes with Sub-Bandgap Turn-on Voltage and

Supporting Information. Single-Layer Halide Perovskite Light-Emitting. Diodes with Sub-Bandgap Turn-on Voltage and Supporting Information Single-Layer Halide Perovskite Light-Emitting Diodes with Sub-Bandgap Turn-on Voltage and High Brightness Junqiang Li, Xin Shan, Sri Ganesh R. Bade, Thomas Geske,, Qinglong Jiang,

More information

Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour

Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour (Cu) All operate by vaporizing metal in container Helium

More information

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for six WSe 2 -MoSe 2 heterostructures under cw laser excitation

More information

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures Intensity / a.u. Supplementary figures 110 MAPbI 3 1:1 MaPbI 3-x Cl x 3:1 220 330 0 10 15 20 25 30 35 40 45 2 theta / deg Supplementary Fig. 1 X-ray Diffraction (XRD) patterns of MAPbI3 and MAPbI 3-x Cl

More information

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS Jin Zhong Zhang University of California, Santa Cruz, USA TECHNISCHE INFORMATIONSBIBLIOTHEK Y World Scientific NEW JERSEY. t'on.don SINGAPORE «'BEIJING

More information

Optical Properties of Solid from DFT

Optical Properties of Solid from DFT Optical Properties of Solid from DFT 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University of Oslo, Norway http://folk.uio.no/ravi/cmt15

More information

Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass

Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass and a reference pattern of anatase TiO 2 (JSPDS No.: 21-1272).

More information

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications CH676 Physical Chemistry: Principles and Applications Crystal Structure and Chemistry Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity Na Tian

More information

Organic LEDs part 8. Exciton Dynamics in Disordered Organic Thin Films. Handout on QD-LEDs: Coe et al., Nature 420, 800 (2002).

Organic LEDs part 8. Exciton Dynamics in Disordered Organic Thin Films. Handout on QD-LEDs: Coe et al., Nature 420, 800 (2002). Organic LEDs part 8 Exciton Dynamics in Disordered Organic Thin Films Quantum Dot LEDs Handout on QD-LEDs: Coe et al., ature 420, 800 (2002). @ MIT April 29, 2003 Organic Optoelectronics - Lecture 20b

More information

Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices

Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices Organic Electronics 4 (2003) 123 130 www.elsevier.com/locate/orgel Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices Seth Coe-Sullivan a,1, Wing-Keung Woo b,1, Jonathan

More information

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators Chapter 6 Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators 6.1 Introduction Researchers have devoted considerable effort to enhancing light emission from semiconductors

More information

Fabrication / Synthesis Techniques

Fabrication / Synthesis Techniques Quantum Dots Physical properties Fabrication / Synthesis Techniques Applications Handbook of Nanoscience, Engineering, and Technology Ch.13.3 L. Kouwenhoven and C. Marcus, Physics World, June 1998, p.35

More information

Organic Electroluminescent Displays

Organic Electroluminescent Displays Organic Electroluminescent Displays Richard Friend Cambridge Display Technology Cambridge, UK Recent Reviews: ( both can be downloaded from: www.cdtltd.co.uk ) R. H. Friend, et al., Nature 397, 121 (1999).

More information

Interfacial alloying in CdSe/CdS heteronanocrystals, a Raman spectroscopy analysis

Interfacial alloying in CdSe/CdS heteronanocrystals, a Raman spectroscopy analysis Interfacial alloying in CdSe/CdS heteronanocrystals, a Raman spectroscopy analysis Norman Tschirner,, Holger Lange, Andrei Schliwa, Amelie Biermann, Christian Thomsen, Karel Lambert,, Raquel Gomes,, and

More information

Debjit Roy, Saptarshi Mandal, Chayan K. De, Kaushalendra Kumar and Prasun K. Mandal*

Debjit Roy, Saptarshi Mandal, Chayan K. De, Kaushalendra Kumar and Prasun K. Mandal* Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 Nearly Suppressed Photoluminescence Blinking of Small Sized, Blue-Green-Orange-Red

More information

Characterization of Group (II-VI) Semiconductor Nanoparticles by UV-visible Spectroscopy *

Characterization of Group (II-VI) Semiconductor Nanoparticles by UV-visible Spectroscopy * OpenStax-CNX module: m34601 1 Characterization of Group 12-16 (II-VI) Semiconductor Nanoparticles by UV-visible Spectroscopy * Sravani Gullapalli Andrew R. Barron This work is produced by OpenStax-CNX

More information

III-V nanostructured materials synthesized by MBE droplet epitaxy

III-V nanostructured materials synthesized by MBE droplet epitaxy III-V nanostructured materials synthesized by MBE droplet epitaxy E.A. Anyebe 1, C. C. Yu 1, Q. Zhuang 1,*, B. Robinson 1, O Kolosov 1, V. Fal ko 1, R. Young 1, M Hayne 1, A. Sanchez 2, D. Hynes 2, and

More information

Nanophysics: Main trends

Nanophysics: Main trends Nano-opto-electronics Nanophysics: Main trends Nanomechanics Main issues Light interaction with small structures Molecules Nanoparticles (semiconductor and metallic) Microparticles Photonic crystals Nanoplasmonics

More information

Distribution of Delay Times in Laser Excited CdSe-ZnS Core-Shell Quantum Dots

Distribution of Delay Times in Laser Excited CdSe-ZnS Core-Shell Quantum Dots Distribution of Delay Times in Laser Excited CdSe-ZnS Core-Shell Quantum Dots Andrei Vajiac Indiana University South Bend Mathematics, Computer Science Advisor: Pavel Frantsuzov, Physics Abstract This

More information

Unravelling the Origin of Operational Instability of Quantum Dot based Light- Emitting Diodes

Unravelling the Origin of Operational Instability of Quantum Dot based Light- Emitting Diodes Supporting Information Unravelling the Origin of Operational Instability of Quantum Dot based Light- Emitting Diodes Jun Hyuk Chang, 1 Philip Park, 2 Heeyoung Jung, 3 Byeong Guk Jeong, 4 Donghyo Hahm,

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information

Improving your introductions

Improving your introductions Engineers who don t write well, end up working for engineers who do (MIT 2012). Improving your introductions Masters of Engineering Academic Language and Learning Success Program (ALLSP) Session outline

More information

Quantum dot display technology and market outlook

Quantum dot display technology and market outlook IHS Emerging Display Technologies Report Quantum dot display technology and market outlook November 2013 ihs.com Michelle Park, Research Analyst, +82 031 704 7188, Michelle.Park@ihs.com EDDB-TA-A-06-2013

More information

CHAPTER 3. FABRICATION TECHNOLOGIES OF CdSe/ZnS / Au NANOPARTICLES AND NANODEVICES. 3.1 THE SYNTHESIS OF Citrate-Capped Au NANOPARTICLES

CHAPTER 3. FABRICATION TECHNOLOGIES OF CdSe/ZnS / Au NANOPARTICLES AND NANODEVICES. 3.1 THE SYNTHESIS OF Citrate-Capped Au NANOPARTICLES CHAPTER 3 FABRICATION TECHNOLOGIES OF CdSe/ZnS / Au NANOPARTICLES AND NANODEVICES 3.1 THE SYNTHESIS OF Citrate-Capped Au NANOPARTICLES Au NPs with ~ 15 nm were prepared by citrate reduction of HAuCl 4

More information

FACULTY OF ENGINEERING ALEXANDRIA UNVERSITY. Solid State lab. Instructors Dr. M. Ismail El-Banna Dr. Mohamed A. El-Shimy TA Noha Hanafy

FACULTY OF ENGINEERING ALEXANDRIA UNVERSITY. Solid State lab. Instructors Dr. M. Ismail El-Banna Dr. Mohamed A. El-Shimy TA Noha Hanafy FACULTY OF ENGINEERING ALEXANDRIA UNVERSITY Solid State lab Instructors Dr. M. Ismail El-Banna Dr. Mohamed A. El-Shimy TA Noha Hanafy 2017-2018 first term A. Experiments 1- Relationship between the intensity

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2013 Lecture 02 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 2: outline 2 Introduction to Nanophotonics Theoretical

More information

THEORETICAL STUDY OF THE QUANTUM CONFINEMENT EFFECTS ON QUANTUM DOTS USING PARTICLE IN A BOX MODEL

THEORETICAL STUDY OF THE QUANTUM CONFINEMENT EFFECTS ON QUANTUM DOTS USING PARTICLE IN A BOX MODEL Journal of Ovonic Research Vol. 14, No. 1, January - February 2018, p. 49-54 THEORETICAL STUDY OF THE QUANTUM CONFINEMENT EFFECTS ON QUANTUM DOTS USING PARTICLE IN A BOX MODEL A. I. ONYIA *, H. I. IKERI,

More information

Analytical Measurements for Quantum Efficiency of Organic Light Emitting Diodes*

Analytical Measurements for Quantum Efficiency of Organic Light Emitting Diodes* ISSN 0974-9373 Vol. 15(2011) Special Issue 2 Journal of International Academy of Physical Sciences pp. 231-238 Analytical Measurements for Quantum Efficiency of Organic Light Emitting Diodes* Manju Shukla

More information

STUDY OF COLLOIDAL LEAD SULFIDE QUANTUM DOT LIGHT-EMITTING-DIODES WITH INORGANIC CHARGE INJECTION LAYERS AND LIGAND EXCHANGES

STUDY OF COLLOIDAL LEAD SULFIDE QUANTUM DOT LIGHT-EMITTING-DIODES WITH INORGANIC CHARGE INJECTION LAYERS AND LIGAND EXCHANGES STUDY OF COLLOIDAL LEAD SULFIDE QUANTUM DOT LIGHT-EMITTING-DIODES WITH INORGANIC CHARGE INJECTION LAYERS AND LIGAND EXCHANGES A Thesis Presented to the Faculty of the Graduate School of Cornell University

More information

Analysis of Cadmium (Cd) in Plastic Using X-ray Fluorescence Spectroscopy

Analysis of Cadmium (Cd) in Plastic Using X-ray Fluorescence Spectroscopy Analysis of Cadmium (Cd) in Plastic Using X-ray Fluorescence Spectroscopy Hiroshi Onodera Application & Research Center, JEOL Ltd. Introduction um, PBB and PBDE) are subject to usage restrictions in Europe.

More information

Commercial Volumes of Quantum Dots: Controlled Nanoscale Synthesis and Micron- Scale Applications.

Commercial Volumes of Quantum Dots: Controlled Nanoscale Synthesis and Micron- Scale Applications. Page 1 of 7 Page 1 of 7 Return to Web Version Commercial Volumes of Quantum Dots: Controlled Nanoscale Synthesis and Micron- Scale Applications. By: Drs. Nigel L. Pickett, Ombretta Masala, James Harris,

More information

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected Semiconductor Lasers Comparison with LEDs The light emitted by a laser is generally more directional, more intense and has a narrower frequency distribution than light from an LED. The external efficiency

More information

Operational lifetimes of organic light-emitting diodes dominated by Förster

Operational lifetimes of organic light-emitting diodes dominated by Förster Operational lifetimes of organic light-emitting diodes dominated by Förster resonance energy transfer Hirohiko Fukagawa *, Takahisa Shimizu, Yukiko Iwasaki, and Toshihiro Yamamoto Japan Broadcasting Corporation

More information

Presents QD's/QD Film and QD LED's at SID/Display Week in Los Angeles Granted Key IP for Continuous Flow Processing of Cadmium Free Quantum Dots

Presents QD's/QD Film and QD LED's at SID/Display Week in Los Angeles Granted Key IP for Continuous Flow Processing of Cadmium Free Quantum Dots Quantum Materials Corp. Update (OTCQB: QTMM) Presents QD's/QD Film and QD LED's at SID/Display Week in Los Angeles Granted Key IP for Continuous Flow Processing of Cadmium Free Quantum Dots May 30, 2017

More information

Novel Soft Materials: Organic Semiconductors

Novel Soft Materials: Organic Semiconductors JSPS Science Dialogue Novel Soft Materials: Organic Semiconductors X.T. HAO Prof. UENO s Lab Faculty of Engineering, Chiba University 21 st Century Center of Excellence Program The route to research Transparent

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 Electronic Supplementary Information Bright, Stable, and Tunable Solid-State Luminescence

More information

Fundamentals of Nanoelectronics: Basic Concepts

Fundamentals of Nanoelectronics: Basic Concepts Fundamentals of Nanoelectronics: Basic Concepts Sławomir Prucnal FWIM Page 1 Introduction Outline Electronics in nanoscale Transport Ohms law Optoelectronic properties of semiconductors Optics in nanoscale

More information

Monolayer Semiconductors

Monolayer Semiconductors Monolayer Semiconductors Gilbert Arias California State University San Bernardino University of Washington INT REU, 2013 Advisor: Xiaodong Xu (Dated: August 24, 2013) Abstract Silicon may be unable to

More information

Electrical control of near-field energy transfer between. quantum dots and 2D semiconductors

Electrical control of near-field energy transfer between. quantum dots and 2D semiconductors Electrical control of near-field energy transfer between quantum dots and 2D semiconductors Supporting Information Dhiraj Prasai, Andrey Klots #, AKM Newaz #, $, J. Scott Niezgoda, Noah J. Orfield, Carlos

More information

Zinc-Phosphorus Complex Working as Atomic Valve for Colloidal Growth of Monodisperse Indium Phosphide Quantum Dots

Zinc-Phosphorus Complex Working as Atomic Valve for Colloidal Growth of Monodisperse Indium Phosphide Quantum Dots Supporting Information Zinc-Phosphorus Complex Working as Atomic Valve for Colloidal Growth of Monodisperse Indium Phosphide Quantum Dots Sungjun Koh, Taedaehyeong Eom, Whi Dong Kim, Kangha Lee, Dongkyu

More information

Highly efficient organic light-emitting devices beyond theoretical prediction under high current density

Highly efficient organic light-emitting devices beyond theoretical prediction under high current density Highly efficient organic light-emitting devices beyond theoretical prediction under high current density Miaomiao Tian 1, 2, Jinsong Luo 1, and Xingyuan Liu 1* 1 Key Laboratory of Excited State Processes,

More information

J. Photopolym. Sci. Technol., Vol. 22, No. 5, Fig. 1. Orthogonal solvents to conventional process media.

J. Photopolym. Sci. Technol., Vol. 22, No. 5, Fig. 1. Orthogonal solvents to conventional process media. originates from the limited number of options regarding orthogonal solvents, i.e. solvents that do not dissolve or adversely damage a pre-deposited organic materials layer. The simplest strategy to achieve

More information

Supporting Information

Supporting Information Supporting Information Study of Diffusion Assisted Bimolecular Electron Transfer Reactions: CdSe/ZnS Core Shell Quantum Dot acts as an Efficient Electron Donor as well as Acceptor. Somnath Koley, Manas

More information

Defects in Semiconductors

Defects in Semiconductors Defects in Semiconductors Mater. Res. Soc. Symp. Proc. Vol. 1370 2011 Materials Research Society DOI: 10.1557/opl.2011. 771 Electronic Structure of O-vacancy in High-k Dielectrics and Oxide Semiconductors

More information

Ultrafast single photon emitting quantum photonic structures. based on a nano-obelisk

Ultrafast single photon emitting quantum photonic structures. based on a nano-obelisk Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk Je-Hyung Kim, Young-Ho Ko, Su-Hyun Gong, Suk-Min Ko, Yong-Hoon Cho Department of Physics, Graduate School of Nanoscience

More information

Single Photon Generation & Application

Single Photon Generation & Application Single Photon Generation & Application Photon Pair Generation: Parametric down conversion is a non-linear process, where a wave impinging on a nonlinear crystal creates two new light beams obeying energy

More information

PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA.

PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA. SOLAR CELL AND ITS APPLICATION PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA. OUTLINE OF THE PRESENTATION Objective of the work. A brief introduction to Solar Cell

More information

After Development Inspection (ADI) Studies of Photo Resist Defectivity of an Advanced Memory Device

After Development Inspection (ADI) Studies of Photo Resist Defectivity of an Advanced Memory Device After Development Inspection (ADI) Studies of Photo Resist Defectivity of an Advanced Memory Device Hyung-Seop Kim, Yong Min Cho, Byoung-Ho Lee Semiconductor R&D Center, Device Solution Business, Samsung

More information

Supporting information for:

Supporting information for: Supporting information for: CdTe/CdS Core/Shell Quantum Dots co-catalyzed by Sulfur Tolerant [Mo 3 S 13 ] 2- Nanoclusters for Efficient Visible Light-driven Hydrogen Evolution Dongting Yue, Xufang Qian,

More information

UHF-ECR Plasma Etching System for Dielectric Films of Next-generation Semiconductor Devices

UHF-ECR Plasma Etching System for Dielectric Films of Next-generation Semiconductor Devices UHF-ECR Plasma Etching System for Dielectric Films of Next-generation Semiconductor Devices 1 UHF-ECR Plasma Etching System for Dielectric Films of Next-generation Semiconductor Devices Katsuya Watanabe

More information

The CdS and CdMnS nanocrystals have been characterized using UV-visible spectroscopy, TEM, FTIR, Particle Size Measurement and Photoluminiscence.

The CdS and CdMnS nanocrystals have been characterized using UV-visible spectroscopy, TEM, FTIR, Particle Size Measurement and Photoluminiscence. Synthesis of CdS and CdMns Nanocrystals in Organic phase Usha Raghavan HOD, Dept of Information Technology VPM s Polytechnic, Thane Maharashtra Email id: usharagha@gmail.com Abstract: The present work

More information