CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications

Size: px
Start display at page:

Download "CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications"

Transcription

1 CH676 Physical Chemistry: Principles and Applications

2 Crystal Structure and Chemistry Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity Na Tian et al. Science , 732, 2007

3 Optically and Chemically Encoded Nanoparticle Materials for Bio-applications El-Sayed Professor of Chemistry at Georgia Tech Chad A. Mirkin Professor of Chemistry at Northwestern University

4 Zero-Dimensional Nanostructures: Nanoparticles Semiconductor nanocrystals Much of the development of nanostructures is related to semiconductors. Band structure is the heart of semiconductor materials Many intriguing properties (optical and electrical) are direct results of the band structure change at the nanometer scale. Displays LEDs Life Sciences Thermoelectrics Photonics & Telecommunications Security Inks Photovoltaics

5 Exciton Bohr Radius and Band Gap Quantum dots are also made out of semiconductor material. The concepts of energy levels, bandgap, conduction band and valence band still apply. However, there is a major difference. Excitons have an average physical separation between the electron and hole, referred to as the Exciton Bohr Radius. This physical distance is different for each material. In bulk, the dimensions of the semiconductor crystal are much larger than the Exciton Bohr Radius, allowing the exciton to extend to its natural limit. However, if the size of a semiconductor crystal becomes small enough that it approaches the size of the material's Exciton Bohr Radius, then the electron energy levels can no longer be treated as continuous - they must be treated as discrete, meaning that there is a small and finite separation between energy levels. This situation of discrete energy levels is called quantum confinement, and under these conditions, the semiconductor material ceases to resemble bulk, and instead can be called a quantum dot. This has large repercussions on the absorptive and emissive behavior of the semiconductor material. Si

6 Bohr radius and band gap change Because quantum dots' electron energy levels are discrete, the addition or subtraction of just a few atoms to the quantum dot has the effect of altering the boundaries of the bandgap. Changing the geometry of the surface of the quantum dot also changes the bandgap energy, owing again to the small size of the dot, and the effects of quantum confinement. The bandgap in a quantum dot will always be energetically larger; therefore, we refer to the radiation from quantum dots to be "blue shifted" reflecting the fact that electrons must fall a greater distance in terms of energy and thus produce radiation of a shorter, and therefore "bluer" wavelength.

7 Bohr radius and band gap change As with bulk semiconductor material, electrons tend to make transitions near the edges of the bandgap. However, with quantum dots, the size of the bandgap is controlled simply by adjusting the size of the dot. Because the emission frequency of a dot is dependent on the bandgap, it is therefore possible to control the output wavelength of a dot with extreme precision. In effect, it is possible to tune the bandgap of a dot, and therefore specify its "color" output depending on the needs of the applications. Prof. Brus Prof. Alivisatos Prof. Bawendi

8 Bohr radius and band gap change As with bulk semiconductor material, electrons tend to make transitions near the edges of the bandgap. However, with quantum dots, the size of the bandgap is controlled simply by adjusting the size of the dot. Because the emission frequency of a dot is dependent on the bandgap, it is therefore possible to control the output wavelength of a dot with extreme precision. In effect, it is possible to tune the bandgap of a dot, and therefore specify its "color" output depending on the needs of the applications.

9 Quantum Dots

10 Quantum Dots Quantum Dots Narrow FWHM and Tunable Emission Pattern The peak emission wavelength is bell-shaped (Gaussian) and occurs at a longer wavelength than the lowest absorption energy exciton peak. (Stoke's Shift). The bandwidth of the emission spectra (Full Width at Half Maximum; FWHM) stems from the temperature, natural spectral line width of the quantum dots, and the size distribution of the population of quantum dots within a solution or matrix material. Spectral emission broadening due to size distribution is known as inhomogeneous broadening and is the largest contributor to the FWHM. Narrower size distributions yield smaller FWHM. For CdSe, a 5% size distribution corresponds to ~ 30nm FWHM. Quantum Dots - Molecular Coupling Colloidally prepared quantum dots are free floating and can be attached to a variety of molecules via metal coordinating functional groups. These groups include thiol, amine, nitrile, phosphine, phosphine oxide, phosphonic acid, carboxylic acid or others ligands. By bonding appropriate molecules to the surface, the quantum dots can be dispersed or dissolved in nearly any solvent or incorporated into a variety of inorganic and organic films. Quantum Dots High Quantum Yield and Brightness The percentage of absorbed photons that result in an emitted photon is called Quantum Yield (QY). QY is controlled by the existence of nonradiative transition of electrons and holes between energy levels- transitions that produce no electromagnetic radiation. Nonradiative recombination largely occurs at the dot's surface and is therefore greatly influenced by the surface chemistry. Adding Shells to Quantum Dots It is established that capping a core quantum dot with a shell (several atomic layers of an inorganic wide band semiconductor) reduces nonradiative recombination and results in brighter emission, provided the shell is of a different semiconductor material with a wider bandgap than the Core semiconductor material. The higher QY of Core-Shell quantum dots comes about due to changes in the surface chemistry of the core quantum dot. The surface of quantum dots that lack a shell has both free (unbonded) electrons, in addition to crystal defects.

11 Quantum Dots LEDs Quantum dots are valued for displays, because they emit light in very specific gaussian distributions. This can result in a display that more accurately renders the colors that the human eye can perceive. Quantum dots also require very little power since they are not color filtered. Life Sciences In modern biological analysis, various kinds of organic dyes are used. However, with each passing year, more flexibility is being required of these dyes, and the traditional dyes are often unable to meet the expectations. One of the most immediately obvious being brightness (owing to the high extinction co-efficient combined with a comparable quantum yield tofluorescentdyesaswellastheirstability. It has been estimated that quantum dots are 20 times brighter and 100 times more stable than traditional fluorescent reporters. Thermoelectrics Photonics & Telecommunications Security Inks Photovoltaics Quantum dots may be able to increase the efficiency and reduce the cost of today's typical silicon photovoltaic cells. For example, quantum dots of lead selenide can produce as many as seven excitons from one high energy photon of sunlight (7.8 times the bandgap energy). Quantum dot photovoltaics would theoretically be cheaper to manufacture. The generation of more than one exciton by a single photon is called multiple exciton generation (MEG) or carrier multiplication.

12 Introduction: Bottom-up Thermodynamic Approach (v.s. Kinetic Approach): 1.Generation of supersaturation 2.Nucleation 3.Subsequent growth Solvent; Precursor; Capping Agent; Reducing Agent

13 Nuecleation - Free Energy

14 Nuecleation - Free Energy This equation indicates that high initial concentration or supersaturation, low viscosity and low critical energy barrier favor the formation of a large number of nuclei. For a given concentration of solute, a larger number of nuclei mean smaller sized nuclei.

15 Growth Generation of growth species Diffusion of the growth species from bulk to the growth surface Adsorption of the growth species onto the growth surface Surface growth through irreversible incorporation of growth species onto the solid surface Diffusion / Growth

16 Important factors in metallic Nanoparticle Synthesis Reduction conditions Stronger reduction faster reactions smaller nanoparticles and narrower distributions Weaker reduction slower reactions Stabilizer Wider distribution (if further or secondary nucleation forms) Narrow distribution (if no further nucleation forms diffusion limited growth) Stabilization Diffusion barrier

17 Choice of reduction agent Choice of reduction agents and reaction conditions determine nucleation/growth thermodynamics and kinetics; product size, shape/morphologies are sensitive to T, reduction agent, ph, etc. Turkevich, J., et al, Discuss. Faraday Soc. 11, 55, 1951

18

19

20

21 Synthesis of semiconductor nanoparticles Thermo decomposition Non-oxide semiconductor (some oxides as well) Temporally discrete nucleation (by rapid increase in the reagent concentrations) Oswald ripening (to form uniform size distributions) Size selective precipitation applied Hot Injection & Heat-Up Sol-gel processing Oxide semiconductor (Versatile) Forced hydrolysis Controlled release of constituent ions Alkoxide & Chloride Si(OR) 4 + H 2 O HO-Si(OR) 3 + R-OH Condensation (OR) 3 Si-OH + HO Si-(OR) 3 [(OR) 3 Si O Si(OR) 3 ] + H-O-H Polymerization

22 Synthesis of semiconductor nanoparticles Hot Injection Precursors For Cd, Me 2 Cd For S: (TMS) 2 S For Se: TOP Se Procedures 1. Hot TOPO solution (320 ºC) 2. Cd and chalogenide precursors in TOPO Capping Agents Polar head bind to the surface (non-polar solvents) Control the growth process Stabilize colloidal suspension Passivate semiconductor surface Capping agent can be exchanged

23 Hot Injection - Synthesis of semiconductor nanoparticles Precursors For Cd, Me 2 Cd For S: (TMS) 2 S For Se: TOP Se Procedures 1. Hot TOPO solution (320 ºC) 2. Cd and chalogenide precursors in TOPO

24 Heat Up Synthesis of semiconductor nanoparticles Precursors Metal-oleate Complex Procedures 1. Matel-oleate, oleic acid, and 1-octadecene 2. Heat mix solution (320 ºC) Capping Agents Polar head bind to the surface (non-polar solvents) Control the growth process Stabilize colloidal suspension Passivate semiconductor surface 70 C ~4 hours 36 g (40 mmol) of the iron-oleate complex 5.7 g of oleic acid (20 mmol, Aldrich, 90%) 200 g of 1-octadecene (Aldrich, 90%) 10.8 g of FeCl 3 6H 2 O (40 mmol, Aldrich, 98%) 36.5 g of sodium oleate (120 mmol, TCI, 95%) 80 ml ethanol + 60 ml D.I. water ml hexane Waxy solid form M OOCR M + RCOO M OOCR MO + RC O M + MO MOM 320 C (3.3 C /min) ~30 min

25 Heat Up Synthesis of semiconductor nanoparticles Precursors Metal-oleate Complex Procedures 1. Matel-oleate, oleic acid, and 1-octadecene 2. Heat mix solution (320 ºC)

26 Heat Up Synthesis of semiconductor nanoparticles Precursors Metal-oleate Complex Procedures 1. Matel-oleate, oleic acid, and 1-octadecene 2. Heat mix solution (320 ºC)

27 Hot Injection & Heat Up Synthesis of semiconductor nanoparticles

TECHNICAL INFORMATION. Quantum Dot

TECHNICAL INFORMATION. Quantum Dot Quantum Dot Quantum Dot is the nano meter sized semiconductor crystal with specific optical properties originates from the phenomenon which can be explained by the quantum chemistry and quantum mechanics.

More information

PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA.

PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA. SOLAR CELL AND ITS APPLICATION PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA. OUTLINE OF THE PRESENTATION Objective of the work. A brief introduction to Solar Cell

More information

Semiconductor quantum dots

Semiconductor quantum dots Semiconductor quantum dots Quantum dots are spherical nanocrystals of semiconducting materials constituted from a few hundreds to a few thousands atoms, characterized by the quantum confinement of the

More information

Nanoparticles and Quantum Dots.

Nanoparticles and Quantum Dots. Nanoparticles and Quantum Dots. 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University of Oslo, Norway http://folk.uio.no/ravi/cutn/nmnt

More information

Scienza e Tecnologia dei Materiali Ceramici. Modulo 2: Materiali Nanostrutturati

Scienza e Tecnologia dei Materiali Ceramici. Modulo 2: Materiali Nanostrutturati Università degli Studi di Trieste Dipartimento di Ingegneria e Architettura A.A. 2016-2017 Scienza e Tecnologia dei Materiali Ceramici Modulo 2: Materiali Nanostrutturati - Lezione 5 - Vanni Lughi vlughi@units.it

More information

Quantum Dots for Advanced Research and Devices

Quantum Dots for Advanced Research and Devices Quantum Dots for Advanced Research and Devices spectral region from 450 to 630 nm Zero-D Perovskite Emit light at 520 nm ABOUT QUANTUM SOLUTIONS QUANTUM SOLUTIONS company is an expert in the synthesis

More information

Materials as particle in a box models: Synthesis & optical study of CdSe quantum dots

Materials as particle in a box models: Synthesis & optical study of CdSe quantum dots Lab Week 3 Module α 2 Materials as particle in a box models: Synthesis & optical study of CdSe quantum dots Instructor: Francesco Stellacci OBJECTIVES Introduce the particle-wave duality principle Introduce

More information

Quantum Dots an Upcoming Concept of Semeconductors & Nanotechnology. Mayur Ingale *, Mandar Dingore **,Shubhankar Gokhale ***

Quantum Dots an Upcoming Concept of Semeconductors & Nanotechnology. Mayur Ingale *, Mandar Dingore **,Shubhankar Gokhale *** Quantum Dots an Upcoming Concept of Semeconductors & Nanotechnology Mayur Ingale *, Mandar Dingore **,Shubhankar Gokhale *** *(Department of Mechanical, Mumbai University, RGIT, Andheri-400053 ** (Department

More information

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES 42 CHAPTER 3 OPTICAL STUDIES ON SnS NANOPARTICLES 3.1 INTRODUCTION In recent years, considerable interest has been shown on semiconducting nanostructures owing to their enhanced optical and electrical

More information

not to be confused with using the materials to template nanostructures

not to be confused with using the materials to template nanostructures Zeolites as Templates: continued Synthesis: Most zeolite syntheses are performed by using template-synthesis not to be confused with using the materials to template nanostructures templates are often surfactants

More information

Quantum Dots The Pennsylvania State University Quantum Dots 1

Quantum Dots The Pennsylvania State University Quantum Dots 1 Quantum Dots www.nano4me.org 2018 The Pennsylvania State University Quantum Dots 1 Outline Introduction Quantum Confinement QD Synthesis Colloidal Methods Epitaxial Growth Applications Biological Light

More information

Nanostructured Semiconductor Crystals -- Building Blocks for Solar Cells: Shapes, Syntheses, Surface Chemistry, Quantum Confinement Effects

Nanostructured Semiconductor Crystals -- Building Blocks for Solar Cells: Shapes, Syntheses, Surface Chemistry, Quantum Confinement Effects Nanostructured Semiconductor Crystals -- Building Blocks for Solar Cells: Shapes, Syntheses, Surface Chemistry, Quantum Confinement Effects April 1,2014 The University of Toledo, Department of Physics

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

Fabrication of Core/Shell. structured Nanoparticles

Fabrication of Core/Shell. structured Nanoparticles Fabrication of Core/Shell structured Nanoparticles Core + Shell Representative heterogeneous nucleation Peter Reiss,* Myriam Protie`re, and Liang Li, Core/Shell Semiconductor Nanocrystals, Small 2009,

More information

Nucleation and Growth Kinetics of CdSe Nanocrystals in Octadecene

Nucleation and Growth Kinetics of CdSe Nanocrystals in Octadecene VOLUME 4, NUMBER 12, DECEMBER 2004 Copyright 2004 by the American Chemical Society Nucleation and Growth Kinetics of CdSe Nanocrystals in Octadecene Craig R. Bullen and Paul Mulvaney* Chemistry School,

More information

THEORETICAL STUDY OF THE QUANTUM CONFINEMENT EFFECTS ON QUANTUM DOTS USING PARTICLE IN A BOX MODEL

THEORETICAL STUDY OF THE QUANTUM CONFINEMENT EFFECTS ON QUANTUM DOTS USING PARTICLE IN A BOX MODEL Journal of Ovonic Research Vol. 14, No. 1, January - February 2018, p. 49-54 THEORETICAL STUDY OF THE QUANTUM CONFINEMENT EFFECTS ON QUANTUM DOTS USING PARTICLE IN A BOX MODEL A. I. ONYIA *, H. I. IKERI,

More information

NNIN Nanotechnology Education

NNIN Nanotechnology Education NNIN Nanotechnology Education Name: Date: Class: Student Worksheet Part 1: Synthesizing CdSe Quantum Dots (with Answers in Red) The following synthesis must be performed in a fume hood, and the students

More information

Lecture 6: Individual nanoparticles, nanocrystals and quantum dots

Lecture 6: Individual nanoparticles, nanocrystals and quantum dots Lecture 6: Individual nanoparticles, nanocrystals and quantum dots Definition of nanoparticle: Size definition arbitrary More interesting: definition based on change in physical properties. Size smaller

More information

CHAPTER III. ORGANIC LIGANDS PASSIVATED ZnSe NANOSTRUCTURES AND FUNCTIONAL PROPERTIES

CHAPTER III. ORGANIC LIGANDS PASSIVATED ZnSe NANOSTRUCTURES AND FUNCTIONAL PROPERTIES 82 CHAPTER III ORGANIC LIGANDS PASSIVATED ZnSe NANOSTRUCTURES AND FUNCTIONAL PROPERTIES 3.1 INTRODUCTION Semiconductor nanocrystals have size tunable optical properties that open up possibilities for revolutionary

More information

Distribution of Delay Times in Laser Excited CdSe-ZnS Core-Shell Quantum Dots

Distribution of Delay Times in Laser Excited CdSe-ZnS Core-Shell Quantum Dots Distribution of Delay Times in Laser Excited CdSe-ZnS Core-Shell Quantum Dots Andrei Vajiac Indiana University South Bend Mathematics, Computer Science Advisor: Pavel Frantsuzov, Physics Abstract This

More information

Electroluminescence from Silicon and Germanium Nanostructures

Electroluminescence from Silicon and Germanium Nanostructures Electroluminescence from silicon Silicon Getnet M. and Ghoshal S.K 35 ORIGINAL ARTICLE Electroluminescence from Silicon and Germanium Nanostructures Getnet Melese* and Ghoshal S. K.** Abstract Silicon

More information

Multiple Exciton Generation in Quantum Dots. James Rogers Materials 265 Professor Ram Seshadri

Multiple Exciton Generation in Quantum Dots. James Rogers Materials 265 Professor Ram Seshadri Multiple Exciton Generation in Quantum Dots James Rogers Materials 265 Professor Ram Seshadri Exciton Generation Single Exciton Generation in Bulk Semiconductors Multiple Exciton Generation in Bulk Semiconductors

More information

Enhanced Photonic Properties of Thin Opaline Films as a Consequence of Embedded Nanoparticles.

Enhanced Photonic Properties of Thin Opaline Films as a Consequence of Embedded Nanoparticles. Enhanced Photonic Properties of Thin Opaline Films as a Consequence of Embedded Nanoparticles. D E Whitehead, M Bardosova and M E Pemble Tyndall National Institute, University College Cork Ireland Introduction:

More information

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in quantum wells Atomic wavefunction of carriers in

More information

Photovoltaic Energy Conversion. Frank Zimmermann

Photovoltaic Energy Conversion. Frank Zimmermann Photovoltaic Energy Conversion Frank Zimmermann Solar Electricity Generation Consumes no fuel No pollution No greenhouse gases No moving parts, little or no maintenance Sunlight is plentiful & inexhaustible

More information

Quantum Dots: Applications in Modern. Technology

Quantum Dots: Applications in Modern. Technology Quantum Dots 1 Quantum Dots: Applications in Modern Technology K. Li and R. Lan Optical Engineering Dr. K. Daneshvar July 13, 2007 Quantum Dots 2 Abstract: As technology moves forward, the need for semiconductors

More information

Light Interaction with Small Structures

Light Interaction with Small Structures Light Interaction with Small Structures Molecules Light scattering due to harmonically driven dipole oscillator Nanoparticles Insulators Rayleigh Scattering (blue sky) Semiconductors...Resonance absorption

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION 1. Selection of the concentrations of PQDs and dye co-immobilized in the sol-gel Both donor (PQDs) and acceptor (dye) concentrations used in the doped sol-gel synthesis were optimized.

More information

Precipitation. Size! Shape! Size distribution! Agglomeration!

Precipitation. Size! Shape! Size distribution! Agglomeration! Precipitation Size! Shape! Size distribution! Agglomeration! Precipitation Four major questions: 1. Why do molecules/ions precipitate? 2. What determines the size? 3. What determines the size distribution?

More information

Supporting Information

Supporting Information Supporting Information Study of Diffusion Assisted Bimolecular Electron Transfer Reactions: CdSe/ZnS Core Shell Quantum Dot acts as an Efficient Electron Donor as well as Acceptor. Somnath Koley, Manas

More information

Anomalous Photoluminescence Stokes Shift in CdSe Nanoparticle/Carbon Nanotube. Hybrids. Columbia University. New York, NY

Anomalous Photoluminescence Stokes Shift in CdSe Nanoparticle/Carbon Nanotube. Hybrids. Columbia University. New York, NY Anomalous Photoluminescence Stokes Shift in CdSe Nanoparticle/Carbon Nanotube Hybrids Austin J. Akey, 1 Chenguang Lu, 1 Lijun Wu, 2 Yimei Zhu, 2 and Irving P. Herman* 1 1 Department of Applied Physics

More information

CHAPTER 3. FABRICATION TECHNOLOGIES OF CdSe/ZnS / Au NANOPARTICLES AND NANODEVICES. 3.1 THE SYNTHESIS OF Citrate-Capped Au NANOPARTICLES

CHAPTER 3. FABRICATION TECHNOLOGIES OF CdSe/ZnS / Au NANOPARTICLES AND NANODEVICES. 3.1 THE SYNTHESIS OF Citrate-Capped Au NANOPARTICLES CHAPTER 3 FABRICATION TECHNOLOGIES OF CdSe/ZnS / Au NANOPARTICLES AND NANODEVICES 3.1 THE SYNTHESIS OF Citrate-Capped Au NANOPARTICLES Au NPs with ~ 15 nm were prepared by citrate reduction of HAuCl 4

More information

CHAPTER 3. SURFACE PASSIVATED CdS NANOPARTICLES AND THEIR PROPERTIES

CHAPTER 3. SURFACE PASSIVATED CdS NANOPARTICLES AND THEIR PROPERTIES 37 CHAPTER 3 SURFACE PASSIVATED CdS NANOPARTICLES AND THEIR PROPERTIES 3.1 INTRODUCTION Nanostructured materials [97, 98] form a new category of materials which bridge the gap between the bulk and the

More information

As our population continues to grow, I believe that efficiently harnessing clean, abundant solar energy

As our population continues to grow, I believe that efficiently harnessing clean, abundant solar energy Link Foundation Energy Fellowship Report for Adam Brewer Introduction As our population continues to grow, I believe that efficiently harnessing clean, abundant solar energy would be a tremendous boon

More information

Tianle Guo, 1 Siddharth Sampat, 1 Kehao Zhang, 2 Joshua A. Robinson, 2 Sara M. Rupich, 3 Yves J. Chabal, 3 Yuri N. Gartstein, 1 and Anton V.

Tianle Guo, 1 Siddharth Sampat, 1 Kehao Zhang, 2 Joshua A. Robinson, 2 Sara M. Rupich, 3 Yves J. Chabal, 3 Yuri N. Gartstein, 1 and Anton V. SUPPLEMENTARY INFORMATION for Order of magnitude enhancement of monolayer MoS photoluminescence due to near-field energy influx from nanocrystal films Tianle Guo, Siddharth Sampat, Kehao Zhang, Joshua

More information

Supporting Information for: Tailoring ZnSe-CdSe Colloidal Quantum Dots via. Cation-Exchange: from Core/Shell to Alloy.

Supporting Information for: Tailoring ZnSe-CdSe Colloidal Quantum Dots via. Cation-Exchange: from Core/Shell to Alloy. Supporting Information for: Tailoring ZnSe-CdSe Colloidal Quantum Dots via Cation-Exchange: from Core/Shell to Alloy Nanocrystals Esther Groeneveld, Leon Witteman, Merel Lefferts, Xiaoxing Ke, Sara Bals,

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

what happens if we make materials smaller?

what happens if we make materials smaller? what happens if we make materials smaller? IAP VI/10 ummer chool 2007 Couvin Prof. ns outline Introduction making materials smaller? ynthesis how do you make nanomaterials? Properties why would you make

More information

Supporting Information for: Heavy-Metal-Free Fluorescent ZnTe/ZnSe Nanodumbbells

Supporting Information for: Heavy-Metal-Free Fluorescent ZnTe/ZnSe Nanodumbbells Supporting Information for: Heavy-Metal-Free Fluorescent ZnTe/ZnSe Nanodumbbells Botao Ji, Yossef E. Panfil and Uri Banin * The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The

More information

OPTICAL PROPERTIES of Nanomaterials

OPTICAL PROPERTIES of Nanomaterials OPTICAL PROPERTIES of Nanomaterials Advanced Reading Optical Properties and Spectroscopy of Nanomaterials Jin Zhong Zhang World Scientific, Singapore, 2009. Optical Properties Many of the optical properties

More information

UVicSPACE: Research & Learning Repository

UVicSPACE: Research & Learning Repository UVicSPACE: Research & Learning Repository Faculty of Science Faculty Publications This is a post-print copy of the following article: Near-infrared emitting quantum dots: Recent progress on their synthesis

More information

Chapter 4 Scintillation Detectors

Chapter 4 Scintillation Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 4-1 4.1. Basic principle of the scintillator Chapter 4 Scintillation Detectors Scintillator Light sensor Ionizing radiation Light (visible,

More information

Semiconductor nanocrystals

Semiconductor nanocrystals Semiconductor nanocrystals Image of fluorescence in various sized Cadmium Selenide Quantum Dots. (Dr. D. Talapin, University of Hamburg, http://www.chemie.unihamburg.de/pc/weller/). Applications: Biology

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information All inorganic cesium lead halide perovskite nanocrystals for photodetector

More information

Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-

Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi- Supporting Information Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi- Two-Dimensional Core/Shell Nanoplatelets Xuedan Ma, Benjamin T. Diroll, Wooje Cho, Igor Fedin, Richard D. Schaller,

More information

Solutions for Assignment-8

Solutions for Assignment-8 Solutions for Assignment-8 Q1. The process of adding impurities to a pure semiconductor is called: [1] (a) Mixing (b) Doping (c) Diffusing (d) None of the above In semiconductor production, doping intentionally

More information

Quantum Dots and Colors Worksheet Answers

Quantum Dots and Colors Worksheet Answers Quantum Dots and Colors Worksheet Answers Background Quantum dots are semiconducting nanoparticles that are able to confine electrons in small, discrete spaces. Also known as zero-dimensional electronic

More information

Hidden Role of Anion Exchange Reactions in Nucleation of Colloidal Nanocrystals

Hidden Role of Anion Exchange Reactions in Nucleation of Colloidal Nanocrystals Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 Hidden Role of Anion Exchange Reactions in Nucleation of Colloidal Nanocrystals Rekha Mahadevu,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2012.63 Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control Liangfeng Sun, Joshua J. Choi, David Stachnik, Adam C. Bartnik,

More information

LUMINESCENCE SPECTRA OF QUANTUM-SIZED CdS AND PbI 2 PARTICLES IN STATIC ELECTRIC FIELD

LUMINESCENCE SPECTRA OF QUANTUM-SIZED CdS AND PbI 2 PARTICLES IN STATIC ELECTRIC FIELD Vol. 87 (1995) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXIII International School of Semiconducting Compounds, Jaszowiec 1994 LUMINESCENCE SPECTRA OF QUANTUM-SIZED CdS AND PbI 2 PARTICLES IN STATIC

More information

Chapter 9 Generation of (Nano)Particles by Growth

Chapter 9 Generation of (Nano)Particles by Growth Chapter 9 Generation of (Nano)Particles by Growth 9.1 Nucleation (1) Supersaturation Thermodynamics assumes a phase change takes place when there reaches Saturation of vapor in a gas, Saturation of solute

More information

Nanostructured Semiconductor Crystals Building Blocks for Solar Cells: Shapes, Syntheses, Surface Chemistry, Quantum Confinement Effects

Nanostructured Semiconductor Crystals Building Blocks for Solar Cells: Shapes, Syntheses, Surface Chemistry, Quantum Confinement Effects Nanostructured Semiconductor Crystals Building Blocks for Solar Cells: Shapes, Syntheses, Surface Chemistry, Quantum Confinement Effects March 1, 2011 The University of Toledo, Department of Physics and

More information

Solar Cell Materials and Device Characterization

Solar Cell Materials and Device Characterization Solar Cell Materials and Device Characterization April 3, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals

More information

Towards lanthanide doped quantum dots: attachment and incorporation of trivalent lanthanide ions into InP and CdSe semiconductor nanocrystals

Towards lanthanide doped quantum dots: attachment and incorporation of trivalent lanthanide ions into InP and CdSe semiconductor nanocrystals Towards lanthanide doped quantum dots: attachment and incorporation of trivalent lanthanide ions into InP and CdSe semiconductor nanocrystals Adriaan Frencken Supervised by: Elleke van Harten, MSc Joren

More information

Nanoscience galore: hybrid and nanoscale photonics

Nanoscience galore: hybrid and nanoscale photonics Nanoscience galore: hybrid and nanoscale photonics Pavlos Lagoudakis SOLAB, 11 June 2013 Hybrid nanophotonics Nanostructures: light harvesting and light emitting devices 2 Hybrid nanophotonics Nanostructures:

More information

AN ELABORATION OF QUANTUM DOTS AND ITS APPLICATIONS

AN ELABORATION OF QUANTUM DOTS AND ITS APPLICATIONS AN ELABORATION OF QUANTUM DOTS AND ITS APPLICATIONS Sambeet Mishra 1, Bhagabat Panda 2, Suman Saurav Rout 3 1,3 School of Electrical Engineering, KIIT University, Bhubaneswar, India 2 Asst. Professor,

More information

Revisited Wurtzite CdSe Synthesis : a Gateway for the Versatile Flash Synthesis of Multi-Shell Quantum Dots and Rods

Revisited Wurtzite CdSe Synthesis : a Gateway for the Versatile Flash Synthesis of Multi-Shell Quantum Dots and Rods Supporting Information for Revisited Wurtzite CdSe Synthesis : a Gateway for the Versatile Flash Synthesis of Multi-Shell Quantum Dots and Rods Emile Drijvers, 1,3 Jonathan De Roo, 2 Pieter Geiregat, 1,3

More information

Confined Synthesis of CdSe Quantum Dots in the Pores of Metal-Organic Frameworks

Confined Synthesis of CdSe Quantum Dots in the Pores of Metal-Organic Frameworks Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2014 Supporting Information Confined Synthesis of CdSe Quantum Dots in the Pores

More information

Synthesis of ternary chalcogenide colloidal nanocrystals in aqueous medium

Synthesis of ternary chalcogenide colloidal nanocrystals in aqueous medium Journal of Physics: Conference Series PAPER OPEN ACCESS Synthesis of ternary chalcogenide colloidal nanocrystals in aqueous medium To cite this article: D S Mazing et al 28 J. Phys.: Conf. Ser. 38 25 View

More information

Chapter VI Synthesis and Characterization of Core-Shell Nanoparticles

Chapter VI Synthesis and Characterization of Core-Shell Nanoparticles Chapter 6 120 Chapter VI Synthesis and Characterization of Core-Shell Nanoparticles Core-Shell nanoparticles are hybrid systems. They have a core and a shell having distinct attributes such as metallicity,

More information

Top down and bottom up fabrication

Top down and bottom up fabrication Lecture 24 Top down and bottom up fabrication Lithography ( lithos stone / graphein to write) City of words lithograph h (Vito Acconci, 1999) 1930 s lithography press Photolithography d 2( NA) NA=numerical

More information

INVESTIGATIONS OF Mn, Fe, Ni AND Pb DOPED

INVESTIGATIONS OF Mn, Fe, Ni AND Pb DOPED INVESTIGATIONS OF Mn, Fe, Ni AND Pb DOPED ZINC SULPHIDE NANOPARTICLES A thesis submitted to the University of Pune FOR THE DEGREE OF DOCTOR of PHILOSOPHY IN PHYSICS by PRAMOD H. BORSE DEPARTMENT OF PHYSICS

More information

Luminescence Process

Luminescence Process Luminescence Process The absorption and the emission are related to each other and they are described by two terms which are complex conjugate of each other in the interaction Hamiltonian (H er ). In an

More information

Chapter 12 - Modern Materials

Chapter 12 - Modern Materials Chapter 12 - Modern Materials 12.1 Semiconductors Inorganic compounds that semiconduct tend to have chemical formulas related to Si and Ge valence electron count of four. Semiconductor conductivity can

More information

Synthesis of Zinc Sulphide Nanoparticles

Synthesis of Zinc Sulphide Nanoparticles Synthesis of Zinc Sulphide Nanoparticles The procedure shown here was adapted from an adaption by Paul Hansen and George Lisensky from Kurt Winkelmann, Thomas Noviello, and Steven Brooks, "Preparation

More information

Single-step synthesis and kinetic mechanism of monodisperse and hexagonal-phase NaYF 4 :Yb,Er upconversion nanophosphors

Single-step synthesis and kinetic mechanism of monodisperse and hexagonal-phase NaYF 4 :Yb,Er upconversion nanophosphors Single-step synthesis and kinetic mechanism of monodisperse and hexagonal-phase NaYF 4 :Yb,Er upconversion nanophosphors Jingning Shan * and Yiguang Ju Department of Mechanical and Aerospace Engineering,

More information

Electronic Processes on Semiconductor Surfaces during Chemisorption

Electronic Processes on Semiconductor Surfaces during Chemisorption Electronic Processes on Semiconductor Surfaces during Chemisorption T. Wolkenstein Translatedfrom Russian by E. M. Yankovskii Translation edited in part by Roy Morrison CONSULTANTS BUREAU NEW YORK AND

More information

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays CHAPTER 4 Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays 4.1 Introduction In Chapter 3, the noble bimetallic alloy nanosphere (BANS) of Ag 1-x Cu x at a particular composition

More information

Laser-induced fluorescence measurements on CdSe quantum dots #

Laser-induced fluorescence measurements on CdSe quantum dots # Processing and Application of Ceramics 4 [1] (2010) 33 38 Laser-induced fluorescence measurements on CdSe quantum dots # Zoltan Győri 1, Dávid Tátrai 2, Ferenc Sarlós 2, Gábor Szabó 2, Ákos Kukovecz 1,*,

More information

quantum dots, metallic nanoparticles, and lanthanide ions doped upconversion

quantum dots, metallic nanoparticles, and lanthanide ions doped upconversion Chapter 1 Introduction 1.1 Background Nanostructured materials have significantly different characteristics from their bulk counterparts. 1 Inorganic nanoparticles such as semiconductor quantum dots, metallic

More information

Transition from Molecular Vibrations to Phonons in Atomically Precise Cadmium Selenide Quantum Dots

Transition from Molecular Vibrations to Phonons in Atomically Precise Cadmium Selenide Quantum Dots Supporting Information for Transition from Molecular Vibrations to Phonons in Atomically Precise Cadmium Selenide Quantum Dots Alexander N. Beecher, Rachel A. Dziatko, Michael L. Steigerwald, Jonathan

More information

Supplementary documents

Supplementary documents Supplementary documents Low Threshold Amplified Spontaneous mission from Tin Oxide Quantum Dots: A Instantiation of Dipole Transition Silence Semiconductors Shu Sheng Pan,, Siu Fung Yu, Wen Fei Zhang,

More information

Supplementary Figure S1. The maximum possible short circuit current (J sc ) from a solar cell versus the absorber band-gap calculated assuming 100%

Supplementary Figure S1. The maximum possible short circuit current (J sc ) from a solar cell versus the absorber band-gap calculated assuming 100% Supplementary Figure S1. The maximum possible short circuit current (J sc ) from a solar cell versus the absorber band-gap calculated assuming 100% (black) and 80% (red) external quantum efficiency (EQE)

More information

Direct Coating of Metal Nanoparticles with Silica by a Sol-Gel

Direct Coating of Metal Nanoparticles with Silica by a Sol-Gel Direct Coating of Metal Nanoparticles with Silica by a Sol-Gel Method On-line Number 232 Yoshio Kobayashi, and Mikio Konno Department of Chemical Engineering, Graduate School of Engineering, Tohoku University

More information

PREPARATION OF LUMINESCENT SILICON NANOPARTICLES BY PHOTOTHERMAL AEROSOL SYNTHESIS FOLLOWED BY ACID ETCHING

PREPARATION OF LUMINESCENT SILICON NANOPARTICLES BY PHOTOTHERMAL AEROSOL SYNTHESIS FOLLOWED BY ACID ETCHING Phase Transitions Vol. 77, Nos. 1 2, January February 2004, pp. 131 137 PREPARATION OF LUMINESCENT SILICON NANOPARTICLES BY PHOTOTHERMAL AEROSOL SYNTHESIS FOLLOWED BY ACID ETCHING X. LI, Y. HE, S.S. TALUKDAR

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION High-Efficiency Light-Emitting Devices based on Quantum Dots with Tailored Nanostructures Yixing Yang 1, Ying Zheng 1, Weiran Cao 2, Alexandre Titov 1, Jake Hyvonen 1, Jiangeng Xue 2*, Paul H. Holloway

More information

Fluorescence Spectroscopy

Fluorescence Spectroscopy Fluorescence Spectroscopy Frequency and time dependent emission Emission and Excitation fluorescence spectra Stokes Shift: influence of molecular vibrations and solvent Time resolved fluorescence measurements

More information

Conference Paper Synthesis and Efficient Phase Transfer of CdSe Nanoparticles for Hybrid Solar Cell Applications

Conference Paper Synthesis and Efficient Phase Transfer of CdSe Nanoparticles for Hybrid Solar Cell Applications Conference Papers in Energy, Article ID 194638, 3 pages http://dx.doi.org/10.1155/2013/194638 Conference Paper Synthesis and Efficient Phase Transfer of CdSe Nanoparticles for Hybrid Solar Cell Applications

More information

Synthesis and characterization of silica titania core shell particles

Synthesis and characterization of silica titania core shell particles PRAMANA c Indian Academy of Sciences Vol. 65, No. 5 journal of November 2005 physics pp. 787 791 Synthesis and characterization of silica titania core shell particles SUCHITA KALELE 1, RAVI DEY 1, NEHA

More information

Fabrication / Synthesis Techniques

Fabrication / Synthesis Techniques Quantum Dots Physical properties Fabrication / Synthesis Techniques Applications Handbook of Nanoscience, Engineering, and Technology Ch.13.3 L. Kouwenhoven and C. Marcus, Physics World, June 1998, p.35

More information

Chapter 6 Magnetic nanoparticles

Chapter 6 Magnetic nanoparticles Chapter 6 Magnetic nanoparticles Magnetic nanoparticles (MNPs) are a class of nanoparticle which can be manipulated using magnetic field gradients. Such particles commonly consist of magnetic elements

More information

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications CH676 Physical Chemistry: Principles and Applications Contact Information Professor Chia-Kuang (Frank) Tsung Email: frank.tsung@bc.edu Office: Merkert 224; Phone: (617) 552-8927 Office Hours: Monday 5-6

More information

Q. Shen 1,2) and T. Toyoda 1,2)

Q. Shen 1,2) and T. Toyoda 1,2) Photosensitization of nanostructured TiO 2 electrodes with CdSe quntum dots: effects of microstructure in substrates Q. Shen 1,2) and T. Toyoda 1,2) Department of Applied Physics and Chemistry 1), and

More information

Nanostructures. Lecture 13 OUTLINE

Nanostructures. Lecture 13 OUTLINE Nanostructures MTX9100 Nanomaterials Lecture 13 OUTLINE -What is quantum confinement? - How can zero-dimensional materials be used? -What are one dimensional structures? -Why does graphene attract so much

More information

Photovoltaic Properties and Solar Cell Applications of Colloidal Quantum Dots

Photovoltaic Properties and Solar Cell Applications of Colloidal Quantum Dots Photovoltaic Properties and Solar Cell Applications of Colloidal Quantum Dots by Jackson Nash Abstract: As energy consumption increases across the globe, current energy supplies such as fossil fuel, natural

More information

Plasmon enhanced UV electroluminescence in SiO 2 with percolating conduction sustained by free-exciton emitting SnO 2 nanoparticles

Plasmon enhanced UV electroluminescence in SiO 2 with percolating conduction sustained by free-exciton emitting SnO 2 nanoparticles Dipartimento di Scienza dei Materiali Università di Milano-Bicocca TITLE Plasmon enhanced UV electroluminescence in O 2 with percolating conduction sustained by free-exciton emitting SnO 2 nanoparticles

More information

Jahresbericht 2003 der Arbeitsgruppe Experimentalphysik Prof. Dr. Michael Farle

Jahresbericht 2003 der Arbeitsgruppe Experimentalphysik Prof. Dr. Michael Farle olloidal Synthesis of Magnetic Nanoparticles V. Salgueirino Maceira and M. Farle 1 Institut für Physik, Universität Duisburg-Essen, Lotharstr. 1, 47048 Duisburg 1. Introduction 1 The synthesis of monodisperse

More information

Quantum Dot Technology for Low-Cost Space Power Generation for Smallsats

Quantum Dot Technology for Low-Cost Space Power Generation for Smallsats SSC06-VI- Quantum Dot Technology for Low-Cost Space Power Generation for Smallsats Theodore G. DR Technologies, Inc. 7740 Kenamar Court, San Diego, CA 92020 (858)677-230 tstern@drtechnologies.com The provision

More information

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Luminescence Spectroscopy of Semiconductors IVAN PELANT Institute ofphysics, v.v.i. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Department of Chemical Physics and Optics Charles University,

More information

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state. Photovoltaics Basic Steps the generation of light-generated carriers; the collection of the light-generated carriers to generate a current; the generation of a large voltage across the solar cell; and

More information

More Efficient Solar Cells via Multi Exciton Generation

More Efficient Solar Cells via Multi Exciton Generation More Efficient Solar Cells via Multi Exciton Generation By: MIT Student Instructor: Gang Chen May 14, 2010 1 Introduction Sunlight is the most abundant source of energy available on Earth and if properly

More information

Optical spectroscopy of carrier dynamics in semiconductor nanostructures de Jong, E.M.L.D.

Optical spectroscopy of carrier dynamics in semiconductor nanostructures de Jong, E.M.L.D. UvA-DARE (Digital Academic Repository) Optical spectroscopy of carrier dynamics in semiconductor nanostructures de Jong, E.M.L.D. Link to publication Citation for published version (APA): de Jong, EM-LD.

More information

DOI: /jacs.7b02953 J. Am. Chem. Soc. 2017, 139,

DOI: /jacs.7b02953 J. Am. Chem. Soc. 2017, 139, DOI: 10.1021/jacs.7b02953 J. Am. Chem. Soc. 2017, 139, 6761 6770 Manju C K 01.07.2017 Introduction In the last several decades, colloidal chemistry has provided effective ways to synthesize inorganic nanomaterials

More information

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level)

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level) 1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level) Electromagnetic induction (Chapter 23): For a straight wire, the induced current or e.m.f. depends on: The magnitude of the magnetic

More information

Charge Excitation. Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi

Charge Excitation. Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi Charge Excitation Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi 1 2.626/2.627 Roadmap You Are Here 2 2.626/2.627: Fundamentals Every photovoltaic device

More information

Chapter 6 Photoluminescence Spectroscopy

Chapter 6 Photoluminescence Spectroscopy Chapter 6 Photoluminescence Spectroscopy Course Code: SSCP 4473 Course Name: Spectroscopy & Materials Analysis Sib Krishna Ghoshal (PhD) Advanced Optical Materials Research Group Physics Department, Faculty

More information

Applications of Quantum Dots to Biosensing

Applications of Quantum Dots to Biosensing Applications of Quantum Dots to Biosensing CHEM 681 Student Seminar Series March 17 th, 2003 Heechang Ye Advisor : Dr. Richard M. Crooks Introduction Quantum dots (QDs) are semiconductor particles that

More information

Photocatalysis: semiconductor physics

Photocatalysis: semiconductor physics Photocatalysis: semiconductor physics Carlos J. Tavares Center of Physics, University of Minho, Portugal ctavares@fisica.uminho.pt www.fisica.uminho.pt 1 Guimarães Where do I come from? 3 Guimarães 4 Introduction>>

More information

Particle-based display technologies

Particle-based display technologies Ian Morrison Cabot Corporation Particle based displays Reflective not emissive Adjusts with ambient light Thin, flexible, low power? The electronics is a real challenge. Require high resistivity so particles

More information

Changhee Lee School of Electrical Engineering and Computer Science Seoul National Univ.

Changhee Lee School of Electrical Engineering and Computer Science Seoul National Univ. Quantum Dot-Conducting ti Polymer Hybrids for Optoelectronic t Devices 2010. 4. 5. Changhee Lee School of Electrical Engineering and Computer Science Seoul National Univ. chlee7@snu.ac.kr CHANGHEE LEE

More information