Supporting Information:

Size: px
Start display at page:

Download "Supporting Information:"

Transcription

1 Supporting Information: Low-temperature Ohmic contact to monolayer MoS 2 by van der Waals bonded Co/h-BN electrodes Xu Cui, En-Min Shih, Luis A. Jauregui, Sang Hoon Chae, Young Duck Kim, Baichang Li, Dongjea Seo, ǂ Kateryna Pistunova, Jun Yin, Ji-Hoon Park, Heon-Jin Choi, ǂ Young Hee Lee, Kenji Watanabe, Takashi Taniguchi, Philip Kim, Cory R. Dean,* James C. Hone* These authors contributed equally to this work. James C. Hone: jh2228@columbia.edu (212) Cory R. Dean: cd2478@columbia.edu (212) S1

2 Contents S1 MoS 2 contact strategies summary S2 Contacts with low work-function metals S3 Material characterization S4 Samples S5 Device from CVD h-bn and CVD MoS 2 S6 XPS S7 Room temperature I sd -V sd output curve S8 Low temperature I sd -V sd output curve at small bias S9 Schottky barrier extraction S10 Disorder S11 Hall measurement S12 Hall mobility vs T S13 h-bn/co Contact deposited at different pressure S2

3 S1 MoS 2 contact techniques summary MoS 2 layer number Contact strategy Contact resistance Carrier density Temperature Reference 1-2 L Ti/Au+annealing ~ 30 kω.µm /cm K 1 4 L Sc 2-probe kω / K 2 1 L Al 1-10 MΩ.µm /cm K 3 1L CVD CVD graphene 2-probe kω /cm K 4 1 L graphene ~ 10 kω.µm /cm K 3L graphene ~ 5 kω / 4 K nm Nb doped MoS 2 p-contact 2-probe ~1.1kohm / K L Ionic-liquid gating ~ kω.µm very high K L 1T phase engineering ~ 0.3 kω.µm > /cm K 9 S3

4 Few-layer Selective etching + Ti/Au 0.5 kω.µm /cm 2 2 K 10 9 L Selective etching + Ti/Au + annealing 12h 0.25 kω.µm / K 11 1L MgO + Co 2-probe ~ 190 kω / K nm TiO 2 + Co 2-probe ~ 10 kω / K L BN + Ni 1.8 kω.µm / K 14 1L BN + Co 3 kω.µm /cm K This work Table S1 MoS 2 contact techniques summary. S4

5 S2 Contacts with low work-function metals S2.1 low work function contact We have made devices contact with Sc (Φ = 3.5 ev). At room temperature, the devices showed promising contact behavior with low contact resistance and linear output I-V curve (Figure S1a, b). However, the contacts showed high resistance and non-linear output curve at low temperature (Figure S1c, d), which indicate the contacts are non-ohmic in nature. Sc contact: S5

6 Figure S1. Transfer curves and output curves of a Sc contact device. (a) Transfer curve at 300 K with V sd = 100 mv. (b) Linear output curve at 300 K at different back gate voltage from -20 V to 80 V. (c) Transfer curve at 50 K with V sd = 100 mv. (d) Non-linear output curve at 50 K at different back gate voltage from -20 V to 80 V. S6

7 S2.2 Other metal contacts with monolayer h-bn insertion layer Other metals (Sc, Al, Ti, Ag) with monolayer h-bn insertion layer do not provide Ohmic contact to monolayer MoS 2, as shown in Figure S2-5. All devices showed high resistance and non-linear output curves at either 300 K or low temperature. Sc with 1L BN insertion: Figure S2. Transfer curves and output curves of a Sc contact with monolayer h-bn insertion. (a) Transfer curves at 300 K and 20 K with V sd = 1 V. (b) non-linear output curve at 300 K and 20 K with 80 V back-gate voltage. S7

8 Al with 1L BN insertion: Figure S3. Transfer curves and output curves of an Al contact with monolayer h-bn insertion. (a) Transfer curve at 300 K with V sd = 100 mv. (b) Linear output curve at 300 K with different back gate voltage from -80 V to 80 V. (c) Transfer curve at 15 K with V sd = 100 mv. (d) Nonlinear output curve at 15 K with different back gate voltage from -80 V to 80 V. S8

9 Ti with 1L BN insertion: Figure S4. Transfer curves and output curves of Ti contacts with monolayer h-bn insertion. (a) Transfer curve at 300 K with V sd = 100 mv. (b) Linear output curve at 300 K with different back gate from 40 V to 80 V. (c) Transfer curve at different low temperature with V sd = 1 V. (d) Nonlinear output curve at 80 V back-gate at different temperatures. S9

10 Ag with 1L BN insertion: Figure S5. Transfer curves and output curves of a Ag contact with monolayer h-bn insertion. (a) Transfer curve at 300 K with V sd = 100 mv. (b) Non-linear output curve at 300 K with back gate voltage 80 V. S3 Material characterization S3.1 monolayer h-bn Figure S6a shows the optical micrograph of a exfoliated monolayer h-bn flake with contrast enhanced by LUT (Lookup Table) image processing. The Raman spectrum of the flake has the E 1g peak centered at cm -1, which is 4.7 cm -1 higher than bulk flakes, indicating it is S10

11 monolayer 15 (Figure S6b). We further characterize monolayer h-bn with AFM, which shows clean smooth surface (Figure S6c). The step heights (Figure S6d) relative to SiO 2 substrate are often found to be higher than the predicted monolayer h-bn thickness (0.33 nm). However, after we transfer monolayer h-bn onto a h-bn substrate, we always get the predicted thickness value (Figure S6b). S11

12 Figure S6. Monolayer h-bn identification and characterization. (a) Optical micrograph of the monolayer h-bn flake with contrast enhanced by LUT. Scale bar is 5 µm. (b) Raman spectra of the monolayer h-bn flake and another bulk BN flake with 532 nm laser and 1800 gr/mm grating. The E 2g peak is centered at cm -1 for monolayer and cm -1 for bulk. (c) AFM measurement of the monolayer h-bn flake and (d) the height (0.55 nm) of the flake relative to the SiO 2 substrate. S3.2 monolayer MoS 2 We identify monolayer MoS 2 with optical contrast and further confirm with PL (Figure S7a) and Raman (Figure S7b) spectra. The single sharp peak at around 1.8 ev of PL spectrum and E 1 2g and A 1g peak separation of ~18 cm -1 of Raman spectrum give reliable identification of monolayer MoS 2. S12

13 Figure S7. Monolayer MoS 2 characterization. (a) PL spectrum of the monolayer MoS 2 flake. (b) Raman spectrum of the monolayer MoS 2 flake. The E 1 2g and A 1g peak separation is 18.8 cm -1. S4 Sample fabrication Figure S8a shows the steps to invert a stack from PPC. One sample image after stacking, inverting and annealing is shown in Figure S8b. The monolayer h-bn is hard to see from the optical image but can be identified with AFM (Figure S8c). The monolayer h-bn laying on thick h-bn substrate smoothly and its thickness can be measured accurately to be 0.34 nm. S13

14 Figure S8. Inverting process and the image of stack after being inverted and annealed. (a) the process from left to right are: picking up the stack with the dry Van der Waals transfer method, peeling the PPC off from the PDMS, Putting the peeled stack on a clean SiO 2 /Si substrate, and annealing the stack to remove the PPC. (b) Optical micrograph and (c) AFM image of a inverted stack of monolayer h-bn, monolayer MoS 2, thick BN from top to bottom. Scale bar is 5 µm. S14

15 S5 Device from CVD MoS 2 and CVD h-bn Figure S9a shows a schematic of the device from CVD MoS 2 and CVD h-bn, and figure S9b shows an optical image. After Poly(methyl methacrylate) (PMMA A4, Chem) was spin-coated onto the as-grown CVD MoS 2, the PMMA and MoS 2 were detached from the SiO 2 /Si substrate by floating the PMMA/MoS 2 /SiO 2 /Si, with the PMMA side up, in a hot 2 M NaOH solution. 16 The bubbling-based transfer method (applying voltage: ~ 5V) was used to transfer monolayer h- BN film onto MoS 2 /SiO 2 /Si substrate. 17 Once the samples transferred onto target substrates, the PMMA was removed by flowing acetone (1 min) and IPA. The transport behavior for this structure is similar to exfoliated MoS 2 and BN and output curve is linear at small bias down to low temperature. This shows promise that this technique can be applied to large scale application. S15

16 Figure S9. CVD MoS 2 and CVD h-bn device and transport characterization. (a) Device schematic for CVD MoS 2 /CVD h-bn Co contact. (b) Optical image of the device. Scale bar 5 µm. (c) Transfer curve from 300 K to 20 K, V sd = 10 mv. (d) Linear output curve at 20 K, with gate voltage from 0 V to 80 V. S16

17 S6 XPS data Figure S10. Fermi edge. The work-function is determined by the energy difference between the cut-off and Fermi edge subtracted from the source energy (hv = ev), thus 1L h-bn/co work-function (Φ) = 3.3eV. S17

18 S7 Room temperature I sd -V sd output curve At room temperature, both cobalt contact device with and without monolayer h-bn show linear I-V curve. Figure S11. Room temperature output curve of (a) cobalt contact with monolayer h-bn insertion and (b) cobalt directly contact to monolayer MoS 2. S18

19 S8 Low temperature I sd -V sd output curve at small bias Figure S12. Output curve at small source-drain bias and conductance as a function of bias for exfoliated 1L h-bn (a, b) and CVD 1L h-bn (c, d). S19

20 S9 Schottky barrier extraction The Arrhenius plots mentioned in main text are shown in Figure S13a, d. At low doping (gating), the charge injection to the MoS 2 channel mainly through thermionic emission and can be modeled by equation: 18 J A T exp (1) Where J is current density, A * is the Richardson constant, k B is the Boltzmann constant and E A is the total activation energy that charge carriers must overcome to access the channel. The activation energy can be extracted from the slope of the Arrhenius plots, and the Schottky barrier height can be extracted at the flat-band condition as described in the main text. Above the flatband voltage, however, equation (1) no longer holds true, since there is current contributed from tunneling effect and the slope we got from Arrhenius plot will not reflect the true activation energy. To get the flat-band voltage, we notice that as long as V g < V FB, the activation energy depends linearly on Vg: where C ox is the gate oxide capacitance and C it is the interface trap capacitance. The linearity assumes C it to be a constant over the range of gate voltage below V FB. This assumption seems to (2) S20

21 be true for our devices as can be seen on Fig S13(b)(e). In fact, previous reports from STM measurement also showed linear response between E F and V g. 19,20 The factor also can be extract from the subthreshold swing from SS= γ -1 ln(10)kt/q, and the values extracted from two methods are consistent. It is worth noting that γ is smaller for devices without 1L BN insertion, which means it has larger trap density. This indicate the monolayer BN still screen the extrinsic disorder to some degree. In the data for monolayer BN insertion device (Fig S13a), we can measure Arrhenius behavior down to 100 K (8.6 mev). Below 100 K the data points deviate from linear relationship, which might due to disorder induced band edge smearing (as calculated below). The measured Schottky barrier value 16 mev is close to this disorder scale, so we might have reached the limit of small Schottky barrier height, at which the Schottky barrier can t be measured easily. S21

22 Figure S13. Arrhenius plots, activation energy and transfer curves of cobalt contacts with (a, b, c) and without (d, e, f) monolayer h-bn. S22

23 S10 Disorder We calculate the disorder range as below: For 2D system, the band-edge density of states (DOS) is given by, where g s, g v are the spin and valley degeneracy respectively, m* is the band-edge effective mass, ħ is the reduced Planck constant. The 2D carrier density in the conduction band (CB) is described as: where E c is the band-edge energy of CB. The occupation probability is the Fermi-Dirac distribution (3) with k B is Boltzmann constant, T the absolute temperature, and E f the Fermi level. From above equations, the electron density in the CB is (4) Under thermal equilibrium, the Fermi energy is thus (5) (the above derivation is from 21 ) (6) S23

24 From the letter Fig. 3a, c, the MoS 2 start to transit from metallic to insulator, or the mobility start to decrease at low temperature at charge density 3.5x10 12 cm -2. We can calculate the Fermi level respective to CB at this density and at 1.7 K using the formula above (with g s = 2, g v = 2, m* = 0.46 m 22,23 0 ). Hence, we got E f - E c = 9.1 mev, which is the disorder range in our system. S11 Hall measurement We performed Hall measurement at room temperature (300 K) to low temperature (1.7 K) as shown in Figure S14. The calculated carrier density shows linear behavior with back-gate and matches well with the capacitance of 285 nm SiO 2. We conclude there is no significant doping effect introduced during the fabrication process. S24

25 Figure S14. R xy and carrier density characterization. (a) R xy as a function of small magnetic field -1 T - 1T at room temperature 300 K. (b) Calculated carrier density as a function of back-gate. The linear fit extrapolates to the band edge around -2.3 V. (c) R xy as a function of small magnetic field -1 T - 1T at room temperature 1.7 K. (d) Calculated carrier density as a function of backgate. The linear fit extrapolates to the band edge around 3 V. S25

26 S12 Hall mobility vs Temperature Figure S15 shows the Hall mobility as a function of temperature for different carrier densities. At high carrier densities above /cm 2, the mobility increases as we decrease the temperature. 5 With Ohmic h-bn/co contact, we can measure at carrier densities even below /cm 2. At low carrier density, the mobility decreases below 100 K, indicating an insulating and disorderly behavior. 24 Figure S15. Hall mobility as a function of temperature (300 K to 1.7 K) at three different densities. S26

27 S13 h-bn/co Contact deposited at different pressure We also investigated effect of the depositing pressure on the contact resistance (Figure S16). The contact deposited in UHV (ultra-high vacuum, torr) is about 3-5 times better than deposited at normal condition (10-8 torr) which is consistent to other literature using Au contact. 25 Figure S16. Contact resistance of h-bn/co deposited at different pressure and 10-8 torr. S27

28 REFERENCES (1) Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y.; Jarillo-Herrero, P. Nano Lett. 2013, 13, (2) Das, S.; Chen, H.-Y.; Penumatcha, A. V.; Appenzeller, J. Nano Lett. 2013, 13, (3) Kwon, J.; Lee, J.-Y.; Yu, Y.-J.; Lee, C.-H.; Cui, X.; Hone, J.; Lee, G.-H. Nanoscale 2017, 9, (4) Yu, L.; Lee, Y.-H.; Ling, X.; Santos, E. J. G.; Shin, Y. C.; Lin, Y.; Dubey, M.; Kaxiras, E.; Kong, J.; Wang, H.; Palacios, T. Nano Lett. 2014, 14, (5) Cui, X.; Lee, G.-H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C.-H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F.; Pizzocchero, F.; Jessen, B. S.; Watanabe, K.; Taniguchi, T.; Muller, D. A.; Low, T.; Kim, P.; Hone, J. Nat. Nanotechnol. 2015, 10, (6) Pisoni, R.; Lee, Y.; Overweg, H.; Eich, M.; Simonet, P.; Watanabe, K.; Taniguchi, T.; Gorbachev, R.; Ihn, T.; Ensslin, K. arxiv preprint arxiv: (7) Chuang, H.-J.; Chamlagain, B.; Koehler, M.; Perera, M. M.; Yan, J.; Mandrus, D.; Tománek, D.; Zhou, Z. Nano Lett. 2016, 16, (8) Perera, M. M.; Lin, M.-W.; Chuang, H.-J.; Chamlagain, B. P.; Wang, C.; Tan, X.; Cheng, M. M.-C.; Tománek, D.; Zhou, Z. ACS Nano 2013, 7, (9) Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Nat. Mater. 2014, 13, (10) Xu, S.; Wu, Z.; Lu, H.; Han, Y.; Long, G.; Chen, X.; Han, T.; Ye, W.; Wu, Y.; Lin, J.; Shen, J.; Cai, Y.; He, Y.; Zhang, F.; Lortz, R.; Cheng, C.; Wang, N. 2D Mater. 2016, 3, (11) Wu, Z.; Xu, S.; Lu, H.; Khamoshi, A.; Liu, G.-B.; Han, T.; Wu, Y.; Lin, J.; Long, G.; He, Y.; Cai, Y.; Yao, Y.; Zhang, F.; Wang, N. Nat. Commun. 2016, 7, (12) Chen, J.-R.; Odenthal, P. M.; Swartz, A. G.; Floyd, G. C.; Wen, H.; Luo, K. Y.; Kawakami, R. K. Nano Lett. 2013, 13, (13) Dankert, A.; Langouche, L.; Kamalakar, M. V.; Dash, S. P. ACS Nano 2014, 8 (1), (14) Wang, J.; Yao, Q.; Huang, C.-W.; Zou, X.; Liao, L.; Chen, S.; Fan, Z.; Zhang, K.; Wu, W.; Xiao, X.; Others. Adv. Mater. 2016, 28, (15) Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T.; Geim, A. K.; Blake, P. Small 2011, 7, (16) Ly, T. H.; Perello, D. J.; Zhao, J.; Deng, Q.; Kim, H.; Han, G. H.; Chae, S. H.; Jeong, H. Y.; Lee, Y. H. Nat. Commun. 2016, 7, (17) Park, J.-H.; Park, J. C.; Yun, S. J.; Kim, H.; Luong, D. H.; Kim, S. M.; Choi, S. H.; Yang, W.; Kong, J.; Kim, K. K.; Lee, Y. H. ACS Nano 2014, 8, (18) Allain, A.; Kang, J.; Banerjee, K.; Kis, A. Nat. Mater. 2015, 14, (19) Lu, C.-P.; Li, G.; Mao, J.; Wang, L.-M.; Andrei, E. Y. Nano Lett. 2014, 14, (20) Zhou, X.; Kang, K.; Xie, S.; Dadgar, A.; Monahan, N. R.; Zhu, X.-Y.; Park, J.; Pasupathy, A. N. Nano Lett. 2016, 16, (21) Ma, N.; Jena, D. 2D Mater. 2015, 2, (22) Kormányos, A.; Burkard, G.; Gmitra, M.; Fabian, J.; Zólyomi, V.; Drummond, N. D.; Fal ko, V. 2D S28

29 Materials 2015, 2, (23) Kormányos, A.; Zólyomi, V.; Drummond, N. D.; Rakyta, P.; Burkard, G.; Fal ko, V. I. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 88, (24) Radisavljevic, B.; Kis, A. Nat. Mater. 2013, 12, (25) English, C. D.; Shine, G.; Dorgan, V. E.; Saraswat, K. C.; Pop, E. Nano Lett. 2016, 16, S29

Supplementary Information for

Supplementary Information for Supplementary Information for Highly Stable, Dual-Gated MoS 2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact Resistance and Threshold Voltage Gwan-Hyoung Lee, Xu Cui,

More information

crystals were phase-pure as determined by x-ray diffraction. Atomically thin MoS 2 flakes were

crystals were phase-pure as determined by x-ray diffraction. Atomically thin MoS 2 flakes were Nano Letters (214) Supplementary Information for High Mobility WSe 2 p- and n-type Field Effect Transistors Contacted by Highly Doped Graphene for Low-Resistance Contacts Hsun-Jen Chuang, Xuebin Tan, Nirmal

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015. Supporting Information for Adv. Funct. Mater., DOI: 10.1002/adfm.201503131 Tuning the Excitonic States in MoS 2 /Graphene van

More information

Fermi Level Pinning at Electrical Metal Contacts. of Monolayer Molybdenum Dichalcogenides

Fermi Level Pinning at Electrical Metal Contacts. of Monolayer Molybdenum Dichalcogenides Supporting information Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides Changsik Kim 1,, Inyong Moon 1,, Daeyeong Lee 1, Min Sup Choi 1, Faisal Ahmed 1,2, Seunggeol

More information

A. Optimizing the growth conditions of large-scale graphene films

A. Optimizing the growth conditions of large-scale graphene films 1 A. Optimizing the growth conditions of large-scale graphene films Figure S1. Optical microscope images of graphene films transferred on 300 nm SiO 2 /Si substrates. a, Images of the graphene films grown

More information

Supplementary Information for. Origin of New Broad Raman D and G Peaks in Annealed Graphene

Supplementary Information for. Origin of New Broad Raman D and G Peaks in Annealed Graphene Supplementary Information for Origin of New Broad Raman D and G Peaks in Annealed Graphene Jinpyo Hong, Min Kyu Park, Eun Jung Lee, DaeEung Lee, Dong Seok Hwang and Sunmin Ryu* Department of Applied Chemistry,

More information

Contact Engineering of Two-Dimensional Layered Semiconductors beyond Graphene

Contact Engineering of Two-Dimensional Layered Semiconductors beyond Graphene Contact Engineering of Two-Dimensional Layered Semiconductors beyond Graphene Zhixian Zhou Department of Physics and Astronomy Wayne State University Detroit, Michigan Outline Introduction Ionic liquid

More information

Intrinsic Electronic Transport Properties of High. Information

Intrinsic Electronic Transport Properties of High. Information Intrinsic Electronic Transport Properties of High Quality and MoS 2 : Supporting Information Britton W. H. Baugher, Hugh O. H. Churchill, Yafang Yang, and Pablo Jarillo-Herrero Department of Physics, Massachusetts

More information

Spin-Conserving Resonant Tunneling in Twist- Supporting Information

Spin-Conserving Resonant Tunneling in Twist- Supporting Information Spin-Conserving Resonant Tunneling in Twist- Controlled WSe2-hBN-WSe2 Heterostructures Supporting Information Kyounghwan Kim, 1 Nitin Prasad, 1 Hema C. P. Movva, 1 G. William Burg, 1 Yimeng Wang, 1 Stefano

More information

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes Multicolor Graphene Nanoribbon/Semiconductor Nanowire Heterojunction Light-Emitting Diodes Yu Ye, a Lin Gan, b Lun Dai, *a Hu Meng, a Feng Wei, a Yu Dai, a Zujin Shi, b Bin Yu, a Xuefeng Guo, b and Guogang

More information

Supporting information

Supporting information Supporting information Design, Modeling and Fabrication of CVD Grown MoS 2 Circuits with E-Mode FETs for Large-Area Electronics Lili Yu 1*, Dina El-Damak 1*, Ujwal Radhakrishna 1, Xi Ling 1, Ahmad Zubair

More information

Supporting Information. by Hexagonal Boron Nitride

Supporting Information. by Hexagonal Boron Nitride Supporting Information High Velocity Saturation in Graphene Encapsulated by Hexagonal Boron Nitride Megan A. Yamoah 1,2,, Wenmin Yang 1,3, Eric Pop 4,5,6, David Goldhaber-Gordon 1 * 1 Department of Physics,

More information

Supporting Information

Supporting Information Supporting Information Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits Yuanda Liu, and Kah-Wee Ang* Department of Electrical and Computer Engineering National University

More information

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour Supplementary Figure 1 Raman spectrum of monolayer MoS 2 grown by chemical vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour deposition (S-CVD) are peak which is at 385 cm

More information

A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model

A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model Journal of the Korean Physical Society, Vol. 55, No. 3, September 2009, pp. 1162 1166 A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model Y. S.

More information

The role of charge traps in inducing hysteresis: capacitance voltage measurements on top gated bilayer graphene

The role of charge traps in inducing hysteresis: capacitance voltage measurements on top gated bilayer graphene The role of charge traps in inducing hysteresis: capacitance voltage measurements on top gated bilayer graphene Gopinadhan Kalon, Young Jun Shin, Viet Giang Truong, Alan Kalitsov, and Hyunsoo Yang a) Department

More information

Supplementary information for Nonvolatile Memory Cells Based on MoS 2 /Graphene Heterostructures

Supplementary information for Nonvolatile Memory Cells Based on MoS 2 /Graphene Heterostructures Supplementary information for Nonvolatile Memory Cells Based on MoS 2 /Graphene Heterostructures Simone Bertolazzi, Daria Krasnozhon, Andras Kis * Electrical Engineering Institute, École Polytechnique

More information

Supporting Information Available:

Supporting Information Available: Supporting Information Available: Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS 2 Nanoflakes Nengjie Huo 1, Shengxue Yang 1, Zhongming Wei 2, Shu-Shen Li 1, Jian-Bai Xia

More information

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Graphene photodetectors with ultra-broadband and high responsivity at room temperature SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.31 Graphene photodetectors with ultra-broadband and high responsivity at room temperature Chang-Hua Liu 1, You-Chia Chang 2, Ted Norris 1.2* and Zhaohui

More information

Solvothermal Reduction of Chemically Exfoliated Graphene Sheets

Solvothermal Reduction of Chemically Exfoliated Graphene Sheets Solvothermal Reduction of Chemically Exfoliated Graphene Sheets Hailiang Wang, Joshua Tucker Robinson, Xiaolin Li, and Hongjie Dai* Department of Chemistry and Laboratory for Advanced Materials, Stanford

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

Electrical Characteristics of Multilayer MoS 2 FET s

Electrical Characteristics of Multilayer MoS 2 FET s Electrical Characteristics of Multilayer MoS 2 FET s with MoS 2 /Graphene Hetero-Junction Contacts Joon Young Kwak,* Jeonghyun Hwang, Brian Calderon, Hussain Alsalman, Nini Munoz, Brian Schutter, and Michael

More information

Center for Integrated Nanostructure Physics (CINAP)

Center for Integrated Nanostructure Physics (CINAP) Center for Integrated Nanostructure Physics (CINAP) - Institute for Basic Science (IBS) was launched in 2012 by the Korean government to promote basic science in Korea - Our Center was established in 2012

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Hihly efficient ate-tunable photocurrent eneration in vertical heterostructures of layered materials Woo Jon Yu, Yuan Liu, Hailon Zhou, Anxian Yin, Zhen Li, Yu Huan, and Xianfen Duan. Schematic illustration

More information

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2 Supplementary Information Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD Grown Monolayer MoSe2 Ke Chen 1, Rudresh Ghosh 2,3, Xianghai Meng 1, Anupam Roy 2,3, Joon-Seok Kim 2,3, Feng

More information

Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one

Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one after PBASE monolayer growth (b). 1 Supplementary Figure

More information

High Mobility Ambipolar MoS 2 Field-Effect Transistors: Substrate and Dielectric Effects

High Mobility Ambipolar MoS 2 Field-Effect Transistors: Substrate and Dielectric Effects High Mobility Ambipolar MoS 2 Field-Effect Transistors: Substrate and Dielectric Effects Wenzhong Bao, Xinghan Cai, Dohun Kim, Karthik Sridhara, and Michael S. Fuhrer Center for Nanophysics and Advanced

More information

Extrinsic Origin of Persistent Photoconductivity in

Extrinsic Origin of Persistent Photoconductivity in Supporting Information Extrinsic Origin of Persistent Photoconductivity in Monolayer MoS2 Field Effect Transistors Yueh-Chun Wu 1, Cheng-Hua Liu 1,2, Shao-Yu Chen 1, Fu-Yu Shih 1,2, Po-Hsun Ho 3, Chun-Wei

More information

Electric field modulation of Schottky barrier height in graphene/mose 2 van der Waals heterointerface

Electric field modulation of Schottky barrier height in graphene/mose 2 van der Waals heterointerface Electric field modulation of Schottky barrier height in graphene/mose 2 van der Waals heterointerface Yohta Sata 1, Rai Moriya 1,*, Sei Morikawa 1, Naoto Yabuki 1, Satoru Masubuchi 1,2, and Tomoki Machida

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Controllable Atmospheric Pressure Growth of Mono-layer, Bi-layer and Tri-layer

More information

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition SUPPLEMENTARY INFORMATION Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition Jing-Bo Liu 1 *, Ping-Jian Li 1 *, Yuan-Fu Chen 1, Ze-Gao

More information

Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films

Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films Supporting Information Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films Jinping Zhao, Songfeng Pei, Wencai Ren*, Libo Gao and Hui-Ming Cheng* Shenyang National

More information

Ambipolar bistable switching effect of graphene

Ambipolar bistable switching effect of graphene Ambipolar bistable switching effect of graphene Young Jun Shin, 1,2 Jae Hyun Kwon, 1,2 Gopinadhan Kalon, 1,2 Kai-Tak Lam, 1 Charanjit S. Bhatia, 1 Gengchiau Liang, 1 and Hyunsoo Yang 1,2,a) 1 Department

More information

Wafer-scale fabrication of graphene

Wafer-scale fabrication of graphene Wafer-scale fabrication of graphene Sten Vollebregt, MSc Delft University of Technology, Delft Institute of Mircosystems and Nanotechnology Delft University of Technology Challenge the future Delft University

More information

2D-2D tunneling field effect transistors using

2D-2D tunneling field effect transistors using 2D-2D tunneling field effect transistors using WSe 2 /SnSe 2 heterostructures Tania Roy, 1,2,3 Mahmut Tosun, 1,2,3 Mark Hettick, 1,2,3, Geun Ho Ahn, 1,2,3 Chenming Hu 1, and Ali Javey 1,2,3, 1 Electrical

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/4/e1602726/dc1 Supplementary Materials for Selective control of electron and hole tunneling in 2D assembly This PDF file includes: Dongil Chu, Young Hee Lee,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Trilayer graphene is a semimetal with a gate-tuneable band overlap M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo and S. Tarucha

More information

Supporting Information for: Electrical probing and tuning of molecular. physisorption on graphene

Supporting Information for: Electrical probing and tuning of molecular. physisorption on graphene Supporting Information for: Electrical probing and tuning of molecular physisorption on graphene Girish S. Kulkarni, Karthik Reddy #, Wenzhe Zang, Kyunghoon Lee, Xudong Fan *, and Zhaohui Zhong * Department

More information

Graphene Size-dependent Modulation of Graphene Framework Contributing to Superior. Thermal Conductivity of Epoxy Composite

Graphene Size-dependent Modulation of Graphene Framework Contributing to Superior. Thermal Conductivity of Epoxy Composite Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Graphene Size-dependent Modulation of Graphene Framework Contributing to

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2018 Supporting Information Direct Integration of Polycrystalline Graphene on

More information

arxiv: v1 [cond-mat.mes-hall] 22 Dec 2011

arxiv: v1 [cond-mat.mes-hall] 22 Dec 2011 Direct Measurement of the Fermi Energy in Graphene Using a Double Layer Structure Seyoung Kim, 1 Insun Jo, 2 D. C. Dillen, 1 D. A. Ferrer, 1 B. Fallahazad, 1 Z. Yao, 2 S. K. Banerjee, 1 and E. Tutuc 1

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Lateral heterojunctions within monolayer MoSe 2 -WSe 2 semiconductors Chunming Huang 1,#,*, Sanfeng Wu 1,#,*, Ana M. Sanchez 2,#,*, Jonathan J. P. Peters 2, Richard Beanland 2, Jason S. Ross 3, Pasqual

More information

Tunneling characteristics of graphene

Tunneling characteristics of graphene Tunneling characteristics of graphene Young Jun Shin, 1,2 Gopinadhan Kalon, 1,2 Jaesung Son, 1 Jae Hyun Kwon, 1,2 Jing Niu, 1 Charanjit S. Bhatia, 1 Gengchiau Liang, 1 and Hyunsoo Yang 1,2,a) 1 Department

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:.38/nature09979 I. Graphene material growth and transistor fabrication Top-gated graphene RF transistors were fabricated based on chemical vapor deposition (CVD) grown graphene on copper (Cu). Cu foil

More information

Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO2. Supplementary Figure 2: Comparison of hbn yield.

Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO2. Supplementary Figure 2: Comparison of hbn yield. 1 2 3 4 Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO 2. Optical microscopy images of three examples of large single layer graphene flakes cleaved on a single

More information

Supporting Information

Supporting Information Supporting Information Repeated Growth Etching Regrowth for Large-Area Defect-Free Single-Crystal Graphene by Chemical Vapor Deposition Teng Ma, 1 Wencai Ren, 1 * Zhibo Liu, 1 Le Huang, 2 Lai-Peng Ma,

More information

Operating Principles of Vertical Transistors Based on Monolayer Two-Dimensional Semiconductor Heterojunctions

Operating Principles of Vertical Transistors Based on Monolayer Two-Dimensional Semiconductor Heterojunctions Operating Principles of Vertical Transistors Based on Monolayer Two-Dimensional Semiconductor Heterojunctions Kai Tak Lam, Gyungseon Seol and Jing Guo Department of Electrical and Computer Engineering,

More information

Ferromagnetism and Anomalous Hall Effect in Graphene

Ferromagnetism and Anomalous Hall Effect in Graphene Ferromagnetism and Anomalous Hall Effect in Graphene Jing Shi Department of Physics & Astronomy, University of California, Riverside Graphene/YIG Introduction Outline Proximity induced ferromagnetism Quantized

More information

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height topographies of h-bn film in a size of ~1.5µm 1.5µm, 30µm 30µm

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/327/5966/662/dc Supporting Online Material for 00-GHz Transistors from Wafer-Scale Epitaxial Graphene Y.-M. Lin,* C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y.

More information

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor-like by Electrostatic Gating S.-F. Shi, 1,2* T.-T. Tang, 1 B. Zeng, 1 L. Ju, 1 Q. Zhou, 1 A. Zettl, 1,2,3 F. Wang 1,2,3

More information

Rectification in a Black Phosphorus/WS2 van der. Waals Heterojunction Diode

Rectification in a Black Phosphorus/WS2 van der. Waals Heterojunction Diode Supporting Information Temperature-Dependent and Gate-Tunable Rectification in a Black Phosphorus/WS2 van der Waals Heterojunction Diode Ghulam Dastgeer 1, Muhammad Farooq Khan 1, Ghazanfar Nazir 1, Amir

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

Supplementary Information for Atomically Phase-Matched Second-Harmonic Generation. in a 2D Crystal

Supplementary Information for Atomically Phase-Matched Second-Harmonic Generation. in a 2D Crystal Supplementary Information for Atomically Phase-Matched Second-Harmonic Generation in a 2D Crystal Mervin Zhao 1, 2, Ziliang Ye 1, 2, Ryuji Suzuki 3, 4, Yu Ye 1, 2, Hanyu Zhu 1, Jun Xiao 1, Yuan Wang 1,

More information

Supporting Infromation

Supporting Infromation Supporting Infromation Transparent and Flexible Self-Charging Power Film and Its Application in Sliding-Unlock System in Touchpad Technology Jianjun Luo 1,#, Wei Tang 1,#, Feng Ru Fan 1, Chaofeng Liu 1,

More information

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm.

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm. PL (normalized) Intensity (arb. u.) 1 1 8 7L-MoS 1L-MoS 6 4 37 38 39 4 41 4 Raman shift (cm -1 ) Supplementary Figure 1 Raman spectra of the Figure 1B at the 1L-MoS area (black line) and 7L-MoS area (red

More information

High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System

High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System Journal of Physics: Conference Series PAPER OPEN ACCESS High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System To cite this

More information

Supporting Information Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition. 1. MoS2 Device Fabrication and Characterization

Supporting Information Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition. 1. MoS2 Device Fabrication and Characterization SI Page 1 Supporting Information Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition Chris D. English 1, Gautam Shine 1, Vincent E. Dorgan 2, Krishna C. Saraswat 1, Eric Pop 1 1

More information

Quantum Hall effect and Landau level crossing of Dirac fermions in trilayer graphene Supplementary Information

Quantum Hall effect and Landau level crossing of Dirac fermions in trilayer graphene Supplementary Information Quantum Hall effect and Landau level crossing of Dirac fermions in trilayer graphene Supplementary Information Thiti Taychatanapat, Kenji Watanabe, Takashi Taniguchi, Pablo Jarillo-Herrero Department of

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

Direct four-probe measurement of grain-boundary resistivity and mobility in millimeter-sized graphene

Direct four-probe measurement of grain-boundary resistivity and mobility in millimeter-sized graphene Supporting Information Direct four-probe measurement of grain-boundary resistivity and mobility in millimeter-sized graphene Ruisong Ma 1,2, Qing Huan 1, Liangmei Wu 1,2, Jia-Hao Yan 1,2, Wei Guo 3, Yu-Yang

More information

Supplementary Figure 1. Selected area electron diffraction (SAED) of bilayer graphene and tblg. (a) AB

Supplementary Figure 1. Selected area electron diffraction (SAED) of bilayer graphene and tblg. (a) AB Supplementary Figure 1. Selected area electron diffraction (SAED) of bilayer graphene and tblg. (a) AB stacked bilayer graphene (b), (c), (d), (e), and (f) are twisted bilayer graphene with twist angle

More information

Supporting information:

Supporting information: Epitaxially Integrating Ferromagnetic Fe 1.3 Ge Nanowire Arrays on Few-Layer Graphene Hana Yoon, Taejoon Kang, Jung Min Lee, Si-in Kim, Kwanyong Seo, Jaemyung Kim, Won Il Park, and Bongsoo Kim,* Department

More information

Edge conduction in monolayer WTe 2

Edge conduction in monolayer WTe 2 In the format provided by the authors and unedited. DOI: 1.138/NPHYS491 Edge conduction in monolayer WTe 2 Contents SI-1. Characterizations of monolayer WTe2 devices SI-2. Magnetoresistance and temperature

More information

Graphene devices and integration: A primer on challenges

Graphene devices and integration: A primer on challenges Graphene devices and integration: A primer on challenges Archana Venugopal (TI) 8 Nov 2016 Acknowledgments: Luigi Colombo (TI) UT Dallas and UT Austin 1 Outline Where we are Issues o Contact resistance

More information

Kinetically-Enhanced Polysulfide Redox Reactions by Nb2O5. Nanocrystal for High-Rate Lithium Sulfur Battery

Kinetically-Enhanced Polysulfide Redox Reactions by Nb2O5. Nanocrystal for High-Rate Lithium Sulfur Battery Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) Kinetically-Enhanced Polysulfide

More information

Carrier Transport at the Metal-MoS 2 Interface

Carrier Transport at the Metal-MoS 2 Interface Carrier Transport at the Metal-MoS 2 Interface Faisal Ahmed 1,2, Min Sup Choi 1,3, Xiaochi Liu 1,3 and Won Jong Yoo 1,2.3, * 1 Samsung-SKKU Graphene Center (SSGC), SKKU Advanced Institute of Nano-Technology

More information

Supplementary Materials: Janus Monolayer Transition Metal Dichalcogenides

Supplementary Materials: Janus Monolayer Transition Metal Dichalcogenides Supplementary Materials: Janus Monolayer Transition Metal Dichalcogenides Jing Zhang 1, Shuai Jia 1, Kholmanov Iskandar 2, Liang Dong 3, Dequan Er 3, Weibing Chen 1, Hua Guo 1, Zehua Jin 1, Vivek B. Shenoy

More information

Multicomponent TMD Phase-field model with elastic heterogeneity

Multicomponent TMD Phase-field model with elastic heterogeneity Multicomponent TMD Phase-field model with elastic heterogeneity Yang Xia Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA Abstract A generalized semi 2D-model

More information

Super Flexible, High-efficiency Perovskite Solar Cells Employing Graphene Electrodes: Toward Future Foldable Power Sources

Super Flexible, High-efficiency Perovskite Solar Cells Employing Graphene Electrodes: Toward Future Foldable Power Sources Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Super Flexible, High-efficiency Perovskite

More information

Supporting Information

Supporting Information Supporting Information Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications Jingyu Sun, Yubin Chen, Manish Kr. Priydarshi, Zhang Chen, Alicja Bachmatiuk,, Zhiyu

More information

Improved Interfacial and Electrical Properties of GaSb Metal Oxide

Improved Interfacial and Electrical Properties of GaSb Metal Oxide Improved Interfacial and Electrical Properties of GaSb Metal Oxide Semiconductor Devices Passivated with Acidic (NH 4 ) 2 S Solution Lianfeng Zhao, Zhen Tan, Jing Wang, and Jun Xu * Tsinghua National Laboratory

More information

Two-Dimensional Thickness-Dependent Avalanche Breakdown Phenomena in MoS 2 Field Effect Transistors under High Electric Fields

Two-Dimensional Thickness-Dependent Avalanche Breakdown Phenomena in MoS 2 Field Effect Transistors under High Electric Fields Supporting Information Two-Dimensional Thickness-Dependent Avalanche Breakdown Phenomena in MoS 2 Field Effect Transistors under High Electric Fields Jinsu Pak,,# Yeonsik Jang,,# Junghwan Byun, Kyungjune

More information

NiCl2 Solution concentration. Etching Duration. Aspect ratio. Experiment Atmosphere Temperature. Length(µm) Width (nm) Ar:H2=9:1, 150Pa

NiCl2 Solution concentration. Etching Duration. Aspect ratio. Experiment Atmosphere Temperature. Length(µm) Width (nm) Ar:H2=9:1, 150Pa Experiment Atmosphere Temperature #1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1, 150Pa Ar:H2=9:1,

More information

Theoretical Study on Graphene Silicon Heterojunction Solar Cell

Theoretical Study on Graphene Silicon Heterojunction Solar Cell Copyright 2015 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Nanoelectronics and Optoelectronics Vol. 10, 1 5, 2015 Theoretical Study on Graphene

More information

Large Storage Window in a-sinx/nc-si/a-sinx Sandwiched Structure

Large Storage Window in a-sinx/nc-si/a-sinx Sandwiched Structure 2017 Asia-Pacific Engineering and Technology Conference (APETC 2017) ISBN: 978-1-60595-443-1 Large Storage Window in a-sinx/nc-si/a-sinx Sandwiched Structure Xiang Wang and Chao Song ABSTRACT The a-sin

More information

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2 Properties of CNT d = 2.46 n 2 2 1 + n1n2 + n2 2π Metallic: 2n 1 +n 2 =3q Armchair structure always metallic a) Graphite Valence(π) and Conduction(π*) states touch at six points(fermi points) Carbon Nanotube:

More information

Ferroelectric Field-Effect Transistors Based on MoS 2 and

Ferroelectric Field-Effect Transistors Based on MoS 2 and Supplementary Information for: Ferroelectric Field-Effect Transistors Based on MoS 2 and CuInP 2 S 6 Two-Dimensional Van der Waals Heterostructure Mengwei Si, Pai-Ying Liao, Gang Qiu, Yuqin Duan, and Peide

More information

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Yu Yao 1, Raji Shankar 1, Patrick Rauter 1, Yi Song 2, Jing Kong

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Dirac cones reshaped by interaction effects in suspended graphene D. C. Elias et al #1. Experimental devices Graphene monolayers were obtained by micromechanical cleavage of graphite on top of an oxidized

More information

Supplementary Figure 1. Supplementary Figure 1 Characterization of another locally gated PN junction based on boron

Supplementary Figure 1. Supplementary Figure 1 Characterization of another locally gated PN junction based on boron Supplementary Figure 1 Supplementary Figure 1 Characterization of another locally gated PN junction based on boron nitride and few-layer black phosphorus (device S1). (a) Optical micrograph of device S1.

More information

Ambipolar Graphene Field Effect Transistors by Local Metal Side Gates USA. Indiana 47907, USA. Abstract

Ambipolar Graphene Field Effect Transistors by Local Metal Side Gates USA. Indiana 47907, USA. Abstract Ambipolar Graphene Field Effect Transistors by Local Metal Side Gates J. F. Tian *, a, b, L. A. Jauregui c, b, G. Lopez c, b, H. Cao a, b *, a, b, c, and Y. P. Chen a Department of Physics, Purdue University,

More information

Electronic Supplementary information (ESI) for. High-Performance Electrothermal and Anticorrosive Transparent

Electronic Supplementary information (ESI) for. High-Performance Electrothermal and Anticorrosive Transparent Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary information (ESI) for High-Performance Electrothermal

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 215 Supporting Information Enhanced Photovoltaic Performances of Graphene/Si Solar Cells by Insertion

More information

Supporting Information. High-Performance Strain Sensors with Fish Scale-Like Graphene. Sensing Layers for Full-Range Detection of Human Motions

Supporting Information. High-Performance Strain Sensors with Fish Scale-Like Graphene. Sensing Layers for Full-Range Detection of Human Motions Supporting Information High-Performance Strain Sensors with Fish Scale-Like Graphene Sensing Layers for Full-Range Detection of Human Motions Qiang Liu, Ji Chen, Yingru Li, and Gaoquan Shi* Department

More information

Supporting Information. Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion

Supporting Information. Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Supporting Information Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection Zhen Yang, Yu Pang, Xiao-lin Han, Yifan Yang, Jiang Ling, Muqiang Jian, Yingying Zhang,

More information

Hopping in CVD Grown Single-layer MoS 2

Hopping in CVD Grown Single-layer MoS 2 Supporting Information for Large Thermoelectricity via Variable Range Hopping in CVD Grown Single-layer MoS 2 Jing Wu 1,2,3, Hennrik Schmidt 1,2, Kiran Kumar Amara 4, Xiangfan Xu 5, Goki Eda 1,2,4, and

More information

Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits

Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits NANO LETTERS 2007 Vol. 7, No. 12 3603-3607 Zhiyong Zhang, Xuelei Liang,*, Sheng Wang, Kun Yao, Youfan Hu, Yuzhen Zhu,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Authors: Yang Xu 1,2, Ireneusz Miotkowski 1, Chang Liu 3,4, Jifa Tian 1,2, Hyoungdo

More information

Supporting Information. Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials

Supporting Information. Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials Supporting Information Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials Jingjing Lin 1, Liangbo Liang 2,3, Xi Ling 4, Shuqing Zhang 1, Nannan Mao 1, Na Zhang 1, Bobby G. Sumpter 2,5,

More information

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield 2D MBE Activities in Sheffield I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield Outline Motivation Van der Waals crystals The Transition Metal Di-Chalcogenides

More information

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation Fabrication and Measurement of Spin Devices Zhihong Chen School of Electrical and Computer Engineering Birck Nanotechnology Center, Discovery Park Purdue University Purdue Birck Presentation zhchen@purdue.edu

More information

Supporting Information for Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High Anisotropy ReSe 2 Naonosheets

Supporting Information for Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High Anisotropy ReSe 2 Naonosheets Supporting Information for Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High Anisotropy ReSe 2 Naonosheets Enze Zhang 1 Peng Wang 2, Zhe Li 1, Haifeng Wang 3,4, Chaoyu Song 1, Ce Huang

More information

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition 1 Supporting Information Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition Jaechul Ryu, 1,2, Youngsoo Kim, 4, Dongkwan Won, 1 Nayoung Kim, 1 Jin Sung Park, 1 Eun-Kyu

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1 AFM and Raman characterization of WS 2 crystals. (a) Optical and AFM images of a representative WS 2 flake. Color scale of the AFM image represents 0-20

More information

Electrical Contacts to Carbon Nanotubes Down to 1nm in Diameter

Electrical Contacts to Carbon Nanotubes Down to 1nm in Diameter 1 Electrical Contacts to Carbon Nanotubes Down to 1nm in Diameter Woong Kim, Ali Javey, Ryan Tu, Jien Cao, Qian Wang, and Hongjie Dai* Department of Chemistry and Laboratory for Advanced Materials, Stanford

More information

M R S Internet Journal of Nitride Semiconductor Research

M R S Internet Journal of Nitride Semiconductor Research Page 1 of 6 M R S Internet Journal of Nitride Semiconductor Research Volume 9, Article 7 The Ambient Temperature Effect on Current-Voltage Characteristics of Surface-Passivated GaN-Based Field-Effect Transistors

More information

Understanding the Electrical Impact of Edge Contacts in Few-Layer Graphene

Understanding the Electrical Impact of Edge Contacts in Few-Layer Graphene Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 4-2014 Understanding the Electrical Impact of Edge Contacts in Few-Layer Graphene Tao Chu Purdue University, Birck

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information