Data Fusion Using a Factor Graph for Ship Tracking in Harbour Scenarios

Size: px
Start display at page:

Download "Data Fusion Using a Factor Graph for Ship Tracking in Harbour Scenarios"

Transcription

1 Data Fusion Using a Factor Graph for Ship Tracing in Harbour Scenarios Francesco Castaldo Francesco A.N. Palmieri Dipartimento di Ingegneria Industriale e dell Informazione Seconda Universitá di Napoli (SUN) via Roma 29, Aversa (CE)-ITALY france.castaldo@gmail.com ; francesco.palmieri@unina2.it Abstract. Data coming from cameras deployed along an harbour coastline are fused to extract the state of unnown vessels framed by the sensors. We embed the ship dynamic model into a Factor Graph that through probability propagation provides a very flexible merge of sensory data and inferences. Preliminary results and experiments from videos gathered in the Gulf of Naples are reported with a discussion on future trends. Keywords: Data Fusion, Harbour Management, Factor Graph, Ship Model, Camera 1 Introduction State estimation of moving objects in a complex scene is a research topic much explored in recent years and in constant evolution as such technology can provide improvements to safety and management in various application areas (Harbours, Airports, Public areas, etc.). Intelligent and automatic fusion of data coming from different sensor modalities [1], that provide information that differ in type, quality and reliability, requires a framewor that is capable of handling in real time previous nowledge about the model together with environmental constraints and measurements uncertainty. In this paper we consider an harbour scenario, and the state estimation problem for tracing one or more vessels appearing in the field of view of cameras deployed along the coastline [2]. Tracing of multiple targets can be achieved using several and well-nown techniques [3] [4] [5], such as Kalman Filters, Particle Filters, Bayesian Networs, Factor Graphs, etc. We have chosen Factor Graphs, and in particular their normal realizations, also called Forney-Style Factor Graphs (FFG) [6]. Graphical models such as FFGs are very attractive for two main reasons: simplicity and This wor has been partially sponsored by Ministero Infrastrutture e Trasporti, PON , Harbour Traffic Optimization System (HABITAT) with Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT)- Italy.

2 2 F. Castaldo and F.A.N. Palmieri rigorousness. The first feature allows to map into a nice and comprehensible structure very complex problems and algorithms, while the second one guarantees robustness and optimality of the resulting estimates. Factor graphs are also modular, a feature very important in mutable scenarios as harbours are. The paper is organized as follow. In Section 2 we present the ship model used in the algorithm. In Section 3 the factor graph is introduced, with particular attention to the type of messages exchanged between the nodes. Section 4 discusses preliminary results obtained in a test in the Gulf of Naples and Section 5 draws conclusions with suggestions for future developments. 2 Ship Model The discrete-time mathematical model we use for the state of ships sailing near the harbour is based on a single point (usually the ship s barycenter) that moves on the 2D sea surface. We use a modified version of the model presented in [7] [8], considering vessels sailing at almost constant speed and with moderate maneuvering capabilities. Defining x = (x, y, v x, v y ) T the ship state at time, with (x, y ) the GPS ship coordinates (longitude and latitude) and (v x, v y ) ship velocity components, we have the following discrete-time model x = x 1 + T v x 1 + w x, y = y 1 + T v y 1 + w y, v x = v x 1 + w vx, v y = v y 1 + w vy, where T is the sampling time and w = (w x, w y, w vx, w vy ) T is a whitegaussian noise that allows slight changes in ship s position, speed and course. We can write the model in matrix form as x y v x v y = 1 0 T T x 1 y 1 v x 1 v y 1 + w x w y w vx w vy or equivalently as x = Ax 1 + w, (1) 1 0 T 0 with A = T Initial conditions are in the vector x 0 = (x 0, y 0, v x0, v y0 ) T Data Fusion using Factor Graph Sensor data and ship model are embedded here into a Forney-Style Factor Graph [6] [9] [10]. Factor graphs are an emerging framewor that allows to map many,

3 Data Fusion using Factor Graph 3 problems of different ind (signal processing, statistics, data fusion, etc) into a graph. With both simplicity and rigor the model can be manipulated with the information flow that travels bidirectionally for prediction and inference. A factor graph is composed of edges (through which information is propagated) and nodes (through which information is processed). Forward and bacward messages are denoted as f x and b x, where x is the edge variable. Either forward or bacward messages coming out of a node depend on messages entering the node. For the reader not familiar with this framewor, we would lie to emphasize that, even though the propagating equations may appear somewhat unjustified, they are rigorous translation of marginalization and Bayes rule [6]. In this paper we assume that messages are gaussian pdfs, i.e. fully describable by a mean vector m and a covariance matrix Σ. Clearly the state mean at time represents the state expected value, while the covariance represents how that value is dispersed around the mean. Our confidence may evolve in time as the result of information gathered and fused in various parts of the graph. Forward and bacward messages for a variable x are defined as the sets f x = {m fx, Σ fx }, b x = {m bx, Σ bx }. Each graph edge corresponds to a variable and forward/bacward messages can be combined along the same edge to get the variable s best nowledge pdf by the product rule [6] [9]. Given the hypothesis of gaussianity, after the application of the product rule we get again a mean and a covariance matrix that fully describe the result. More specifically, at an edge x from nowledge of forward f x and bacward b x messages, we can compute mean and covariance of x as m x = Σ x (Σ 1 f x m fx b x m bx ), Σ x = (Σ 1 f x b x ) 1. More details about the sum-product rule can be found in [9]. In our tracing application, the factor graph used in this paper, for each discrete time, has the structure shown in Figure 1. The linear A bloc represents the first part of the model defined in (1). The initial forward message is f x0 = {x 0, Σ 0 }, with x 0 initial condition and Σ 0 a fixed covariance. The smaller the covariance s values are chosen, the greater our confidence on initial values are. The following sum bloc adds the white gaussian noise w through the forward message f w = {0, Σ fw } that represents our model s uncertainty. Low values of covariance s norm imply great confidence on model s evolution, while high values imply strongly reliance on sensory data. The equal bloc implements the actual fusion between ship predictions and sensory measurements. The information that converges into this node can be sharp, partial or null: the rules of message propagation and combination guarantee that we always utilize all the information at best. Bloc g combines cameras 2D information (called obs ) to provide on-line measurements of the ship state at any time, as shown in the simplified diagram

4 4 F. Castaldo and F.A.N. Palmieri + = Fig. 1. The -th stage in the factor graph of Figure 2. The camera system, not detailed here, but discussed in [2], consists of a set of N cameras that have been deployed and calibrated using AIS data. Calibration is equivalent to obtaining a prospective homography matrix for each camera. The vision system contains many details, some of which have been reported in [2], that will be discussed elsewhere for space reasons. Essentially, image points are mapped into geographical positions via a 2D reconstruction procedure; after pattern recognition and pixel association the estimates are fused to provide an instantaneous estimate of the ship s parameters. To the purpose of this paper we assume that the camera system at each time provides a message f x 3 on the ships state. Note that the camera system can improve its tracing capabilities using the available b x 3 coming from the factor graph (not discussed here). The bloc g can wor even with one single camera, but obviously more cameras can cover a larger area, providing more reliable and general estimates. In the message f x 3 = {m fx 3, Σ fx 3 }, the covariance matrix Σ fx 3 carries information on how reliable the data is at that moment. Note this model allows time-dependent fusion in which sensory data may carry a very large covariance, which means that at that time camera information may be very unreliable (lost target), or essentially unavailable (poor guess). The nice feature of the factor graphs is that messages can be propagated bidirectionally providing predictions into the future and estimation improvements (smoothing) into the past. To infer into the past, we also need a bacward message coming from the end of the graph. We can model it as b x 2 = {0, Σ bx 2 }, with a very high-valued covariance matrix. Message fusion can be accomplished Σ bx 2 along each edge of the graph, even though the most relevant information is at the end of each graph s element, that is x 2 i = {m x 2, Σ i x 2 }, with i = 1,...,. i

5 Data Fusion using Factor Graph 5... Cam1 Cam2 CamN Fig. 2. A simplified diagram of the multiple-camera system (g bloc) Given inputs f x 2 1, b x 2, f x 3 be computed as and f w, forward and bacward messages can f x 0 = {Am fx 2 1, AΣ fx 2 1 A T }, f x 1 = {m fx 0 + m fw, Σ fx 0 + Σ fw }, f x 2 = {(Σ 1 x 1 x 3 ) 1 (Σ 1 m x 1 m x 3 ), (Σ 1 x 1 = {(Σ 1 f x 3 b ) 1 (Σ 1 x 2 f m x 3 fx 3 b x 0 = {m bx 1 m fw, Σ bx 1 + Σ fw }, b x 1 b x 2 1 x 3 x 1 b x 2 m bx 2 ), (Σ 1 f x 3 = {(A T Σ 1 b x 0 A) 1 (A T Σ 1 b x 0 m bx 0 ), (A T Σ 1 b x 0 A) 1 }. ) 1 }, x 3 b x 2 ) 1 }, 4 Preliminary results Our tracing framewor has been tested on real data coming from two cameras deployed along the Gulf of Naples coastline and calibrated with AIS data [11] of nown ships [2]. The test regards state reconstruction of a large ship appearing in the cameras fields of view. The ship under consideration is one of the vessels used for calibration, therefore its position, speed and course are already nown from AIS. This information is compared with the state provided by the algorithm, in order to assess estimation accuracy. Assuming nown initial state x 0 and, for each discrete step, measures from the cameras f x 3, the algorithm fuses altogether forward and bacward messages, getting ship state estimate, = 1,..., 7. The covariances are diagonal matrices with standard deviations chosen to be as follows: for the initial conditions σ 0 = 10 6 ; for the prediction model σ w = 10 3 ; for the

6 6 F. Castaldo and F.A.N. Palmieri bacward information at the end of the chain σ bx 2 = 10 4 ; for the information 7 coming from the camera system σ fx 3 = 10. In Figure 3 we plot on a Google-Maps image of the Gulf of Naples both the ship GPS positions (red triangles) coming from AIS and the reconstructed positions obtained from our procedure (green asteriss). Data from both cameras and from AIS have been interpolated as they are all available asynchronously. As we can see from the figure, discrepancies are very limited. Figure 4 is a more detailed version of Figure 3, where green crosses represent state estimates calculated at each step. In the algorithm, at each time step a bacward message b x 2 is injected into the graph, and previous states are recomputed, in order to improve the estimation accuracy. Green circles represent approximately covariances calculated at the last step, and indicate how confident we are on the value they represent. They are enlarged times in order to have a comprehensible figure. As stated before, bacward messages enhance previous states reconstruction, therefore going bacwards estimation uncertainty and covariances values decrease. The values go from σ x 2 7 = 10 5 (standard deviation at step = 7) to σ x 2 1 = 10 8 (standard deviation at step = 1). Fig. 3. A Google Maps from the Gulf of Naples, on which true (red) AIS and reconstructed (green) trajectories are superimposed. 5 Conclusions and future developments The framewor described in this paper is intended to be the milestone around which construct an autonomous and intelligent system that provide state information about vessels in movement near the coast. Information about the

7 Data Fusion using Factor Graph 7 Fig. 4. Zoomed version of Figure 3, with green circles that represent a fold magnified indication of the dispersion around the mean (covariance).

8 8 F. Castaldo and F.A.N. Palmieri behaviours of moving targets into the scene can be used to undertstand whether the situation of the harbour is into a normal or a possibly dangerous state. Camera sensory data is fused with the dynamic model and it will be extended to account for multiple targets. Furthermore positional estimates may be available at selective times from different sensor modalities and be fused into the factor graph. The flexibility of the framewor also permits integration of other sensor modalities (e.g. Radar, Lidar, etc.) without much efforts. The estimates coming from these sensors can be fused into the graph, providing better estimates of the object state. This last feature is crucial in complex and changing scenarios as harbours, where sensors can be substituted and modified anytime. Current effort is also being devoted to provide automatic covariance learning through the factor graph s blocs. More specifically, bloc g extracts 2D GPS points using a non-linear operation based on singular values decomposition [2] (not discussed here) and the issue of data dispersion is still an open issue. References 1. Hall, D.L.: An introduction to multisensor data fusion. In: Proceedings of the IEEE 85:6 23, Jan, Palmieri, F.A.N., Castaldo, F., Marino, G.: Harbour Surveillance with Cameras Calibrated with AIS Data. In: Proceedings of the 2013 IEEE Aerospace Conference, Big Sy, Montana, March 2-9, Liggins, M.E., Hall, D.L., Llinas, J.: Handboo of Multisensor Data Fusion: Theory and Practice, Second Edition. September Arulampalam, S.M., Masell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracing. In: IEEE Transactions on Signal Processing 50: , Feb, Welch, G., Bishop, G.: An Introduction to the Kalman Filter. In: Proceedings of SIGGRAPH. USA: Course, Forney, G.D.Jr.: Codes on graphs: Normal realizations. In: IEEE Trans. Inform. Theory, vol. 47, no. 2, pp , Semerdijev, E., Mihaylova, L.: Adaptive interacting multiple model algorithm for manouvering ship tracing. In: Proceedings of the 1998 International Conference on Information Fusion, Las Vegas, NV, Rong Li, X., Jilov, V.P. : Survey of maneuvering target tracing. part I: dynamic models. In: IEEE Transactions on Aerospace and Electronic Systems 39: , Kschischang, F.R., Frey, B.J., Loeliger, H.-A.: Factor graphs and the sum-product algorithm. In: IEEE Trans. Inform. Theory, vol. 47, pp Feb Loeliger, H.-A., Dauwels, J., Korl, S., Ping, L., Kschischang, F.R.: The factor graph approach to model-based signal processing. In: Proceedings of the IEEE 95: , Jun, IALA Guideline No On an Overview of AIS. International Association of Marine Aids to Navigation and Lighthouse, June, 2011.

Gaussian Message Passing on Linear Models: An Update

Gaussian Message Passing on Linear Models: An Update Int. Symp. on Turbo Codes & Related Topics, pril 2006 Gaussian Message Passing on Linear Models: n Update Hans-ndrea Loeliger 1, Junli Hu 1, Sascha Korl 2, Qinghua Guo 3, and Li Ping 3 1 Dept. of Information

More information

Extended Object and Group Tracking with Elliptic Random Hypersurface Models

Extended Object and Group Tracking with Elliptic Random Hypersurface Models Extended Object and Group Tracing with Elliptic Random Hypersurface Models Marcus Baum Benjamin Noac and Uwe D. Hanebec Intelligent Sensor-Actuator-Systems Laboratory ISAS Institute for Anthropomatics

More information

Gaussian message passing on linear models: an update

Gaussian message passing on linear models: an update University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part Faculty of Engineering and Information Sciences 2006 Gaussian message passing on linear models: an

More information

Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft

Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft 1 Using the Kalman Filter to Estimate the State of a Maneuvering Aircraft K. Meier and A. Desai Abstract Using sensors that only measure the bearing angle and range of an aircraft, a Kalman filter is implemented

More information

A STATE-SPACE APPROACH FOR THE ANALYSIS OF WAVE AND DIFFUSION FIELDS

A STATE-SPACE APPROACH FOR THE ANALYSIS OF WAVE AND DIFFUSION FIELDS ICASSP 2015 A STATE-SPACE APPROACH FOR THE ANALYSIS OF WAVE AND DIFFUSION FIELDS Stefano Maranò Donat Fäh Hans-Andrea Loeliger ETH Zurich, Swiss Seismological Service, 8092 Zürich ETH Zurich, Dept. Information

More information

arxiv:cs/ v2 [cs.it] 1 Oct 2006

arxiv:cs/ v2 [cs.it] 1 Oct 2006 A General Computation Rule for Lossy Summaries/Messages with Examples from Equalization Junli Hu, Hans-Andrea Loeliger, Justin Dauwels, and Frank Kschischang arxiv:cs/060707v [cs.it] 1 Oct 006 Abstract

More information

Data Fusion with Entropic Priors

Data Fusion with Entropic Priors Data Fusion with Entropic Priors Francesco PALMIERI, Domenico CIUONZO Dipartimento di Ingegneria dell Informazione, Seconda Università di Napoli, Italy Abstract. In classification problems, lack of knowledge

More information

Robotics 2 Target Tracking. Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard

Robotics 2 Target Tracking. Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard Robotics 2 Target Tracking Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard Slides by Kai Arras, Gian Diego Tipaldi, v.1.1, Jan 2012 Chapter Contents Target Tracking Overview Applications

More information

Distributed estimation in sensor networks

Distributed estimation in sensor networks in sensor networks A. Benavoli Dpt. di Sistemi e Informatica Università di Firenze, Italy. e-mail: benavoli@dsi.unifi.it Outline 1 An introduction to 2 3 An introduction to An introduction to In recent

More information

Probability Map Building of Uncertain Dynamic Environments with Indistinguishable Obstacles

Probability Map Building of Uncertain Dynamic Environments with Indistinguishable Obstacles Probability Map Building of Uncertain Dynamic Environments with Indistinguishable Obstacles Myungsoo Jun and Raffaello D Andrea Sibley School of Mechanical and Aerospace Engineering Cornell University

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche

More information

Sensor Fusion: Particle Filter

Sensor Fusion: Particle Filter Sensor Fusion: Particle Filter By: Gordana Stojceska stojcesk@in.tum.de Outline Motivation Applications Fundamentals Tracking People Advantages and disadvantages Summary June 05 JASS '05, St.Petersburg,

More information

For final project discussion every afternoon Mark and I will be available

For final project discussion every afternoon Mark and I will be available Worshop report 1. Daniels report is on website 2. Don t expect to write it based on listening to one project (we had 6 only 2 was sufficient quality) 3. I suggest writing it on one presentation. 4. Include

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Extended Kalman Filter Dr. Kostas Alexis (CSE) These slides relied on the lectures from C. Stachniss, J. Sturm and the book Probabilistic Robotics from Thurn et al.

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Human Pose Tracking I: Basics. David Fleet University of Toronto

Human Pose Tracking I: Basics. David Fleet University of Toronto Human Pose Tracking I: Basics David Fleet University of Toronto CIFAR Summer School, 2009 Looking at People Challenges: Complex pose / motion People have many degrees of freedom, comprising an articulated

More information

Parameterized Joint Densities with Gaussian Mixture Marginals and their Potential Use in Nonlinear Robust Estimation

Parameterized Joint Densities with Gaussian Mixture Marginals and their Potential Use in Nonlinear Robust Estimation Proceedings of the 2006 IEEE International Conference on Control Applications Munich, Germany, October 4-6, 2006 WeA0. Parameterized Joint Densities with Gaussian Mixture Marginals and their Potential

More information

Tracking and Identification of Multiple targets

Tracking and Identification of Multiple targets Tracking and Identification of Multiple targets Samir Hachour, François Delmotte, Eric Lefèvre, David Mercier Laboratoire de Génie Informatique et d'automatique de l'artois, EA 3926 LGI2A first name.last

More information

Latent Tree Approximation in Linear Model

Latent Tree Approximation in Linear Model Latent Tree Approximation in Linear Model Navid Tafaghodi Khajavi Dept. of Electrical Engineering, University of Hawaii, Honolulu, HI 96822 Email: navidt@hawaii.edu ariv:1710.01838v1 [cs.it] 5 Oct 2017

More information

State Estimation by IMM Filter in the Presence of Structural Uncertainty 1

State Estimation by IMM Filter in the Presence of Structural Uncertainty 1 Recent Advances in Signal Processing and Communications Edited by Nios Mastorais World Scientific and Engineering Society (WSES) Press Greece 999 pp.8-88. State Estimation by IMM Filter in the Presence

More information

Markov Models. CS 188: Artificial Intelligence Fall Example. Mini-Forward Algorithm. Stationary Distributions.

Markov Models. CS 188: Artificial Intelligence Fall Example. Mini-Forward Algorithm. Stationary Distributions. CS 88: Artificial Intelligence Fall 27 Lecture 2: HMMs /6/27 Markov Models A Markov model is a chain-structured BN Each node is identically distributed (stationarity) Value of X at a given time is called

More information

System identification and sensor fusion in dynamical systems. Thomas Schön Division of Systems and Control, Uppsala University, Sweden.

System identification and sensor fusion in dynamical systems. Thomas Schön Division of Systems and Control, Uppsala University, Sweden. System identification and sensor fusion in dynamical systems Thomas Schön Division of Systems and Control, Uppsala University, Sweden. The system identification and sensor fusion problem Inertial sensors

More information

The Mixed Labeling Problem in Multi Target Particle Filtering

The Mixed Labeling Problem in Multi Target Particle Filtering The Mixed Labeling Problem in Multi Target Particle Filtering Yvo Boers Thales Nederland B.V. Haasbergerstraat 49, 7554 PA Hengelo, The Netherlands yvo.boers@nl.thalesgroup.com Hans Driessen Thales Nederland

More information

Joint GPS and Vision Estimation Using an Adaptive Filter

Joint GPS and Vision Estimation Using an Adaptive Filter 1 Joint GPS and Vision Estimation Using an Adaptive Filter Shubhendra Vikram Singh Chauhan and Grace Xingxin Gao, University of Illinois at Urbana-Champaign Shubhendra Vikram Singh Chauhan received his

More information

Sigma Point Belief Propagation

Sigma Point Belief Propagation Copyright 2014 IEEE IEEE Signal Processing Letters, vol. 21, no. 2, Feb. 2014, pp. 145 149 1 Sigma Point Belief Propagation Florian Meyer, Student Member, IEEE, Ondrej Hlina, Member, IEEE, and Franz Hlawatsch,

More information

Karl-Rudolf Koch Introduction to Bayesian Statistics Second Edition

Karl-Rudolf Koch Introduction to Bayesian Statistics Second Edition Karl-Rudolf Koch Introduction to Bayesian Statistics Second Edition Karl-Rudolf Koch Introduction to Bayesian Statistics Second, updated and enlarged Edition With 17 Figures Professor Dr.-Ing., Dr.-Ing.

More information

Mini-Course 07 Kalman Particle Filters. Henrique Massard da Fonseca Cesar Cunha Pacheco Wellington Bettencurte Julio Dutra

Mini-Course 07 Kalman Particle Filters. Henrique Massard da Fonseca Cesar Cunha Pacheco Wellington Bettencurte Julio Dutra Mini-Course 07 Kalman Particle Filters Henrique Massard da Fonseca Cesar Cunha Pacheco Wellington Bettencurte Julio Dutra Agenda State Estimation Problems & Kalman Filter Henrique Massard Steady State

More information

Fuzzy Inference-Based Dynamic Determination of IMM Mode Transition Probability for Multi-Radar Tracking

Fuzzy Inference-Based Dynamic Determination of IMM Mode Transition Probability for Multi-Radar Tracking Fuzzy Inference-Based Dynamic Determination of IMM Mode Transition Probability for Multi-Radar Tracking Yeonju Eun, Daekeun Jeon CNS/ATM Team, CNS/ATM and Satellite Navigation Research Center Korea Aerospace

More information

Robotics. Lecture 4: Probabilistic Robotics. See course website for up to date information.

Robotics. Lecture 4: Probabilistic Robotics. See course website   for up to date information. Robotics Lecture 4: Probabilistic Robotics See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College London Review: Sensors

More information

Distributed Data Fusion with Kalman Filters. Simon Julier Computer Science Department University College London

Distributed Data Fusion with Kalman Filters. Simon Julier Computer Science Department University College London Distributed Data Fusion with Kalman Filters Simon Julier Computer Science Department University College London S.Julier@cs.ucl.ac.uk Structure of Talk Motivation Kalman Filters Double Counting Optimal

More information

Content.

Content. Content Fundamentals of Bayesian Techniques (E. Sucar) Bayesian Filters (O. Aycard) Definition & interests Implementations Hidden Markov models Discrete Bayesian Filters or Markov localization Kalman filters

More information

Density Propagation for Continuous Temporal Chains Generative and Discriminative Models

Density Propagation for Continuous Temporal Chains Generative and Discriminative Models $ Technical Report, University of Toronto, CSRG-501, October 2004 Density Propagation for Continuous Temporal Chains Generative and Discriminative Models Cristian Sminchisescu and Allan Jepson Department

More information

Multi-Sensor Fusion for Localization of a Mobile Robot in Outdoor Environments

Multi-Sensor Fusion for Localization of a Mobile Robot in Outdoor Environments Multi-Sensor Fusion for Localization of a Mobile Robot in Outdoor Environments Thomas Emter, Arda Saltoğlu and Janko Petereit Introduction AMROS Mobile platform equipped with multiple sensors for navigation

More information

A Sequential Monte Carlo Approach for Extended Object Tracking in the Presence of Clutter

A Sequential Monte Carlo Approach for Extended Object Tracking in the Presence of Clutter A Sequential Monte Carlo Approach for Extended Object Tracing in the Presence of Clutter Niolay Petrov 1, Lyudmila Mihaylova 1, Amadou Gning 1 and Dona Angelova 2 1 Lancaster University, School of Computing

More information

Hidden Markov Models. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 19 Apr 2012

Hidden Markov Models. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 19 Apr 2012 Hidden Markov Models Hal Daumé III Computer Science University of Maryland me@hal3.name CS 421: Introduction to Artificial Intelligence 19 Apr 2012 Many slides courtesy of Dan Klein, Stuart Russell, or

More information

Fisher Information Matrix-based Nonlinear System Conversion for State Estimation

Fisher Information Matrix-based Nonlinear System Conversion for State Estimation Fisher Information Matrix-based Nonlinear System Conversion for State Estimation Ming Lei Christophe Baehr and Pierre Del Moral Abstract In practical target tracing a number of improved measurement conversion

More information

Particle Filters; Simultaneous Localization and Mapping (Intelligent Autonomous Robotics) Subramanian Ramamoorthy School of Informatics

Particle Filters; Simultaneous Localization and Mapping (Intelligent Autonomous Robotics) Subramanian Ramamoorthy School of Informatics Particle Filters; Simultaneous Localization and Mapping (Intelligent Autonomous Robotics) Subramanian Ramamoorthy School of Informatics Recap: State Estimation using Kalman Filter Project state and error

More information

in a Rao-Blackwellised Unscented Kalman Filter

in a Rao-Blackwellised Unscented Kalman Filter A Rao-Blacwellised Unscented Kalman Filter Mar Briers QinetiQ Ltd. Malvern Technology Centre Malvern, UK. m.briers@signal.qinetiq.com Simon R. Masell QinetiQ Ltd. Malvern Technology Centre Malvern, UK.

More information

A Tree Search Approach to Target Tracking in Clutter

A Tree Search Approach to Target Tracking in Clutter 12th International Conference on Information Fusion Seattle, WA, USA, July 6-9, 2009 A Tree Search Approach to Target Tracking in Clutter Jill K. Nelson and Hossein Roufarshbaf Department of Electrical

More information

A Data-driven Approach for Remaining Useful Life Prediction of Critical Components

A Data-driven Approach for Remaining Useful Life Prediction of Critical Components GT S3 : Sûreté, Surveillance, Supervision Meeting GdR Modélisation, Analyse et Conduite des Systèmes Dynamiques (MACS) January 28 th, 2014 A Data-driven Approach for Remaining Useful Life Prediction of

More information

v are uncorrelated, zero-mean, white

v are uncorrelated, zero-mean, white 6.0 EXENDED KALMAN FILER 6.1 Introduction One of the underlying assumptions of the Kalman filter is that it is designed to estimate the states of a linear system based on measurements that are a linear

More information

Multiple-Model Adaptive Estimation for Star Identification with Two Stars

Multiple-Model Adaptive Estimation for Star Identification with Two Stars Multiple-Model Adaptive Estimation for Star Identification with Two Stars Steven A. Szlany and John L. Crassidis University at Buffalo, State University of New Yor, Amherst, NY, 460-4400 In this paper

More information

Distributed Kalman Filtering in the Presence of Packet Delays and Losses

Distributed Kalman Filtering in the Presence of Packet Delays and Losses Distributed Kalman Filtering in the Presence of Pacet Delays and Losses Marc Reinhardt, Benjamin Noac, Sanjeev Kularni, and Uwe D. Hanebec Intelligent Sensor-Actuator-Systems Laboratory (ISAS) Institute

More information

Expectation Propagation in Dynamical Systems

Expectation Propagation in Dynamical Systems Expectation Propagation in Dynamical Systems Marc Peter Deisenroth Joint Work with Shakir Mohamed (UBC) August 10, 2012 Marc Deisenroth (TU Darmstadt) EP in Dynamical Systems 1 Motivation Figure : Complex

More information

1 Kalman Filter Introduction

1 Kalman Filter Introduction 1 Kalman Filter Introduction You should first read Chapter 1 of Stochastic models, estimation, and control: Volume 1 by Peter S. Maybec (available here). 1.1 Explanation of Equations (1-3) and (1-4) Equation

More information

Machine Learning Techniques for Computer Vision

Machine Learning Techniques for Computer Vision Machine Learning Techniques for Computer Vision Part 2: Unsupervised Learning Microsoft Research Cambridge x 3 1 0.5 0.2 0 0.5 0.3 0 0.5 1 ECCV 2004, Prague x 2 x 1 Overview of Part 2 Mixture models EM

More information

Bayesian Inference for Wind Field Retrieval

Bayesian Inference for Wind Field Retrieval Bayesian Inference for Wind Field Retrieval Ian T. Nabney 1, Dan Cornford Neural Computing Research Group, Aston University, Aston Triangle, Birmingham B4 7ET, UK Christopher K. I. Williams Division of

More information

A Probabilistic Relational Model for Characterizing Situations in Dynamic Multi-Agent Systems

A Probabilistic Relational Model for Characterizing Situations in Dynamic Multi-Agent Systems A Probabilistic Relational Model for Characterizing Situations in Dynamic Multi-Agent Systems Daniel Meyer-Delius 1, Christian Plagemann 1, Georg von Wichert 2, Wendelin Feiten 2, Gisbert Lawitzky 2, and

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information

Understanding the Differences between LS Algorithms and Sequential Filters

Understanding the Differences between LS Algorithms and Sequential Filters Understanding the Differences between LS Algorithms and Sequential Filters In order to perform meaningful comparisons between outputs from a least squares (LS) orbit determination algorithm and orbit determination

More information

Model-based Correlation Measure for Gain and Offset Nonuniformity in Infrared Focal-Plane-Array Sensors

Model-based Correlation Measure for Gain and Offset Nonuniformity in Infrared Focal-Plane-Array Sensors Model-based Correlation Measure for Gain and Offset Nonuniformity in Infrared Focal-Plane-Array Sensors César San Martin Sergio Torres Abstract In this paper, a model-based correlation measure between

More information

Model Reference Adaptive Control of Underwater Robotic Vehicle in Plane Motion

Model Reference Adaptive Control of Underwater Robotic Vehicle in Plane Motion Proceedings of the 11th WSEAS International Conference on SSTEMS Agios ikolaos Crete Island Greece July 23-25 27 38 Model Reference Adaptive Control of Underwater Robotic Vehicle in Plane Motion j.garus@amw.gdynia.pl

More information

CSEP 573: Artificial Intelligence

CSEP 573: Artificial Intelligence CSEP 573: Artificial Intelligence Hidden Markov Models Luke Zettlemoyer Many slides over the course adapted from either Dan Klein, Stuart Russell, Andrew Moore, Ali Farhadi, or Dan Weld 1 Outline Probabilistic

More information

Minimum Necessary Data Rates for Accurate Track Fusion

Minimum Necessary Data Rates for Accurate Track Fusion Proceedings of the 44th IEEE Conference on Decision Control, the European Control Conference 005 Seville, Spain, December -5, 005 ThIA0.4 Minimum Necessary Data Rates for Accurate Trac Fusion Barbara F.

More information

COS Lecture 16 Autonomous Robot Navigation

COS Lecture 16 Autonomous Robot Navigation COS 495 - Lecture 16 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

Neutron inverse kinetics via Gaussian Processes

Neutron inverse kinetics via Gaussian Processes Neutron inverse kinetics via Gaussian Processes P. Picca Politecnico di Torino, Torino, Italy R. Furfaro University of Arizona, Tucson, Arizona Outline Introduction Review of inverse kinetics techniques

More information

Statistical and Learning Techniques in Computer Vision Lecture 1: Random Variables Jens Rittscher and Chuck Stewart

Statistical and Learning Techniques in Computer Vision Lecture 1: Random Variables Jens Rittscher and Chuck Stewart Statistical and Learning Techniques in Computer Vision Lecture 1: Random Variables Jens Rittscher and Chuck Stewart 1 Motivation Imaging is a stochastic process: If we take all the different sources of

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm The Expectation-Maximization Algorithm Francisco S. Melo In these notes, we provide a brief overview of the formal aspects concerning -means, EM and their relation. We closely follow the presentation in

More information

Constrained State Estimation Using the Unscented Kalman Filter

Constrained State Estimation Using the Unscented Kalman Filter 16th Mediterranean Conference on Control and Automation Congress Centre, Ajaccio, France June 25-27, 28 Constrained State Estimation Using the Unscented Kalman Filter Rambabu Kandepu, Lars Imsland and

More information

BAYESIAN MULTI-TARGET TRACKING WITH SUPERPOSITIONAL MEASUREMENTS USING LABELED RANDOM FINITE SETS. Francesco Papi and Du Yong Kim

BAYESIAN MULTI-TARGET TRACKING WITH SUPERPOSITIONAL MEASUREMENTS USING LABELED RANDOM FINITE SETS. Francesco Papi and Du Yong Kim 3rd European Signal Processing Conference EUSIPCO BAYESIAN MULTI-TARGET TRACKING WITH SUPERPOSITIONAL MEASUREMENTS USING LABELED RANDOM FINITE SETS Francesco Papi and Du Yong Kim Department of Electrical

More information

Maarten Bieshaar, Günther Reitberger, Stefan Zernetsch, Prof. Dr. Bernhard Sick, Dr. Erich Fuchs, Prof. Dr.-Ing. Konrad Doll

Maarten Bieshaar, Günther Reitberger, Stefan Zernetsch, Prof. Dr. Bernhard Sick, Dr. Erich Fuchs, Prof. Dr.-Ing. Konrad Doll Maarten Bieshaar, Günther Reitberger, Stefan Zernetsch, Prof. Dr. Bernhard Sick, Dr. Erich Fuchs, Prof. Dr.-Ing. Konrad Doll 08.02.2017 By 2030 road traffic deaths will be the fifth leading cause of death

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

ORBIT DETERMINATION AND DATA FUSION IN GEO

ORBIT DETERMINATION AND DATA FUSION IN GEO ORBIT DETERMINATION AND DATA FUSION IN GEO Joshua T. Horwood, Aubrey B. Poore Numerica Corporation, 4850 Hahns Pea Drive, Suite 200, Loveland CO, 80538 Kyle T. Alfriend Department of Aerospace Engineering,

More information

Horizontal Integration based upon: Decentralized Data Fusion (DDF), NetCentric Architecture (NCA), and Analysis Collaboration Tools (ACT)

Horizontal Integration based upon: Decentralized Data Fusion (DDF), NetCentric Architecture (NCA), and Analysis Collaboration Tools (ACT) Horizontal Integration based upon: Decentralized Data Fusion (DDF), NetCentric Architecture (NCA), and Analysis Collaboration Tools (ACT) S.B. Gardner Naval Research Laboratory Washington, DC 20375 Horizontal

More information

1 INTRODUCTION 2 PROBLEM DEFINITION

1 INTRODUCTION 2 PROBLEM DEFINITION Autonomous cruise control with cut-in target vehicle detection Ashwin Carvalho, Alek Williams, Stéphanie Lefèvre & Francesco Borrelli Department of Mechanical Engineering University of California Berkeley,

More information

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities.

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities. 19 KALMAN FILTER 19.1 Introduction In the previous section, we derived the linear quadratic regulator as an optimal solution for the fullstate feedback control problem. The inherent assumption was that

More information

Vlad Estivill-Castro. Robots for People --- A project for intelligent integrated systems

Vlad Estivill-Castro. Robots for People --- A project for intelligent integrated systems 1 Vlad Estivill-Castro Robots for People --- A project for intelligent integrated systems V. Estivill-Castro 2 Probabilistic Map-based Localization (Kalman Filter) Chapter 5 (textbook) Based on textbook

More information

Announcements. CS 188: Artificial Intelligence Fall VPI Example. VPI Properties. Reasoning over Time. Markov Models. Lecture 19: HMMs 11/4/2008

Announcements. CS 188: Artificial Intelligence Fall VPI Example. VPI Properties. Reasoning over Time. Markov Models. Lecture 19: HMMs 11/4/2008 CS 88: Artificial Intelligence Fall 28 Lecture 9: HMMs /4/28 Announcements Midterm solutions up, submit regrade requests within a week Midterm course evaluation up on web, please fill out! Dan Klein UC

More information

A Rocket Experiment for Measurement Science Education

A Rocket Experiment for Measurement Science Education Journal of Physics: Conference Series PAPER OPEN ACCESS A Rocket Experiment for Measurement Science Education To cite this article: T Mitterer et al 2018 J. Phys.: Conf. Ser. 1065 022005 View the article

More information

Model based estimation of the Eddy currents for the ITER tokamak *

Model based estimation of the Eddy currents for the ITER tokamak * Model based estimation of the Eddy currents for the ITER tokamak * Alfredo Pironti 1 Consorzio CREATE - University of Naples Federico II Via Claudio 21, 80125 Napoli, Italy E-mail: pironti@unina.it Roberto

More information

Acceptance probability of IP-MCMC-PF: revisited

Acceptance probability of IP-MCMC-PF: revisited Acceptance probability of IP-MCMC-PF: revisited Fernando J. Iglesias García, Mélanie Bocquel, Pranab K. Mandal, and Hans Driessen. Sensors Development System Engineering, Thales Nederland B.V. Hengelo,

More information

Robotics. Mobile Robotics. Marc Toussaint U Stuttgart

Robotics. Mobile Robotics. Marc Toussaint U Stuttgart Robotics Mobile Robotics State estimation, Bayes filter, odometry, particle filter, Kalman filter, SLAM, joint Bayes filter, EKF SLAM, particle SLAM, graph-based SLAM Marc Toussaint U Stuttgart DARPA Grand

More information

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/! Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!! WARNING! this class will be dense! will learn how to use nonlinear optimization

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

TARGET TRACKING BY USING PARTICLE FILTER IN SENSOR NETWORKS

TARGET TRACKING BY USING PARTICLE FILTER IN SENSOR NETWORKS TARGET TRACKING BY USING PARTICLE FILTER IN SENSOR NETWORKS D. Gu and H. Hu Department of Computing and Electronic Systems University of Essex, UK Abstract This paper presents a distributed particle filter

More information

Nonlinear Measurement Update and Prediction: Prior Density Splitting Mixture Estimator

Nonlinear Measurement Update and Prediction: Prior Density Splitting Mixture Estimator Nonlinear Measurement Update and Prediction: Prior Density Splitting Mixture Estimator Andreas Rauh, Kai Briechle, and Uwe D Hanebec Member, IEEE Abstract In this paper, the Prior Density Splitting Mixture

More information

RESEARCH ARTICLE. Online quantization in nonlinear filtering

RESEARCH ARTICLE. Online quantization in nonlinear filtering Journal of Statistical Computation & Simulation Vol. 00, No. 00, Month 200x, 3 RESEARCH ARTICLE Online quantization in nonlinear filtering A. Feuer and G. C. Goodwin Received 00 Month 200x; in final form

More information

Super-Resolution. Dr. Yossi Rubner. Many slides from Miki Elad - Technion

Super-Resolution. Dr. Yossi Rubner. Many slides from Miki Elad - Technion Super-Resolution Dr. Yossi Rubner yossi@rubner.co.il Many slides from Mii Elad - Technion 5/5/2007 53 images, ratio :4 Example - Video 40 images ratio :4 Example Surveillance Example Enhance Mosaics Super-Resolution

More information

Research Grant Creating wake vortex awareness for pilots and controllers - Progress Meeting - December 2009

Research Grant Creating wake vortex awareness for pilots and controllers - Progress Meeting - December 2009 Research Grant Creating wae vorte awareness for pilots and controllers - - December 2009 Summary of Activities Research Grant: Creating wae vorte awareness for pilots and controllers 2 Timeline Kic-Off

More information

Announcements. CS 188: Artificial Intelligence Fall Markov Models. Example: Markov Chain. Mini-Forward Algorithm. Example

Announcements. CS 188: Artificial Intelligence Fall Markov Models. Example: Markov Chain. Mini-Forward Algorithm. Example CS 88: Artificial Intelligence Fall 29 Lecture 9: Hidden Markov Models /3/29 Announcements Written 3 is up! Due on /2 (i.e. under two weeks) Project 4 up very soon! Due on /9 (i.e. a little over two weeks)

More information

EXPERIMENTAL ANALYSIS OF COLLECTIVE CIRCULAR MOTION FOR MULTI-VEHICLE SYSTEMS. N. Ceccarelli, M. Di Marco, A. Garulli, A.

EXPERIMENTAL ANALYSIS OF COLLECTIVE CIRCULAR MOTION FOR MULTI-VEHICLE SYSTEMS. N. Ceccarelli, M. Di Marco, A. Garulli, A. EXPERIMENTAL ANALYSIS OF COLLECTIVE CIRCULAR MOTION FOR MULTI-VEHICLE SYSTEMS N. Ceccarelli, M. Di Marco, A. Garulli, A. Giannitrapani DII - Dipartimento di Ingegneria dell Informazione Università di Siena

More information

2D Image Processing (Extended) Kalman and particle filter

2D Image Processing (Extended) Kalman and particle filter 2D Image Processing (Extended) Kalman and particle filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz

More information

Video and Motion Analysis Computer Vision Carnegie Mellon University (Kris Kitani)

Video and Motion Analysis Computer Vision Carnegie Mellon University (Kris Kitani) Video and Motion Analysis 16-385 Computer Vision Carnegie Mellon University (Kris Kitani) Optical flow used for feature tracking on a drone Interpolated optical flow used for super slow-mo optical flow

More information

Simultaneous Multi-frame MAP Super-Resolution Video Enhancement using Spatio-temporal Priors

Simultaneous Multi-frame MAP Super-Resolution Video Enhancement using Spatio-temporal Priors Simultaneous Multi-frame MAP Super-Resolution Video Enhancement using Spatio-temporal Priors Sean Borman and Robert L. Stevenson Department of Electrical Engineering, University of Notre Dame Notre Dame,

More information

Using Match Uncertainty in the Kalman Filter for a Sonar Based Positioning System

Using Match Uncertainty in the Kalman Filter for a Sonar Based Positioning System Using atch Uncertainty in the Kalman Filter for a Sonar Based ositioning System Oddbjørn Bergem, Claus Siggaard Andersen, Henrik Iskov Christensen Norwegian Defence Research Establishment, Norway Laboratory

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

A Study of Covariances within Basic and Extended Kalman Filters

A Study of Covariances within Basic and Extended Kalman Filters A Study of Covariances within Basic and Extended Kalman Filters David Wheeler Kyle Ingersoll December 2, 2013 Abstract This paper explores the role of covariance in the context of Kalman filters. The underlying

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

Toward Online Probabilistic Path Replanning

Toward Online Probabilistic Path Replanning Toward Online Probabilistic Path Replanning R. Philippsen 1 B. Jensen 2 R. Siegwart 3 1 LAAS-CNRS, France 2 Singleton Technology, Switzerland 3 ASL-EPFL, Switzerland Workshop on Autonomous Robot Motion,

More information

Gaussian Processes as Continuous-time Trajectory Representations: Applications in SLAM and Motion Planning

Gaussian Processes as Continuous-time Trajectory Representations: Applications in SLAM and Motion Planning Gaussian Processes as Continuous-time Trajectory Representations: Applications in SLAM and Motion Planning Jing Dong jdong@gatech.edu 2017-06-20 License CC BY-NC-SA 3.0 Discrete time SLAM Downsides: Measurements

More information

LEARNING DYNAMIC SYSTEMS: MARKOV MODELS

LEARNING DYNAMIC SYSTEMS: MARKOV MODELS LEARNING DYNAMIC SYSTEMS: MARKOV MODELS Markov Process and Markov Chains Hidden Markov Models Kalman Filters Types of dynamic systems Problem of future state prediction Predictability Observability Easily

More information

ECE295, Data Assimila0on and Inverse Problems, Spring 2015

ECE295, Data Assimila0on and Inverse Problems, Spring 2015 ECE295, Data Assimila0on and Inverse Problems, Spring 2015 1 April, Intro; Linear discrete Inverse problems (Aster Ch 1 and 2) Slides 8 April, SVD (Aster ch 2 and 3) Slides 15 April, RegularizaFon (ch

More information

State Estimation using Moving Horizon Estimation and Particle Filtering

State Estimation using Moving Horizon Estimation and Particle Filtering State Estimation using Moving Horizon Estimation and Particle Filtering James B. Rawlings Department of Chemical and Biological Engineering UW Math Probability Seminar Spring 2009 Rawlings MHE & PF 1 /

More information

15-780: Grad AI Lecture 19: Graphical models, Monte Carlo methods. Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

15-780: Grad AI Lecture 19: Graphical models, Monte Carlo methods. Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman 15-780: Grad AI Lecture 19: Graphical models, Monte Carlo methods Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman Admin Reminder: midterm March 29 Reminder: project milestone

More information

Particle Methods as Message Passing

Particle Methods as Message Passing Particle Methods as Message Passing Justin Dauwels RIKEN Brain Science Institute Hirosawa,2-1,Wako-shi,Saitama,Japan Email: justin@dauwels.com Sascha Korl Phonak AG CH-8712 Staefa, Switzerland Email: sascha.korl@phonak.ch

More information

EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER

EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER EVALUATING SYMMETRIC INFORMATION GAP BETWEEN DYNAMICAL SYSTEMS USING PARTICLE FILTER Zhen Zhen 1, Jun Young Lee 2, and Abdus Saboor 3 1 Mingde College, Guizhou University, China zhenz2000@21cn.com 2 Department

More information

MODELLING TEMPORAL VARIATIONS BY POLYNOMIAL REGRESSION FOR CLASSIFICATION OF RADAR TRACKS

MODELLING TEMPORAL VARIATIONS BY POLYNOMIAL REGRESSION FOR CLASSIFICATION OF RADAR TRACKS MODELLING TEMPORAL VARIATIONS BY POLYNOMIAL REGRESSION FOR CLASSIFICATION OF RADAR TRACKS Lars W. Jochumsen 1,2, Jan Østergaard 2, Søren H. Jensen 2, Morten Ø. Pedersen 1 1 Terma A/S, Hovmarken 4, Lystrup,

More information

Decentralized Stabilization of Heterogeneous Linear Multi-Agent Systems

Decentralized Stabilization of Heterogeneous Linear Multi-Agent Systems 1 Decentralized Stabilization of Heterogeneous Linear Multi-Agent Systems Mauro Franceschelli, Andrea Gasparri, Alessandro Giua, and Giovanni Ulivi Abstract In this paper the formation stabilization problem

More information

Vision-Based Control of an Inverted Pendulum using Cascaded Particle Filters

Vision-Based Control of an Inverted Pendulum using Cascaded Particle Filters IMTC 28 IEEE Instrumentation and Measurement Technology Conference Victoria, Canada, May 12 15, 28 Vision-Based Control of an Inverted Pendulum using Cascaded Particle Filters Manuel Stuflesser and Marus

More information

Introduction p. 1 Fundamental Problems p. 2 Core of Fundamental Theory and General Mathematical Ideas p. 3 Classical Statistical Decision p.

Introduction p. 1 Fundamental Problems p. 2 Core of Fundamental Theory and General Mathematical Ideas p. 3 Classical Statistical Decision p. Preface p. xiii Acknowledgment p. xix Introduction p. 1 Fundamental Problems p. 2 Core of Fundamental Theory and General Mathematical Ideas p. 3 Classical Statistical Decision p. 4 Bayes Decision p. 5

More information