Joint GPS and Vision Estimation Using an Adaptive Filter

Size: px
Start display at page:

Download "Joint GPS and Vision Estimation Using an Adaptive Filter"

Transcription

1 1 Joint GPS and Vision Estimation Using an Adaptive Filter Shubhendra Vikram Singh Chauhan and Grace Xingxin Gao, University of Illinois at Urbana-Champaign Shubhendra Vikram Singh Chauhan received his B.Tech. and M.Tech degree in aerospace engineering from Indian Institute of Technology, Bombay, India in He received Institute Silver Medal on graduation. He is currently pursuing his PhD degree at University of Illinois at Urbana-Champaign. His research interests include robotics, controls and sensor fusion. Grace Xingxin Gao received the B.S. degree in mechanical engineering and the M.S. degree in electrical engineering from Tsinghua University, Beijing, China in 2001 and She received the PhD degree in electrical engineering from Stanford University in From 2008 to 2012, she was a research associate at Stanford University. Since 2012, she has been with University of Illinois at Urbana-Champaign, where she is presently an assistant professor in the Aerospace Engineering Department. Her research interests are systems, signals, control, and robotics. Abstract Navigation in urban environments with standalone GPS is a challenging task. In urban environments, it is probable that GPS signals are being blocked or reflected by buildings. These factors degrade position accuracy. Therefore, it is desirable to augment GPS with another sensor using a sensor fusion technique. The performance of a sensor fusion technique is highly dependent on covariance matrices and tuning these matrices is time consuming. In case of GPS, the covariance matrices may change with time and may vary in size. The expected noise in GPS measurements in urban environments is different than that of open environments. The number of visible satellites may increase or decrease with time, changing the size of measurement covariance matrix. The time and size variation of covariance matrices makes the position estimation even harder. In this paper, we propose an adaptive filter for GPS-vision fusion that adapts to time and size varying covariance matrices. In proposed method, we assume that the noise is Gaussian in small time intervals, and then use innovation sequence to derive an expression for covariance matrices. The camera image is compared with Google Street View (GSV) to obtain position. We use pseudoranges from GPS receiver and positions obtained from camera as measurements for our Extended Kalman Filter (EKF). The covariance matrices are obtained from innovation sequence and Kalman gain. The proposed filter is tested in GPS-challenged urban environments on the University of Illinois at Urbana- Champaign campus. The proposed filter demonstrates improved performance over the filter with fixed covariance matrices. Keywords Adaptive filter, image localization, global positioning system (GPS) I. INTRODUCTION Navigation in urban environments has always been a challenging task, especially with standalone GPS. In urban environments, there are high chances of GPS satellite signals being blocked or reflected by buildings. These factors affect the position accuracy of GPS. In literature this problem has been approached in two ways. The first method is to identify the multipath signal and then either remove it or weigh it in estimation process [1], [2]. The second method is to use a sensor to augment GPS. Vision sensor is commonly used for augmentation as urban environments are rich in features like buildings, street lights etc. These features are utilized in localization process. A sensor fusion technique is used to fuse the measurements. The performance of a sensor fusion technique is highly dependent on covariance matrices. Tuning covariance matrices is a laborious task. [3] uses a ground truth to train covariance matrices. However, in this method there is chance of overfitting i.e. once tuned for a particular scenario the matrices may not work for a different scenario as noise may change with time. The second challenge, which is not addressed in literature, is that the size of measurements may change with time. [4] uses covariance matching method to estimate covariance matrices adaptively. The paper doesn t address the issue of size change of measurement covariance matrix. A. Approach The main contribution of this paper is the development of the filter that adapts to time and size varying noise. The Gaussian assumption of noise is not valid when measurements are used from GPS or vision. The noise in GPS measurements in urban areas is expected to vary with time given, the chances of reflection is high. Also number of visible satellites may increase or decrease during a course of experiment. Similarly the noise in vision will be dependent on the number of features present in the environment. We expect the noise in vision to be varying with time. We use measurements to estimate covariance matrices, as any time and size variation in noise affects measurements. The overall architecture is shown in Figure 1. Input measurements of our EKF are pseudoranges, obtained from GPS receiver and position, obtained from vision. We create a set of grid points around previous position estimate and pull images from street view database. In image matching module, we compare raw image from camera and GSV to obtain the position. This is the position referred as position obtained from vision. In covariance estimation module, we use

2 2 Fig. 1: Overall architecture innovation sequence and Kalman gain to estimate covariance matrices. The estimated covariance matrices are fed to EKF for next time step. We conducted experiment in urban environments on the University of Illinois at Urbana Champaign (UIUC) campus. We implemented the proposed filter on the collected dataset. The proposed filter adapted to time and size varying noise and we were able to improve position accuracy in urban environments. The rest of the paper is organized as follows: Section II describes the algorithm to match images from GSV database. Section III presents our method to estimate covariance matrices. Section IV provides detail for EKF measurement and process model. Experimental scenario is given in section V. Section VI shows the results and finally the paper is concluded in section VII with conclusions. II. IMAGE MATCHING USING SIFT FEATURES GSV contains database of images that are geo-referenced. This map is discrete i.e. if the difference in the position of the pull request is less than 10m, the GSV gives the same image. SIFT [5] features are invariant to scale, rotation and lighting. Each feature comes with a vector descriptor. Features are matched by finding the nearest neighbor in descriptor space with some additional constraint. We use SIFT features for image matching. Figure 2 shows the steps involved in image matching. Fig. 2: Image matching using SIFT features First SIFT features are calculated for all the images present in database and also for the camera image. These features are then matched by implementing the Lowe s criteria. Lowe s criteria considers two features corresponding to each other if the ratio of distance between two nearest neighbors is below a certain threshold. Feature matching step is performed to find the feature correspondences. This step is susceptible to outliers. The transformation matrix relating the images are found in outlier rejection step. The matrix is found by randomly selecting feature correspondences and then estimating the matrix elements. The random selection of features is repeated and transformation matrix is estimated for each step. The matrix that gives largest number of inlier is considered to be the transformation matrix. After applying transformation matrix to the images, the number of inlier are counted. The number of inlier are stored for every database images. The image that has the largest number of inlier is considered to be a match and the position corresponding to that image is considered to be the position obtained from vision. III. ADAPTIVE COVARIANCE ESTIMATION We use innovation sequence to estimate noise covariance matrices. Innovation sequence is the difference of measurements and expected measurements. Any time and size variation of noise will affect the measurements and the effect will be observed in innovation sequence. Figure 3 conceptually shows the step involved in covariance estimation. Fig. 3: Estimation covariance matrices Measurements and states are input to EKF. We use innovation sequence and measurement model to get an expression of measurement covariance noise. Similarly we use, process model, Kalman gain and innovation sequence to get an expression of process covariance noise. These covariance matrices are then fed to EKF in next time step. A. Filter Equations Predict and update are the two steps involved in Kalman filtering. Equations for predict step are given below x k k 1 = f(x k 1 k 1 ) + ω k (1) P k k 1 = F k P k 1 k 1 F T k + Q k (2) where subscript k k 1 denotes the value at time step k given k 1 measurements, k 1 k 1 denotes the value at time step k 1 given k 1 measurements, x is a state vector, f is a non linear function that maps previous states to current time step, ω k is assumed to be zero mean Gaussian, P is the error covariance matrix, F k is the jacobian of non linear function f, evaluated at x k k 1 and Q k is the covariance matrix of process noise ω k.

3 3 Equation 1 uses dynamics of system to propagate states forward in time. Equation 2 is used to propagate error covariance matrices forward in time. The update step is performed by following equations z k = h(x k k 1 ) + ν k (3) ỹ k = z k H k x k k 1 (4) S k = R k + H k P k k 1 H T k (5) K k = P k k 1 H T k S 1 k (6) x k k = x k k 1 + K k ỹ k (7) P k k = (I K k H k )P k k 1 (8) where subscript k denotes the time step, h is the non linear function that maps states to measurements, ν k is assumed to be zero mean Gaussian, ỹ is innovation sequence, y k is the measurement, H k is the jacobian of non linear function h, evaluated at x k k 1, S k is the theoretical covariance of innovation sequence and K k is the Kalman gain. Measurement model is given by equation 3. Innovation sequence is the difference of measurements and expected measurements. Innovation sequence is given by equation 4. Equation 5 shows the covariance of innovation sequence. Kalman gain is obtained using equation 6. The states are updated using equation 7 and error covariance matrices are updated using equation 8. In the standard EKF, both process and measurement noise is assumed to be Gaussian. B. Covariance Estimation We relaxed the assumption of noise being Gaussian for whole duration to noise being Gaussian for small interval of time. Let the length of this time interval be N. Actual covariance of innovation sequence is calculated using the following equation E[ỹ k ỹ T k ] = 1 N 1 N (ỹ k i ȳ)(ỹ k i ȳ) T (9) i=1 where E[] denotes the expectation with respect to time, ȳ is the mean of N samples of innovation sequence around time step k. Let the actual covariance be denoted by Sk m i.e. E[ỹ k ỹk T ] = Sm k. Substituting this expression for covariance of innovation sequence in equation 5 and rearranging it would give the following equation ˆR k = S m k H k P k k 1 H T k (10) where ˆR k represents estimated measurement covariance noise. We also assume the noise elements to be independent. This along with the assumption of noise being Gaussian in small time intervals, makes ˆR k a diagonal matrix. The elements of diagonal matrix are then given by ˆr ik = S m k (i, i) H k (i, :)P k k 1 H k (i, :) T (11) where ˆr ik is the ith element of the diagonal matrix ˆR k and H k (i, :) denotes the ith row of the measurement matrix. Any size change in the measurement will change the size of Sk m and equation 11 is used to estimate the additional noise elements. Equation 11 is used to estimate the elements of measurement covariance noise. Using process model, the process noise can be written as ˆω k = x k k f(x k 1 k 1 ) (12) ˆω k = x k k x k k 1 (13) Using equation 7, above equation is simplified as ˆω k = K k ỹ k (14) Taking expectation on both sides in equation 14 would result in following equation ˆQ k = K k S m k K T k (15) where ˆQ k is the estimated process covariance noise. We have smoothed the estimation of covariance matrices by weighting previous estimates, using the following equation ˆr ik = αˆr ik + (1 α)ˆr ik 1 (16) ˆQ k = α ˆQ k + (1 α) ˆQ k 1 (17) where α is the parameter used for averaging the estimates. Equation 16 and 17 does not ensure the positive definiteness, therefore in implementation, we take the absolute value of equation 16 and 17. Equation 16 and 17 are used to adaptively estimate the covariance matrices. In the next section, process and measurement model are described that are used in our implementation. IV. GPS-VISION FUSION The states for our system includes x = [x ẋ y ẏ z ż cδt cδt] T (18) where (x, y, z) denotes the position in Earth Centered Earth Fixed (ECEF) coordinate system, (ẋ, ẏ, ż), denotes the velocity in ECEF coordinate system, (cδt, cδt) denotes clock bias and clock bias rate respectively. We use constant velocity model for our system. The dynamics of the system is given by ẋ k k 1 = Ax k 1 k 1 + ω k (19) 1 t t where A = t 0 0, t is a t small time step and ω k is process noise. As this system is linear, A is same as F k. We use pseudoranges from GPS

4 4 and position obtained from vision as measurements. The measurement vector is given by SV1 ρ... SVi ρ.. (20) z=. SVn ρ xvision y vision red line in Figure 4. The initial path is surrounded by large structures. It is expected that few satellites will be blocked in north-south direction. The rest of the path can be considered as open environment as the heights of surrounded structures is relatively low than that of initial path. VI. R ESULTS We implemented our image matching algorithm and tested on the collected dataset. The obtained result is shown in Figure 5. zvision where ρsvi is the pseudorange obtained from satellite i, n is the number of visible satellites and (xvision, yvision, zvision ) is the position obtained from vision. The measurement model is given by p (X SV1 x)2 + (Y SV1 y)2 + (Z SV1 z)2 + cδt... p (X SVi x)2 + (Y SVi y)2 + (Z SVi z)2 + cδt.. +νk z=. p SVn x)2 + (Y SVn y)2 + (Z SVn z)2 + cδt (X x Fig. 5: Matched features for a single image in database y z (21) where (X SVi, Y SVi, Z SVi ) denotes the satellite position in In Figure 5, SIFT features are shown with green circles. ECEF frame and νk is the measurement noise, Appropriate The top image is obtained from GSV and the bottom image jacobian is used in filter implementation. We used the specified is collected while conducting the experiment. The subsequent process and measurement model for our system. In the next images, from left to right, correspond to the steps shown in the section, experimental scenario is briefly described. block diagram. The right most images show the features after removing outliers. It can be visually verified that the features shown in bottom right image are corresponding to the same V. E XPERIMENTAL S CENARIO features shown in top right image. This shows that reliable We conducted the experiment on urban environments of matching is achieved using our algorithm. UIUC campus. The scenario is shown in Figure 4. In equation 20, z denotes measurements. z is a column vector with pseudoranges and positions obtained from vision. The length of this vector is referred as size of measurements. In equation 20, this length is n + 3. Figure 6 shows that the length of z is not constant and is varying with time. Variance of vision noise is estimated using the proposed method. The variance of vision noise with time is shown in Figure 7. This demonstrates that noise is variable with time. We implemented the filter with time and size varying noise. Figures 8 and 9 show the east and north position with time respectively. In Figures 8 and 9, the noise in vision changes its magnitude around 450 seconds, the proposed filter is successful in adapting to this time variation. In Figure 8, the filtered output is smooth as compared to the position obtained from vision. Fig. 4: Experimental scenario in an urban environment Using pseudoranges, we obtained position by finding the least square estimate (LSE). These estimates are shown in Figure 10 with yellow circle. To compare our method, we We used a commercial GPS receiver to record GPS data. implemented EKF with fixed covariance matrices, the result We used a hand held mobile camera to record a video while is shown in Figure 10 with red line and our proposed filter conducting the experiment. The traveled path is shown with output is shown in blue color. The proposed filter improved the position accuracy in urban environments.

5 5 Fig. 6: Length of measurement vector (z) with time Fig. 9: Variation of north position with time Fig. 7: Variance of vision noise with time Fig. 8: Variation of east position with time VII. CONCLUSION This paper proposed a GPS-vision fusion method that accounts for time and size variation of noise. We used measure- Fig. 10: LSE, filtered position with fixed and proposed covariance matrices ments to estimate time- and size-varying covariance matrices, as the affect of noise is observed in measurements. We conducted an experiment in urban environments of UIUC campus. The proposed filter adapts to time and size varying noise. We compared our method with fixed covariance matrices and observed improvement in urban environments. REFERENCES [1] P. D. Groves, Shadow matching: A new GNSS positioning technique for urban canyons, Journal of Navigation, vol. 64, no. 03, pp , [2] P. D. Groves, Z. Jiang, L. Wang, and M. K. Ziebart, Intelligent urban positioning using multi-constellation GNSS with 3D mapping and NLOS signal detection, in Proceedings of the 25th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2012), Nashville, TN, USA, 2012, pp [3] P. Abbeel, A. Coates, M. Montemerlo, A. Y. Ng, and S. Thrun, Discriminative training of kalman filters, in Proceedings of Robotics: Science and Systems, Cambridge, USA, June [4] S. Akhlaghi, N. Zhou, and Z. Huang, Adaptive Adjustment of Noise Covariance in Kalman Filter for Dynamic State Estimation, ArXiv e- prints, Feb [5] D. G. Lowe, Distinctive image features from scaleinvariant keypoints, International Journal of Computer Vision, vol. 60, no. 2, pp , Nov [Online]. Available:

1 Kalman Filter Introduction

1 Kalman Filter Introduction 1 Kalman Filter Introduction You should first read Chapter 1 of Stochastic models, estimation, and control: Volume 1 by Peter S. Maybec (available here). 1.1 Explanation of Equations (1-3) and (1-4) Equation

More information

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e.

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e. Kalman Filter Localization Bayes Filter Reminder Prediction Correction Gaussians p(x) ~ N(µ,σ 2 ) : Properties of Gaussians Univariate p(x) = 1 1 2πσ e 2 (x µ) 2 σ 2 µ Univariate -σ σ Multivariate µ Multivariate

More information

GPS-LiDAR Sensor Fusion Aided by 3D City Models for UAVs Akshay Shetty and Grace Xingxin Gao

GPS-LiDAR Sensor Fusion Aided by 3D City Models for UAVs Akshay Shetty and Grace Xingxin Gao GPS-LiDAR Sensor Fusion Aided by 3D City Models for UAVs Akshay Shetty and Grace Xingxin Gao SCPNT, November 2017 Positioning in Urban Areas GPS signals blocked or reflected Additional sensors: LiDAR,

More information

A Study of Covariances within Basic and Extended Kalman Filters

A Study of Covariances within Basic and Extended Kalman Filters A Study of Covariances within Basic and Extended Kalman Filters David Wheeler Kyle Ingersoll December 2, 2013 Abstract This paper explores the role of covariance in the context of Kalman filters. The underlying

More information

Simultaneous Localization of Multiple Jammers and Receivers Using Probability Hypothesis Density

Simultaneous Localization of Multiple Jammers and Receivers Using Probability Hypothesis Density Author copy. Submitted for publication. Do not distribute. Simultaneous Localization of Multiple ammers and Receivers Using Probability Hypothesis Density Sriramya Bhamidipati, Student Member, IEEE and

More information

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Kalman Filter Kalman Filter Predict: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Update: K = P k k 1 Hk T (H k P k k 1 Hk T + R) 1 x k k = x k k 1 + K(z k H k x k k 1 ) P k k =(I

More information

COS Lecture 16 Autonomous Robot Navigation

COS Lecture 16 Autonomous Robot Navigation COS 495 - Lecture 16 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

SLAM Techniques and Algorithms. Jack Collier. Canada. Recherche et développement pour la défense Canada. Defence Research and Development Canada

SLAM Techniques and Algorithms. Jack Collier. Canada. Recherche et développement pour la défense Canada. Defence Research and Development Canada SLAM Techniques and Algorithms Jack Collier Defence Research and Development Canada Recherche et développement pour la défense Canada Canada Goals What will we learn Gain an appreciation for what SLAM

More information

Invariant Extended Kalman Filter: Theory and application to a velocity-aided estimation problem

Invariant Extended Kalman Filter: Theory and application to a velocity-aided estimation problem Invariant Extene Kalman Filter: Theory an application to a velocity-aie estimation problem S. Bonnabel (Mines ParisTech) Joint work with P. Martin (Mines ParisTech) E. Salaun (Georgia Institute of Technology)

More information

Robotics. Mobile Robotics. Marc Toussaint U Stuttgart

Robotics. Mobile Robotics. Marc Toussaint U Stuttgart Robotics Mobile Robotics State estimation, Bayes filter, odometry, particle filter, Kalman filter, SLAM, joint Bayes filter, EKF SLAM, particle SLAM, graph-based SLAM Marc Toussaint U Stuttgart DARPA Grand

More information

Design of Adaptive Filtering Algorithm for Relative Navigation

Design of Adaptive Filtering Algorithm for Relative Navigation Design of Adaptive Filtering Algorithm for Relative Navigation Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sung Jin Kang, Sebum Chun, and Hyung Keun Lee Abstract Recently, relative navigation

More information

Introduction to Unscented Kalman Filter

Introduction to Unscented Kalman Filter Introduction to Unscented Kalman Filter 1 Introdution In many scientific fields, we use certain models to describe the dynamics of system, such as mobile robot, vision tracking and so on. The word dynamics

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Extended Kalman Filter Dr. Kostas Alexis (CSE) These slides relied on the lectures from C. Stachniss, J. Sturm and the book Probabilistic Robotics from Thurn et al.

More information

L11. EKF SLAM: PART I. NA568 Mobile Robotics: Methods & Algorithms

L11. EKF SLAM: PART I. NA568 Mobile Robotics: Methods & Algorithms L11. EKF SLAM: PART I NA568 Mobile Robotics: Methods & Algorithms Today s Topic EKF Feature-Based SLAM State Representation Process / Observation Models Landmark Initialization Robot-Landmark Correlation

More information

ENGR352 Problem Set 02

ENGR352 Problem Set 02 engr352/engr352p02 September 13, 2018) ENGR352 Problem Set 02 Transfer function of an estimator 1. Using Eq. (1.1.4-27) from the text, find the correct value of r ss (the result given in the text is incorrect).

More information

Multi-Sensor Fusion for Localization of a Mobile Robot in Outdoor Environments

Multi-Sensor Fusion for Localization of a Mobile Robot in Outdoor Environments Multi-Sensor Fusion for Localization of a Mobile Robot in Outdoor Environments Thomas Emter, Arda Saltoğlu and Janko Petereit Introduction AMROS Mobile platform equipped with multiple sensors for navigation

More information

EKF and SLAM. McGill COMP 765 Sept 18 th, 2017

EKF and SLAM. McGill COMP 765 Sept 18 th, 2017 EKF and SLAM McGill COMP 765 Sept 18 th, 2017 Outline News and information Instructions for paper presentations Continue on Kalman filter: EKF and extension to mapping Example of a real mapping system:

More information

with Application to Autonomous Vehicles

with Application to Autonomous Vehicles Nonlinear with Application to Autonomous Vehicles (Ph.D. Candidate) C. Silvestre (Supervisor) P. Oliveira (Co-supervisor) Institute for s and Robotics Instituto Superior Técnico Portugal January 2010 Presentation

More information

GPS Geodesy - LAB 7. Neglecting the propagation, multipath, and receiver errors, eq.(1) becomes:

GPS Geodesy - LAB 7. Neglecting the propagation, multipath, and receiver errors, eq.(1) becomes: GPS Geodesy - LAB 7 GPS pseudorange position solution The pseudorange measurements j R i can be modeled as: j R i = j ρ i + c( j δ δ i + ΔI + ΔT + MP + ε (1 t = time of epoch j R i = pseudorange measurement

More information

Exact State and Covariance Sub-matrix Recovery for Submap Based Sparse EIF SLAM Algorithm

Exact State and Covariance Sub-matrix Recovery for Submap Based Sparse EIF SLAM Algorithm 8 IEEE International Conference on Robotics and Automation Pasadena, CA, USA, May 19-3, 8 Exact State and Covariance Sub-matrix Recovery for Submap Based Sparse EIF SLAM Algorithm Shoudong Huang, Zhan

More information

E190Q Lecture 11 Autonomous Robot Navigation

E190Q Lecture 11 Autonomous Robot Navigation E190Q Lecture 11 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 013 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

More information

n j u = (3) b u Then we select m j u as a cross product between n j u and û j to create an orthonormal basis: m j u = n j u û j (4)

n j u = (3) b u Then we select m j u as a cross product between n j u and û j to create an orthonormal basis: m j u = n j u û j (4) 4 A Position error covariance for sface feate points For each sface feate point j, we first compute the normal û j by usin 9 of the neihborin points to fit a plane In order to create a 3D error ellipsoid

More information

Vlad Estivill-Castro. Robots for People --- A project for intelligent integrated systems

Vlad Estivill-Castro. Robots for People --- A project for intelligent integrated systems 1 Vlad Estivill-Castro Robots for People --- A project for intelligent integrated systems V. Estivill-Castro 2 Probabilistic Map-based Localization (Kalman Filter) Chapter 5 (textbook) Based on textbook

More information

A probabilistic assessment on the Range Consensus (RANCO) RAIM Algorithm

A probabilistic assessment on the Range Consensus (RANCO) RAIM Algorithm A probabilistic assessment on the Range Consensus (RANCO) RAIM Algorithm Markus Rippl, German Aerospace Center Georg Schroth, Technische Universität München Boubeker Belabbas, German Aerospace Center Michael

More information

GPS Multipath Detection Based on Sequence of Successive-Time Double-Differences

GPS Multipath Detection Based on Sequence of Successive-Time Double-Differences 1 GPS Multipath Detection Based on Sequence of Successive-Time Double-Differences Hyung Keun Lee, Jang-Gyu Lee, and Gyu-In Jee Hyung Keun Lee is with Seoul National University-Korea University Joint Research

More information

Data Fusion Techniques Applied to Scenarios Including ADS-B and Radar Sensors for Air Traffic Control

Data Fusion Techniques Applied to Scenarios Including ADS-B and Radar Sensors for Air Traffic Control 1th International Conference on Information Fusion Seattle, WA, USA, July 6-9, 9 Data Fusion Techniques Applied to Scenarios Including ADS-B and Radar Sensors for Air Traffic Control Julio L. R. da Silva

More information

Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer

Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer Oscar De Silva, George K.I. Mann and Raymond G. Gosine Faculty of Engineering and Applied Sciences, Memorial

More information

Vision for Mobile Robot Navigation: A Survey

Vision for Mobile Robot Navigation: A Survey Vision for Mobile Robot Navigation: A Survey (February 2002) Guilherme N. DeSouza & Avinash C. Kak presentation by: Job Zondag 27 February 2009 Outline: Types of Navigation Absolute localization (Structured)

More information

Improving Adaptive Kalman Estimation in GPS/INS Integration

Improving Adaptive Kalman Estimation in GPS/INS Integration THE JOURNAL OF NAVIGATION (27), 6, 517 529. f The Royal Institute of Navigation doi:1.117/s373463374316 Printed in the United Kingdom Improving Adaptive Kalman Estimation in GPS/INS Integration Weidong

More information

Principles of the Global Positioning System Lecture 11

Principles of the Global Positioning System Lecture 11 12.540 Principles of the Global Positioning System Lecture 11 Prof. Thomas Herring http://geoweb.mit.edu/~tah/12.540 Statistical approach to estimation Summary Look at estimation from statistical point

More information

Improved Particle Filtering Based on Biogeography-based Optimization for UGV Navigation

Improved Particle Filtering Based on Biogeography-based Optimization for UGV Navigation Improved Particle Filtering Based on Biogeography-based Optimization for UGV Navigation A. Kuifeng Su 1,2, B. Zhidong Deng 1, and C. Zhen Huang 1 1 Department of Computer Science, State Key Laboratory

More information

CS 532: 3D Computer Vision 6 th Set of Notes

CS 532: 3D Computer Vision 6 th Set of Notes 1 CS 532: 3D Computer Vision 6 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Intro to Covariance

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 6.2: Kalman Filter Jürgen Sturm Technische Universität München Motivation Bayes filter is a useful tool for state

More information

Robotics 2 Target Tracking. Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard

Robotics 2 Target Tracking. Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard Robotics 2 Target Tracking Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard Slides by Kai Arras, Gian Diego Tipaldi, v.1.1, Jan 2012 Chapter Contents Target Tracking Overview Applications

More information

Target tracking and classification for missile using interacting multiple model (IMM)

Target tracking and classification for missile using interacting multiple model (IMM) Target tracking and classification for missile using interacting multiple model (IMM Kyungwoo Yoo and Joohwan Chun KAIST School of Electrical Engineering Yuseong-gu, Daejeon, Republic of Korea Email: babooovv@kaist.ac.kr

More information

Multi-sensor data fusion based on Information Theory. Application to GNSS positionning and integrity monitoring

Multi-sensor data fusion based on Information Theory. Application to GNSS positionning and integrity monitoring Multi-sensor data fusion based on Information Theory. Application to GNSS positionning and integrity monitoring Nourdine Aït Tmazirte, Maan E. El Najjar, Cherif Smaili and Denis Pomorski LAGIS UMR 89 CNRS/Université-Lille

More information

A SELF-TUNING KALMAN FILTER FOR AUTONOMOUS SPACECRAFT NAVIGATION

A SELF-TUNING KALMAN FILTER FOR AUTONOMOUS SPACECRAFT NAVIGATION A SELF-TUNING KALMAN FILTER FOR AUTONOMOUS SPACECRAFT NAVIGATION Son H. Truong National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Greenbelt, Maryland, USA 2771 E-mail:

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Basic Statistics Summary of last class Statistical description and parameters Probability distributions Descriptions: expectations, variances, moments Covariances

More information

Introduction to Machine Learning Midterm Exam

Introduction to Machine Learning Midterm Exam 10-701 Introduction to Machine Learning Midterm Exam Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes, but

More information

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier

Miscellaneous. Regarding reading materials. Again, ask questions (if you have) and ask them earlier Miscellaneous Regarding reading materials Reading materials will be provided as needed If no assigned reading, it means I think the material from class is sufficient Should be enough for you to do your

More information

Neuromorphic Sensing and Control of Autonomous Micro-Aerial Vehicles

Neuromorphic Sensing and Control of Autonomous Micro-Aerial Vehicles Neuromorphic Sensing and Control of Autonomous Micro-Aerial Vehicles Commercialization Fellowship Technical Presentation Taylor Clawson Ithaca, NY June 12, 2018 About Me: Taylor Clawson 3 rd year PhD student

More information

Adaptive Unscented Kalman Filter with Multiple Fading Factors for Pico Satellite Attitude Estimation

Adaptive Unscented Kalman Filter with Multiple Fading Factors for Pico Satellite Attitude Estimation Adaptive Unscented Kalman Filter with Multiple Fading Factors for Pico Satellite Attitude Estimation Halil Ersin Söken and Chingiz Hajiyev Aeronautics and Astronautics Faculty Istanbul Technical University

More information

Tennis player segmentation for semantic behavior analysis

Tennis player segmentation for semantic behavior analysis Proposta di Tennis player segmentation for semantic behavior analysis Architettura Software per Robot Mobili Vito Renò, Nicola Mosca, Massimiliano Nitti, Tiziana D Orazio, Donato Campagnoli, Andrea Prati,

More information

A NONLINEARITY MEASURE FOR ESTIMATION SYSTEMS

A NONLINEARITY MEASURE FOR ESTIMATION SYSTEMS AAS 6-135 A NONLINEARITY MEASURE FOR ESTIMATION SYSTEMS Andrew J. Sinclair,JohnE.Hurtado, and John L. Junkins The concept of nonlinearity measures for dynamical systems is extended to estimation systems,

More information

RELATIVE NAVIGATION FOR SATELLITES IN CLOSE PROXIMITY USING ANGLES-ONLY OBSERVATIONS

RELATIVE NAVIGATION FOR SATELLITES IN CLOSE PROXIMITY USING ANGLES-ONLY OBSERVATIONS (Preprint) AAS 12-202 RELATIVE NAVIGATION FOR SATELLITES IN CLOSE PROXIMITY USING ANGLES-ONLY OBSERVATIONS Hemanshu Patel 1, T. Alan Lovell 2, Ryan Russell 3, Andrew Sinclair 4 "Relative navigation using

More information

Space Surveillance with Star Trackers. Part II: Orbit Estimation

Space Surveillance with Star Trackers. Part II: Orbit Estimation AAS -3 Space Surveillance with Star Trackers. Part II: Orbit Estimation Ossama Abdelkhalik, Daniele Mortari, and John L. Junkins Texas A&M University, College Station, Texas 7783-3 Abstract The problem

More information

Shape of Gaussians as Feature Descriptors

Shape of Gaussians as Feature Descriptors Shape of Gaussians as Feature Descriptors Liyu Gong, Tianjiang Wang and Fang Liu Intelligent and Distributed Computing Lab, School of Computer Science and Technology Huazhong University of Science and

More information

A decentralized Polynomial based SLAM algorithm for a team of mobile robots

A decentralized Polynomial based SLAM algorithm for a team of mobile robots Preprints of the 19th World Congress The International Federation of Automatic Control A decentralized Polynomial based SLAM algorithm for a team of mobile robots Luigi D Alfonso, Antonio Grano, Pietro

More information

TSRT14: Sensor Fusion Lecture 9

TSRT14: Sensor Fusion Lecture 9 TSRT14: Sensor Fusion Lecture 9 Simultaneous localization and mapping (SLAM) Gustaf Hendeby gustaf.hendeby@liu.se TSRT14 Lecture 9 Gustaf Hendeby Spring 2018 1 / 28 Le 9: simultaneous localization and

More information

Constrained State Estimation Using the Unscented Kalman Filter

Constrained State Estimation Using the Unscented Kalman Filter 16th Mediterranean Conference on Control and Automation Congress Centre, Ajaccio, France June 25-27, 28 Constrained State Estimation Using the Unscented Kalman Filter Rambabu Kandepu, Lars Imsland and

More information

Censoring and Fusion in Non-linear Distributed Tracking Systems with Application to 2D Radar

Censoring and Fusion in Non-linear Distributed Tracking Systems with Application to 2D Radar Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 15 Censoring and Fusion in Non-linear Distributed Tracking Systems with Application to D Radar Armond S. Conte

More information

The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance. Samuel Prentice and Nicholas Roy Presentation by Elaine Short

The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance. Samuel Prentice and Nicholas Roy Presentation by Elaine Short The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance Samuel Prentice and Nicholas Roy Presentation by Elaine Short 1 Outline" Motivation Review of PRM and EKF Factoring the

More information

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!

Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/! Pose Tracking II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 12! stanford.edu/class/ee267/!! WARNING! this class will be dense! will learn how to use nonlinear optimization

More information

A Tree Search Approach to Target Tracking in Clutter

A Tree Search Approach to Target Tracking in Clutter 12th International Conference on Information Fusion Seattle, WA, USA, July 6-9, 2009 A Tree Search Approach to Target Tracking in Clutter Jill K. Nelson and Hossein Roufarshbaf Department of Electrical

More information

Discriminative Training of Kalman Filters

Discriminative Training of Kalman Filters Robotics: Science and Systems 2005 Cambridge, MA, USA, June 8-11, 2005 Discriminative Training of Kalman Filters Pieter Abbeel, Adam Coates, Michael Montemerlo, Andrew Y. Ng and Sebastian Thrun Department

More information

Extended Kalman Filter for Spacecraft Pose Estimation Using Dual Quaternions*

Extended Kalman Filter for Spacecraft Pose Estimation Using Dual Quaternions* Extended Kalman Filter for Spacecraft Pose Estimation Using Dual Quaternions* Nuno Filipe Michail Kontitsis 2 Panagiotis Tsiotras 3 Abstract Based on the highly successful Quaternion Multiplicative Extended

More information

Target Tracking and Classification using Collaborative Sensor Networks

Target Tracking and Classification using Collaborative Sensor Networks Target Tracking and Classification using Collaborative Sensor Networks Xiaodong Wang Department of Electrical Engineering Columbia University p.1/3 Talk Outline Background on distributed wireless sensor

More information

Vision-Aided Navigation Based on Three-View Geometry

Vision-Aided Navigation Based on Three-View Geometry Vision-Aided Navigation Based on hree-view Geometry Vadim Indelman, Pini Gurfil Distributed Space Systems Lab, Aerospace Engineering, echnion Ehud Rivlin Computer Science, echnion Hector Rotstein RAFAEL

More information

Blob Detection CSC 767

Blob Detection CSC 767 Blob Detection CSC 767 Blob detection Slides: S. Lazebnik Feature detection with scale selection We want to extract features with characteristic scale that is covariant with the image transformation Blob

More information

Data assimilation with and without a model

Data assimilation with and without a model Data assimilation with and without a model Tim Sauer George Mason University Parameter estimation and UQ U. Pittsburgh Mar. 5, 2017 Partially supported by NSF Most of this work is due to: Tyrus Berry,

More information

2D Image Processing (Extended) Kalman and particle filter

2D Image Processing (Extended) Kalman and particle filter 2D Image Processing (Extended) Kalman and particle filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz

More information

Extension of Farrenkopf Steady-State Solutions with Estimated Angular Rate

Extension of Farrenkopf Steady-State Solutions with Estimated Angular Rate Extension of Farrenopf Steady-State Solutions with Estimated Angular Rate Andrew D. Dianetti and John L. Crassidis University at Buffalo, State University of New Yor, Amherst, NY 46-44 Steady-state solutions

More information

Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents

Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents Navtech Part #s Volume 1 #1277 Volume 2 #1278 Volume 3 #1279 3 Volume Set #1280 Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents Volume 1 Preface Contents

More information

Autocorrelation Functions in GPS Data Processing: Modeling Aspects

Autocorrelation Functions in GPS Data Processing: Modeling Aspects Autocorrelation Functions in GPS Data Processing: Modeling Aspects Kai Borre, Aalborg University Gilbert Strang, Massachusetts Institute of Technology Consider a process that is actually random walk but

More information

Ionosphere influence on success rate of GPS ambiguity resolution in a satellite formation flying

Ionosphere influence on success rate of GPS ambiguity resolution in a satellite formation flying Journal of Physics: Conference Series PAPER OPEN ACCESS Ionosphere influence on success rate of GPS ambiguity resolution in a satellite formation flying To cite this article: Leandro Baroni 2015 J. Phys.:

More information

ROBUST CONSTRAINED ESTIMATION VIA UNSCENTED TRANSFORMATION. Pramod Vachhani a, Shankar Narasimhan b and Raghunathan Rengaswamy a 1

ROBUST CONSTRAINED ESTIMATION VIA UNSCENTED TRANSFORMATION. Pramod Vachhani a, Shankar Narasimhan b and Raghunathan Rengaswamy a 1 ROUST CONSTRINED ESTIMTION VI UNSCENTED TRNSFORMTION Pramod Vachhani a, Shankar Narasimhan b and Raghunathan Rengaswamy a a Department of Chemical Engineering, Clarkson University, Potsdam, NY -3699, US.

More information

Systematic Error Modeling and Bias Estimation

Systematic Error Modeling and Bias Estimation sensors Article Systematic Error Modeling and Bias Estimation Feihu Zhang * and Alois Knoll Robotics and Embedded Systems, Technische Universität München, 8333 München, Germany; knoll@in.tum.de * Correspondence:

More information

Fuzzy Logic Based Nonlinear Kalman Filter Applied to Mobile Robots Modelling

Fuzzy Logic Based Nonlinear Kalman Filter Applied to Mobile Robots Modelling Fuzzy Logic Based Nonlinear Kalman Filter Applied to Mobile Robots Modelling Rodrigo Carrasco Sch. Department of Electrical Engineering Pontificia Universidad Católica de Chile, CHILE E-mail: rax@ing.puc.cl

More information

Kalman Filter Computer Vision (Kris Kitani) Carnegie Mellon University

Kalman Filter Computer Vision (Kris Kitani) Carnegie Mellon University Kalman Filter 16-385 Computer Vision (Kris Kitani) Carnegie Mellon University Examples up to now have been discrete (binary) random variables Kalman filtering can be seen as a special case of a temporal

More information

Satellite Navigation PVT estimation and integrity

Satellite Navigation PVT estimation and integrity Satellite Navigation PVT estimation and integrity Picture: ESA AE4E8 Sandra Verhagen Course 1 11, lecture 7 1 Satellite Navigation (AE4E8 Lecture 7 Today s topics Position, Velocity and Time estimation

More information

Relevance Vector Machines for Earthquake Response Spectra

Relevance Vector Machines for Earthquake Response Spectra 2012 2011 American American Transactions Transactions on on Engineering Engineering & Applied Applied Sciences Sciences. American Transactions on Engineering & Applied Sciences http://tuengr.com/ateas

More information

From Bayes to Extended Kalman Filter

From Bayes to Extended Kalman Filter From Bayes to Extended Kalman Filter Michal Reinštein Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception http://cmp.felk.cvut.cz/

More information

Measurement Observers for Pose Estimation on SE(3)

Measurement Observers for Pose Estimation on SE(3) Measurement Observers for Pose Estimation on SE(3) By Geoffrey Stacey u4308250 Supervised by Prof. Robert Mahony 24 September 2010 A thesis submitted in part fulfilment of the degree of Bachelor of Engineering

More information

Data assimilation with and without a model

Data assimilation with and without a model Data assimilation with and without a model Tyrus Berry George Mason University NJIT Feb. 28, 2017 Postdoc supported by NSF This work is in collaboration with: Tim Sauer, GMU Franz Hamilton, Postdoc, NCSU

More information

Corners, Blobs & Descriptors. With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros

Corners, Blobs & Descriptors. With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros Corners, Blobs & Descriptors With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros Motivation: Build a Panorama M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 How do we build panorama?

More information

Robot Localisation. Henrik I. Christensen. January 12, 2007

Robot Localisation. Henrik I. Christensen. January 12, 2007 Robot Henrik I. Robotics and Intelligent Machines @ GT College of Computing Georgia Institute of Technology Atlanta, GA hic@cc.gatech.edu January 12, 2007 The Robot Structure Outline 1 2 3 4 Sum of 5 6

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Probabilistic Fundamentals in Robotics Gaussian Filters Course Outline Basic mathematical framework Probabilistic models of mobile robots Mobile

More information

UAVBook Supplement Full State Direct and Indirect EKF

UAVBook Supplement Full State Direct and Indirect EKF UAVBook Supplement Full State Direct and Indirect EKF Randal W. Beard March 14, 217 This supplement will explore alternatives to the state estimation scheme presented in the book. In particular, we will

More information

Introduction to Machine Learning Midterm Exam Solutions

Introduction to Machine Learning Midterm Exam Solutions 10-701 Introduction to Machine Learning Midterm Exam Solutions Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes,

More information

Lego NXT: Navigation and localization using infrared distance sensors and Extended Kalman Filter. Miguel Pinto, A. Paulo Moreira, Aníbal Matos

Lego NXT: Navigation and localization using infrared distance sensors and Extended Kalman Filter. Miguel Pinto, A. Paulo Moreira, Aníbal Matos Lego NXT: Navigation and localization using infrared distance sensors and Extended Kalman Filter Miguel Pinto, A. Paulo Moreira, Aníbal Matos 1 Resume LegoFeup Localization Real and simulated scenarios

More information

A Comparison of the EKF, SPKF, and the Bayes Filter for Landmark-Based Localization

A Comparison of the EKF, SPKF, and the Bayes Filter for Landmark-Based Localization A Comparison of the EKF, SPKF, and the Bayes Filter for Landmark-Based Localization and Timothy D. Barfoot CRV 2 Outline Background Objective Experimental Setup Results Discussion Conclusion 2 Outline

More information

UAV Navigation: Airborne Inertial SLAM

UAV Navigation: Airborne Inertial SLAM Introduction UAV Navigation: Airborne Inertial SLAM Jonghyuk Kim Faculty of Engineering and Information Technology Australian National University, Australia Salah Sukkarieh ARC Centre of Excellence in

More information

Riemannian Metric Learning for Symmetric Positive Definite Matrices

Riemannian Metric Learning for Symmetric Positive Definite Matrices CMSC 88J: Linear Subspaces and Manifolds for Computer Vision and Machine Learning Riemannian Metric Learning for Symmetric Positive Definite Matrices Raviteja Vemulapalli Guide: Professor David W. Jacobs

More information

Off-the-Shelf Sensor Integration for mono-slam on Smart Devices

Off-the-Shelf Sensor Integration for mono-slam on Smart Devices Off-the-Shelf Sensor ntegration for mono-slam on Smart Devices Philipp Tiefenbacher, Timo Schulze and Gerhard Rigoll Technische Universität München philipp.tiefenbacher@tum.de, schulzetimo@gmail.com, rigoll@tum.de

More information

Machine Learning! in just a few minutes. Jan Peters Gerhard Neumann

Machine Learning! in just a few minutes. Jan Peters Gerhard Neumann Machine Learning! in just a few minutes Jan Peters Gerhard Neumann 1 Purpose of this Lecture Foundations of machine learning tools for robotics We focus on regression methods and general principles Often

More information

Simultaneous Localization and Mapping

Simultaneous Localization and Mapping Simultaneous Localization and Mapping Miroslav Kulich Intelligent and Mobile Robotics Group Czech Institute of Informatics, Robotics and Cybernetics Czech Technical University in Prague Winter semester

More information

CSE 483: Mobile Robotics. Extended Kalman filter for localization(worked out example)

CSE 483: Mobile Robotics. Extended Kalman filter for localization(worked out example) DRAFT a final version will be posted shortly CSE 483: Mobile Robotics Lecture by: Prof. K. Madhava Krishna Lecture # 4 Scribe: Dhaivat Bhatt, Isha Dua Date: 14th November, 216 (Monday) Extended Kalman

More information

Using the Kalman Filter for SLAM AIMS 2015

Using the Kalman Filter for SLAM AIMS 2015 Using the Kalman Filter for SLAM AIMS 2015 Contents Trivial Kinematics Rapid sweep over localisation and mapping (components of SLAM) Basic EKF Feature Based SLAM Feature types and representations Implementation

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Roman Barták Department of Theoretical Computer Science and Mathematical Logic Summary of last lecture We know how to do probabilistic reasoning over time transition model P(X t

More information

Lecture 7: Optimal Smoothing

Lecture 7: Optimal Smoothing Department of Biomedical Engineering and Computational Science Aalto University March 17, 2011 Contents 1 What is Optimal Smoothing? 2 Bayesian Optimal Smoothing Equations 3 Rauch-Tung-Striebel Smoother

More information

Lie Groups for 2D and 3D Transformations

Lie Groups for 2D and 3D Transformations Lie Groups for 2D and 3D Transformations Ethan Eade Updated May 20, 2017 * 1 Introduction This document derives useful formulae for working with the Lie groups that represent transformations in 2D and

More information

Research Article Weighted Measurement Fusion White Noise Deconvolution Filter with Correlated Noise for Multisensor Stochastic Systems

Research Article Weighted Measurement Fusion White Noise Deconvolution Filter with Correlated Noise for Multisensor Stochastic Systems Mathematical Problems in Engineering Volume 2012, Article ID 257619, 16 pages doi:10.1155/2012/257619 Research Article Weighted Measurement Fusion White Noise Deconvolution Filter with Correlated Noise

More information

Kalman Filters with Uncompensated Biases

Kalman Filters with Uncompensated Biases Kalman Filters with Uncompensated Biases Renato Zanetti he Charles Stark Draper Laboratory, Houston, exas, 77058 Robert H. Bishop Marquette University, Milwaukee, WI 53201 I. INRODUCION An underlying assumption

More information

EKF, UKF. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

EKF, UKF. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics EKF, UKF Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Kalman Filter Kalman Filter = special case of a Bayes filter with dynamics model and sensory

More information

EKF, UKF. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

EKF, UKF. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics EKF, UKF Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Kalman Filter Kalman Filter = special case of a Bayes filter with dynamics model and sensory

More information

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein Kalman filtering and friends: Inference in time series models Herke van Hoof slides mostly by Michael Rubinstein Problem overview Goal Estimate most probable state at time k using measurement up to time

More information

Correcting biased observation model error in data assimilation

Correcting biased observation model error in data assimilation Correcting biased observation model error in data assimilation Tyrus Berry Dept. of Mathematical Sciences, GMU PSU-UMD DA Workshop June 27, 217 Joint work with John Harlim, PSU BIAS IN OBSERVATION MODELS

More information

Influence Analysis of Star Sensors Sampling Frequency on Attitude Determination Accuracy

Influence Analysis of Star Sensors Sampling Frequency on Attitude Determination Accuracy Sensors & ransducers Vol. Special Issue June pp. -8 Sensors & ransducers by IFSA http://www.sensorsportal.com Influence Analysis of Star Sensors Sampling Frequency on Attitude Determination Accuracy Yuanyuan

More information

CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT

CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT Journal of Computer Science and Cybernetics, V.31, N.3 (2015), 255 265 DOI: 10.15625/1813-9663/31/3/6127 CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT NGUYEN TIEN KIEM

More information

Gaussian with mean ( µ ) and standard deviation ( σ)

Gaussian with mean ( µ ) and standard deviation ( σ) Slide from Pieter Abbeel Gaussian with mean ( µ ) and standard deviation ( σ) 10/6/16 CSE-571: Robotics X ~ N( µ, σ ) Y ~ N( aµ + b, a σ ) Y = ax + b + + + + 1 1 1 1 1 1 1 1 1 1, ~ ) ( ) ( ), ( ~ ), (

More information