Nonlinear Optical Waves in Disordered Ferroelectrics

Size: px
Start display at page:

Download "Nonlinear Optical Waves in Disordered Ferroelectrics"

Transcription

1 PhD candidate: Nonlinear Optical Waves in Disordered Ferroelectrics Davide Pierangeli Supervisor: Prof. Eugenio DelRe Physics Department, Unversity of Rome La Sapienza, Rome, Italy PhD in Physics, XXIX Cycle 27 October 2016, Rome

2 Nonlinear optics meets disorder Group & Research Initiatives Eugenio DelRe, in collaboration with Claudio Conti 2 Spatial solitons Anti-diffraction Disordered ferroelectrics Rogue waves Electro-Optics Optical turbulence Super-resolution Shock-waves

3 Contents 3 i. Super-crystals in composite ferroelectrics D.Pierangeli et al., Nat. Commun. 7, (2016) condensed matter physics ii. Ferroelectric phase-transition of disordered perovskites Observation of macroscopically ordered ferroelectric states Spontaneous formation of coherent polar-domain structures i. Group & Research Initiatives Rogue waves in photorefractive ferroelectrics D.Pierangeli et al., Phys. Rev. Lett. 115, (2015) D.Pierangeli et al., Phys. Rev. Lett. 117, (2016) nonlinear waves dynamics Extreme events in random optical fields Observation of spatial rogue waves in nonlinear media Optical instabilities and turbulent transitions Control of extreme events through spatial incoherence Spatiotemporal soliton dynamics in a saturable nonlinearity

4 Disordered ferroelectrics 4 compositional disorder in ABO 3 perovskites single-crystals from A.J.Agranat, Habrew University of Jerusalem dielectric spectroscopy from G-B.Parravicini, University of Pavia KNTN: KLTN: dielectric susceptibility FE/DG phase PE phase existence of polar-nano regions (PNR) complex relaxation properties (freezing etc.) out-of equilibrium responses (giant responses, memory, aging etc. ) giant photorefractive effect E.DelRe et al., Nat. Photon. 5 (2011) anomalous electro-optic effect linear EO effect broken symmetry quadratic EO effect inversion symmetry T.T.A.Lummen et al., Nat. Commun. 5 (2014) ordered states? D.Pierangeli et al., Opt. Mater. Express. 4 (2014) D.Pierangeli et al., Opt. Lett. 39 (2014)

5 Ferroelectric super-crystals 5 microstructured samples: KLTN transmission microscopy local critical properties spatially-varying transition temperature Visible-light diffractometry Spontaneous mesoscopic/photonic crystals Γ x T C (x) Λ 5.5 μm A.J.Agranat et al., Appl. Phys. Lett. 90, (2007) diffraction experiments: coherence T = T C - 2K λ=532nm direct space Λ 5.5 μm

6 Ferroelectric super-crystals 6 Polarization-resolved Bragg scattering standard periodic material (coupled wave theory) H.Kogelnik, Bell Syst. Tech. J super-lattice Nonlinear behavior P s is directed along the x-axis P 2 s is periodic with wavevector Γ one-dimensional model

7 static electric field E along Γ Electro-optic Bragg diffraction standard EO effect 7 field-induced phase transition super-lattice diffraction enhancement fully-hysteretic loop

8 Ordered polar-domain configuration 8 domain dynamics in presence of a fixed spatial scale basic domain configurations charge density minimization 45 domain walls ferroelectricity can be arranged into new phases on macroscopic scales It is a general property of polar-domains in quasi-periodic potentials atomic-scale imaging in layered oxide thin films: Second Harmonic Generation (inelastic scattering)? in collaboration with L. Tartara, University of Pavia Domains structure from the polarization transfer matrix? in collaboration with M. Ferraro, INLN? G.Stone et al., Nat. Commun. 7 (2016)

9 Nonlinear optical waves in the spatial domain 9 y Generalized Nonlinear Schrodinger Equation (NLSE) x z Spatial Solitons: diffraction nonlinearity photorefractive localized and stationary perturbations particle-like interactions experiments in photorefractive ferroelectric crystals top view Input Diffraction Soliton D. Pierangeli et al., Phys. Rev. Lett. 114 (2015)

10 Nonlinear optical waves in the spatial domain 10 y Generalized Nonlinear Schrodinger Equation (NLSE) x z Anti-diffraction: diffraction nonlinearity photorefractive paraxial and subwavelength experiments collapse length E. DelRe et al., Nat. Photon. 9 (2015) F. Di Mei et al., Phys. Rev. Lett. 116 (2016)

11 Optical rogue waves 11 Generalized Nonlinear Schrodinger Equation (NLSE) Disordered Field: interference of random waves diffraction? nonlinearity Gaussian amplitude distribution J.W.Goodman (1975) nonlinear behavior abnormal waves extreme events in complex systems hydrodynamics, acoustic etc Special solutions NLSE? Solitons? Instabilities? Wave-turbulence? D.R.Solli et al., Nature 450 (2007) M.Onorato et al. Phys. Rep. 528 (2013) J.M.Dudley et al. Nat. Photon. 8 (2014) C.Liu et al. Nat. Phys. 11 (2015) A.Montina et al., Phys. Rev. Lett. 103 (2009). beam propagation in nonlinear crystals?

12 Nonlinear optical waves in critical ferroelectrics 12 experimental setup: High-voltage control (0 2kV) Local temperature control (0.1K, T amb ) Time-resolved detection ( s) High spatial resolution (0.5 µm) tuning light self-interaction 1D bright localized peaks highly nonlinear regime input output

13 Rogue waves observation 13 Output intensity distributions: Statistics: highly nonlinear x-independent weakly nonlinear normal statistics long-tail statistics Nonlinear origin

14 Model and numerical analysis 14 Generalized NLSE (2+1)D: Kerr-saturated nonlocal highly nonlinear regime Nonlinear origin Soliton mergers? A.Armaroli et al., Optica 2(2015) S.Birkholz et al., Phys. Rev. Lett. 111 (2013) soliton phase-space

15 Controlling the nonlinearity 15 the photorefractive nonlinearity is nonistantaneous and accumulates in time time-resolved detection complete tunability KTN T > T C E-field input intensity Modulational instability (MI) spontaneous amplification of noise in a gain spectral region fixing a typical time scale: beam symmetry-breaking threshold Q.Lu et al., IEEE Phot.J. 7 (2015) T T C + 2K

16 Transitions to optical turbulence 16 quasi-homogeneous input wave spatially-modulated input wave MI stage Maximally-amplified wavevector How an optical field lose coherence E.G. Turitsyna et al., Nat. Photon. 7 (2014) turbulent transitions in a fiber lasers first observation for propagating waves Shot-to-shot fluctuations and correlations? ongoing experiments in a ferroelectric slab waveguide? no MI stage Probability Distribution Function I / <I> rogue waves are triggered by the onset of a turbulent regime

17 Role of the spatial coherence scale 17 partially-incoherent excitations NA=0.5 speckled beams intensity autocorrelation: Scale-dependent statistics source size: Y. Bromberg et al., Nat. Photon. 6 (2010) linear nonlinear rogue waves enhancement scale σ 2 Control of optical extreme events through spatial incoherence

18 Unveiling rogue waveforms 18 high-resolution measurements of optical rogue waveforms challenging in time-domain: P.Suret et al., Nat. Commun. 7 (2016) nonlinear-wave parameters wave size (FWHM) wave peak intensity self-similarity rogue waves enhancement σ 2 intensity independent Existence of a typical scale for rogue waves a general property? In saturable nonlinearities?

19 Understanding rogue waves 19 Non-stationary solitons in a saturable nonlinearity transient self-trapping on a localization scale E.DelRe et al., JOSA B 23 (2006) intensity independent weakly-dependent on the field E spatiotemporal phase-space of non-stationary solitons time dynamics Intensity (a.u.) x ( m) optical rogue waves Coherent structures in turbulent nonlinear wave fields Spatiotemporal dynamics of non-stationary solitons

20 References Thanks for your attention! [1] D.Pierangeli, M.Ferraro, F.Di Mei, G.Di Domenico, C.E.M.de Oliveira, A.J.Agranat and E.DelRe, Super-crystals in composite ferroelectrics, Nat. Commun. 7, (2016). [2] D.Pierangeli, F.Di Mei, C.Conti, A.J.Agranat, and E.DelRe, Spatial Rogue Waves in Photorefractive Ferroelectrics, Phys. Rev. Lett. 115, (2015). [3] D.Pierangeli, F.Di Mei, G.Di Domenico, A.J.Agranat, C.Conti, and E.DelRe, Evidence of turbulent transitions in optical wave propagation, Phys. Rev. Lett. 117, (2016). [4] D.Pierangeli, G.Musarra, F.Di Mei, G.Di Domenico, A.J.Agranat, C.Conti, and E.DelRe, Control of optical extreme events through spatial incoherence, submitted, (2016). [5] D.Pierangeli, M.Flammini, F.Di Mei, J.Parravicini, C.E.M.de Oliveira, A.J.Agranat, and E.DelRe, Continuous Solitons in a Lattice Nonlinearity, Phys. Rev. Lett. 114, (2015). [6] F.Di Mei, P.Caramazza, D.Pierangeli, G.Di Domenico, H.Ilan, A.J.Agranat, P.Di Porto, and E.DelRe, Intrinsic negative mass from nonlinearity, Phys. Rev. Lett. 114, (2015). [7] D.Pierangeli, F.Di Mei, J.Parravicini, GB.Parravicini, A.J.Agranat, C.Conti and E.DelRe, Observation of an intrinsic nonlinearity in the electro-optic response of relaxors ferroelectrics, Opt. Mat. Express 4, 1487 (2014) [8] D.Pierangeli, J.Parravicini, F.Di Mei, GB.Parravicini, A.J.Agranat, and E.DelRe, Photorefractive light needles in glassy nanodisordered KNTN, Opt. Lett. 39, 1657 (2014). [9] F.Di Mei, D.Pierangeli, J.Parravicini, C.Conti, A.J.Agranat, and E.DelRe, Observation of diffraction cancellation for nonparaxial beams in the scale-free-optics regime, Phys. Rev. A 92, (2015). [10] F.Di Mei, J.Parravicini, D.Pierangeli, C.Conti, A.J.Agranat and E.DelRe, Anti-diffracting beams through the diffusive optical nonlinearity, Opt. Express 22, (2014). [11] J.Parravicini, D.Pierangeli, F.Di Mei, GB.Parravicini, C.Conti, and E.DelRe, Aging solitons in photorefractive dipolar glasses, Opt. Express 21, (2013). [12] J.Parravicini, R.Martinez Lorente, F.Di Mei, D.Pierangeli, A.J.Agranat, and E.DelRe, Volume integrated phase modulator based on funnel waveguides for miniaturized optical circuits, Opt. Lett. 40, 1386 (2013). 20

Lasers and Electro-optics

Lasers and Electro-optics Lasers and Electro-optics Second Edition CHRISTOPHER C. DAVIS University of Maryland III ^0 CAMBRIDGE UNIVERSITY PRESS Preface to the Second Edition page xv 1 Electromagnetic waves, light, and lasers 1

More information

Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems

Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems Detlef Kip, (1,2) Marin Soljacic, (1,3) Mordechai Segev, (1,4) Evgenia Eugenieva, (5) and Demetrios

More information

Solitons. Nonlinear pulses and beams

Solitons. Nonlinear pulses and beams Solitons Nonlinear pulses and beams Nail N. Akhmediev and Adrian Ankiewicz Optical Sciences Centre The Australian National University Canberra Australia m CHAPMAN & HALL London Weinheim New York Tokyo

More information

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z Liquid Crystals Second Edition IAM-CHOON 1(1100.,4 z 'i; BICENTCNNIAL 1 8 0 7 WILEY 2007 DICENTENNIAL n z z r WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface xiii Chapter 1.

More information

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. Preface p. xiii Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. 4 Dual-Beam Holographic Technique p. 5

More information

Part 1: Fano resonances Part 2: Airy beams Part 3: Parity-time symmetric systems

Part 1: Fano resonances Part 2: Airy beams Part 3: Parity-time symmetric systems Lecture 3 Part 1: Fano resonances Part 2: Airy beams Part 3: Parity-time symmetric systems Yuri S. Kivshar Nonlinear Physics Centre, Australian National University, Canberra, Australia http://wwwrsphysse.anu.edu.au/nonlinear/

More information

Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems

Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems Detlef Kip, (1,2) Marin Soljacic, (1,3) Mordechai Segev, (1,4) Evgenia Eugenieva, (5) and Demetrios

More information

arxiv: v1 [physics.optics] 4 Nov 2015

arxiv: v1 [physics.optics] 4 Nov 2015 Evidence of the universal dynamics of rogue waves arxiv:.9v [physics.optics] Nov D. Pierangeli, F. Di Mei,, C. Conti,, and E. DelRe Dipartimento di Fisica, Università di Roma La Sapienza, 8 Rome, Italy

More information

Soliton trains in photonic lattices

Soliton trains in photonic lattices Soliton trains in photonic lattices Yaroslav V. Kartashov, Victor A. Vysloukh, Lluis Torner ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica

More information

Optics, Optoelectronics and Photonics

Optics, Optoelectronics and Photonics Optics, Optoelectronics and Photonics Engineering Principles and Applications Alan Billings Emeritus Professor, University of Western Australia New York London Toronto Sydney Tokyo Singapore v Contents

More information

A short tutorial on optical rogue waves

A short tutorial on optical rogue waves A short tutorial on optical rogue waves John M Dudley Institut FEMTO-ST CNRS-Université de Franche-Comté Besançon, France Experiments in collaboration with the group of Guy Millot Institut Carnot de Bourgogne

More information

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium with thickness L. Supplementary Figure Measurement of

More information

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii ate LIST OF TOPICS Preface xiii Units and Notation xv List of Symbols xvii BASIC LASER PHYSICS Chapter 1 An Introduction to Lasers 1.1 What Is a Laser? 2 1.2 Atomic Energy Levels and Spontaneous Emission

More information

Optical solitons and its applications

Optical solitons and its applications Physics 568 (Nonlinear optics) 04/30/007 Final report Optical solitons and its applications 04/30/007 1 1 Introduction to optical soliton. (temporal soliton) The optical pulses which propagate in the lossless

More information

Optics of complex micro structures

Optics of complex micro structures Optics of complex micro structures dielectric materials λ L disordered partially ordered ordered random multiple scattering liquid crystals quasi crystals (Fibonacci) photonic crystals Assembly of photonic

More information

Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor

Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor Petros Zerom, Matthew S. Bigelow and Robert W. Boyd The Institute of Optics, University of Rochester, Rochester, New York 14627 Now

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Doctor of Philosophy

Doctor of Philosophy FEMTOSECOND TIME-DOMAIN SPECTROSCOPY AND NONLINEAR OPTICAL PROPERTIES OF IRON-PNICTIDE SUPERCONDUCTORS AND NANOSYSTEMS A Thesis Submitted for the degree of Doctor of Philosophy IN THE FACULTY OF SCIENCE

More information

Control modulation instability in photorefractive crystals by the intensity ratio of background to signal fields

Control modulation instability in photorefractive crystals by the intensity ratio of background to signal fields Control modulation instability in photorefractive crystals by the intensity ratio of background to signal fields Chien-Chung Jeng, 1, Yonan Su, 2 Ray-Ching Hong, 2 and Ray-Kuang Lee 2 1 Department of Physics,

More information

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS L. Giannessi, S. Spampinati, ENEA C.R., Frascati, Italy P. Musumeci, INFN & Dipartimento di Fisica, Università di Roma La Sapienza, Roma, Italy Abstract

More information

Elements of Quantum Optics

Elements of Quantum Optics Pierre Meystre Murray Sargent III Elements of Quantum Optics Fourth Edition With 124 Figures fya Springer Contents 1 Classical Electromagnetic Fields 1 1.1 Maxwell's Equations in a Vacuum 2 1.2 Maxwell's

More information

A Guide to Experiments in Quantum Optics

A Guide to Experiments in Quantum Optics Hans-A. Bachor and Timothy C. Ralph A Guide to Experiments in Quantum Optics Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag CmbH Co. KGaA Contents Preface 1 Introduction 1.1 Historical

More information

Wave Turbulence and Condensation in an Optical Experiment

Wave Turbulence and Condensation in an Optical Experiment Wave Turbulence and Condensation in an Optical Experiment S. Residori, U. Bortolozzo Institut Non Linéaire de Nice, CNRS, France S. Nazarenko, J. Laurie Mathematics Institute, University of Warwick, UK

More information

Soliton Molecules. Fedor Mitschke Universität Rostock, Institut für Physik. Benasque, October

Soliton Molecules. Fedor Mitschke Universität Rostock, Institut für Physik. Benasque, October Soliton Soliton Molecules Molecules and and Optical Optical Rogue Rogue Waves Waves Benasque, October 2014 Fedor Mitschke Universität Rostock, Institut für Physik fedor.mitschke@uni-rostock.de Part II

More information

Optics, Light and Lasers

Optics, Light and Lasers Dieter Meschede Optics, Light and Lasers The Practical Approach to Modern Aspects of Photonics and Laser Physics Second, Revised and Enlarged Edition BICENTENNIAL.... n 4 '':- t' 1 8 0 7 $W1LEY 2007 tri

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

Interaction of an Intense Electromagnetic Pulse with a Plasma

Interaction of an Intense Electromagnetic Pulse with a Plasma Interaction of an Intense Electromagnetic Pulse with a Plasma S. Poornakala Thesis Supervisor Prof. P. K. Kaw Research collaborators Prof. A. Sen & Dr.Amita Das. v B Force is negligible Electrons are non-relativistic

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

Dancing Light: Counterpropagating Beams in Photorefractive Crystals

Dancing Light: Counterpropagating Beams in Photorefractive Crystals Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 5 Proceedings of the International School and Conference on Optics and Optical Materials, ISCOM07, Belgrade, Serbia, September 3 7, 2007 Dancing Light: Counterpropagating

More information

Modulation Instability and Pattern Formation in Spatially Incoherent Light Beams

Modulation Instability and Pattern Formation in Spatially Incoherent Light Beams Modulation Instability and Pattern Formation in Spatially Incoherent Light Beams Detlef Kip, (1,2) Marin Soljacic, (1,3) Mordechai Segev, (1,4) Evgenia Eugenieva, (5) and Demetrios N. Christodoulides (5)

More information

Nonlinear Optics and Gap Solitons in Periodic Photonic Structures

Nonlinear Optics and Gap Solitons in Periodic Photonic Structures Nonlinear Optics and Gap Solitons in Periodic Photonic Structures Yuri Kivshar Nonlinear Physics Centre Research School of Physical Sciences and Engineering Australian National University Perspectives

More information

Workshop on Coherent Phenomena in Disordered Optical Systems May Random Laser - Physics & Application

Workshop on Coherent Phenomena in Disordered Optical Systems May Random Laser - Physics & Application 2583-14 Workshop on Coherent Phenomena in Disordered Optical Systems 26-30 May 2014 Random Laser - Physics & Application Hui CAO Depts. of Applied Physics and Physics Yale University New Haven. U.S.A Random

More information

United Nations Educational, Scientific and Cultural Organization and International Atomic Energy Agency

United Nations Educational, Scientific and Cultural Organization and International Atomic Energy Agency Available at: http://publications.ictp.it IC /2010/046 United Nations Educational, Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL

More information

Nonlinear transmission of light through synthetic colloidal suspensions Zhigang Chen. San Francisco State Univ., California, USA & Nankai Univ.

Nonlinear transmission of light through synthetic colloidal suspensions Zhigang Chen. San Francisco State Univ., California, USA & Nankai Univ. Nonlinear transmission of light through synthetic colloidal suspensions Zhigang Chen San Francisco State Univ., California, USA & Nankai Univ. China What do we do with light? Spatial solitons & dynamics

More information

4 FEL Physics. Technical Synopsis

4 FEL Physics. Technical Synopsis 4 FEL Physics Technical Synopsis This chapter presents an introduction to the Free Electron Laser (FEL) physics and the general requirements on the electron beam parameters in order to support FEL lasing

More information

The Nonlinear Schrodinger Equation

The Nonlinear Schrodinger Equation Catherine Sulem Pierre-Louis Sulem The Nonlinear Schrodinger Equation Self-Focusing and Wave Collapse Springer Preface v I Basic Framework 1 1 The Physical Context 3 1.1 Weakly Nonlinear Dispersive Waves

More information

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Self-Phase Modulation in Optical Fiber Communications: Good or Bad? 1/100 Self-Phase Modulation in Optical Fiber Communications: Good or Bad? Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Historical Introduction

More information

Extreme value statistics and the Pareto distribution in silicon photonics

Extreme value statistics and the Pareto distribution in silicon photonics Extreme value statistics and the Pareto distribution in silicon photonics 1 Extreme value statistics and the Pareto distribution in silicon photonics D Borlaug, S Fathpour and B Jalali Department of Electrical

More information

Conference Non- linear optical and atomic systems: deterministic and stochastic aspects. January 21-25, 2013

Conference Non- linear optical and atomic systems: deterministic and stochastic aspects. January 21-25, 2013 January 21-25, 2013 An introduction to numerical methods for Schrödinger equations. Xavier ANTOINE (Institut Elie Cartan Nancy (IECN), Université de Lorraine) The aim of this course is to give an introduction

More information

Self-trapped optical beams: From solitons to vortices

Self-trapped optical beams: From solitons to vortices Self-trapped optical beams: From solitons to vortices Yuri S. Kivshar Nonlinear Physics Centre, Australian National University, Canberra, Australia http://wwwrsphysse.anu.edu.au/nonlinear/ Outline of today

More information

Surface Plasmon Amplification by Stimulated Emission of Radiation. By: Jonathan Massey-Allard Graham Zell Justin Lau

Surface Plasmon Amplification by Stimulated Emission of Radiation. By: Jonathan Massey-Allard Graham Zell Justin Lau Surface Plasmon Amplification by Stimulated Emission of Radiation By: Jonathan Massey-Allard Graham Zell Justin Lau Surface Plasmons (SPs) Quanta of electron oscillations in a plasma. o Electron gas in

More information

David Snoke Department of Physics and Astronomy, University of Pittsburgh

David Snoke Department of Physics and Astronomy, University of Pittsburgh The 6 th International Conference on Spontaneous Coherence in Excitonic Systems Closing Remarks David Snoke Department of Physics and Astronomy, University of Pittsburgh ICSCE6, Stanford University, USA

More information

Brillouin-zone spectroscopy of nonlinear photonic lattices

Brillouin-zone spectroscopy of nonlinear photonic lattices Brillouin-zone spectroscopy of nonlinear photonic lattices Guy Bartal, 1 Oren Cohen, 1 Hrvoje Buljan, 1,2 Jason W. Fleischer, 1,3 Ofer Manela, 1 Mordechai Segev 1 1Physics Department, Technion - Israel

More information

Channel Optical Waveguides with Spatial Longitudinal Modulation of Their Parameters Induced in Photorefractive Lithium Niobate Samples

Channel Optical Waveguides with Spatial Longitudinal Modulation of Their Parameters Induced in Photorefractive Lithium Niobate Samples Russian Forum of Young Scientists Volume 2018 Conference Paper Channel Optical Waveguides with Spatial Longitudinal Modulation of Their Parameters Induced in Photorefractive Lithium Niobate Samples A D

More information

Phase Transitions in Relaxor Ferroelectrics

Phase Transitions in Relaxor Ferroelectrics Phase Transitions in Relaxor Ferroelectrics Matthew Delgado December 13, 2005 Abstract This paper covers the properties of relaxor ferroelectrics and considers the transition from the paraelectric state

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the

Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the soliton p. 7 The soliton concept in physics p. 11 Linear

More information

Time Domain Modeling of All-Optical Switch based on PT-Symmetric Bragg Grating

Time Domain Modeling of All-Optical Switch based on PT-Symmetric Bragg Grating Time Domain Modeling of All-Optical Switch based on PT-Symmetric Bragg Grating Sendy Phang 1, Ana Vukovic 1, Hadi Susanto 2, Trevor M. Benson 1, and Phillip Sewell 1 1 School of Electrical and Electronic

More information

Stability and instability of solitons in inhomogeneous media

Stability and instability of solitons in inhomogeneous media Stability and instability of solitons in inhomogeneous media Yonatan Sivan, Tel Aviv University, Israel now at Purdue University, USA G. Fibich, Tel Aviv University, Israel M. Weinstein, Columbia University,

More information

Administrative details:

Administrative details: Administrative details: Anything from your side? www.photonics.ethz.ch 1 Where do we stand? Optical imaging: Focusing by a lens Angular spectrum Paraxial approximation Gaussian beams Method of stationary

More information

How can x-ray intensity fluctuation spectroscopy push the frontiers of Materials Science. Mark Sutton McGill University

How can x-ray intensity fluctuation spectroscopy push the frontiers of Materials Science. Mark Sutton McGill University How can x-ray intensity fluctuation spectroscopy push the frontiers of Materials Science Mark Sutton McGill University Coherent diffraction (001) Cu 3 Au peak Sutton et al., The Observation of Speckle

More information

Self-Phase-Modulation of Optical Pulses From Filaments to Solitons to Frequency Combs

Self-Phase-Modulation of Optical Pulses From Filaments to Solitons to Frequency Combs Self-Phase-Modulation of Optical Pulses From Filaments to Solitons to Frequency Combs P. L. Kelley Optical Society of America Washington, DC and T. K. Gustafson EECS University of California Berkeley,

More information

Structural dynamics of PZT thin films at the nanoscale

Structural dynamics of PZT thin films at the nanoscale Mater. Res. Soc. Symp. Proc. Vol. 902E 2006 Materials Research Society 0902-T06-09.1 Structural dynamics of PZT thin films at the nanoscale Alexei Grigoriev 1, Dal-Hyun Do 1, Dong Min Kim 1, Chang-Beom

More information

High-Speed Quadratic Electrooptic Nonlinearity in dc-biased InP

High-Speed Quadratic Electrooptic Nonlinearity in dc-biased InP Vol. 107 (2005) ACTA PHYSICA POLONICA A No. 2 Proceedings of the 12th International Symposium UFPS, Vilnius, Lithuania 2004 High-Speed Quadratic Electrooptic Nonlinearity in dc-biased InP L. Subačius a,,

More information

Effect of nonlinearity on wave scattering and localization. Yuri S. Kivshar

Effect of nonlinearity on wave scattering and localization. Yuri S. Kivshar Effect of nonlinearity on wave scattering and localization Yuri S. Kivshar Nonlinear Physics Centre, Australian National University, Canberra, Australia St. Petersburg University of Information Technologies,

More information

Gratings in Electrooptic Polymer Devices

Gratings in Electrooptic Polymer Devices Gratings in Electrooptic Polymer Devices Venkata N.P.Sivashankar 1, Edward M. McKenna 2 and Alan R.Mickelson 3 Department of Electrical and Computer Engineering, University of Colorado at Boulder, Boulder,

More information

Nondifractive propagation of light in photonic crystals

Nondifractive propagation of light in photonic crystals Nondifractive propagation of light in photonic crystals Kestutis Staliunas (1) and Ramon Herrero () (1) ICREA, Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11,

More information

PRINCIPLES OF PHYSICAL OPTICS

PRINCIPLES OF PHYSICAL OPTICS PRINCIPLES OF PHYSICAL OPTICS C. A. Bennett University of North Carolina At Asheville WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Preface 1 The Physics of Waves 1 1.1 Introduction

More information

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses 2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass Photonic Glass Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses Takumi FUJIWARA Tohoku University Department

More information

QUANTUM- CLASSICAL ANALOGIES

QUANTUM- CLASSICAL ANALOGIES D. Dragoman M. Dragoman QUANTUM- CLASSICAL ANALOGIES With 78 Figures ^Ü Springer 1 Introduction 1 2 Analogies Between Ballistic Electrons and Electromagnetic Waves 9 2.1 Analog Parameters for Ballistic

More information

Nonlinear Optics. Second Editio n. Robert W. Boyd

Nonlinear Optics. Second Editio n. Robert W. Boyd Nonlinear Optics Second Editio n Robert W. Boyd Preface to the Second Edition Preface to the First Edition xiii xv 1. The Nonlinear Optical Susceptibility 1 1.1. Introduction to Nonlinear Optics 1 1.2.

More information

Partially Coherent Waves in Nonlinear Periodic Lattices

Partially Coherent Waves in Nonlinear Periodic Lattices Partially Coherent Waves in Nonlinear Periodic Lattices By H. Buljan, G. Bartal, O. Cohen, T. Schwartz, O. Manela, T. Carmon, M. Segev, J. W. Fleischer, and D. N. Christodoulides We study the propagation

More information

Advanced techniques Local probes, SNOM

Advanced techniques Local probes, SNOM Advanced techniques Local probes, SNOM Principle Probe the near field electromagnetic field with a local probe near field probe propagating field evanescent Advanced techniques Local probes, SNOM Principle

More information

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308)

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308) Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308) (invited) TBC Session 3: Metamaterials Theory (16:45 17:00, Huxley LT308) Light trapping states in media with longitudinal electric waves D McArthur,

More information

Generation of supercontinuum light in photonic crystal bers

Generation of supercontinuum light in photonic crystal bers Generation of supercontinuum light in photonic crystal bers Koji Masuda Nonlinear Optics, Fall 2008 Abstract. I summarize the recent studies on the supercontinuum generation (SC) in photonic crystal fibers

More information

Multi-cycle THz pulse generation in poled lithium niobate crystals

Multi-cycle THz pulse generation in poled lithium niobate crystals Laser Focus World April 2005 issue (pp. 67-72). Multi-cycle THz pulse generation in poled lithium niobate crystals Yun-Shik Lee and Theodore B. Norris Yun-Shik Lee is an assistant professor of physics

More information

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics Last Lecture Overview and Introduction 1. Basic optics and spectroscopy. Lasers 3. Ultrafast lasers and nonlinear optics 4. Time-resolved spectroscopy techniques Jigang Wang, Feb, 009 Today 1. Spectroscopy

More information

Optical Self-Organization in Semiconductor Lasers Spatio-temporal Dynamics for All-Optical Processing

Optical Self-Organization in Semiconductor Lasers Spatio-temporal Dynamics for All-Optical Processing Optical Self-Organization in Semiconductor Lasers Spatio-temporal Dynamics for All-Optical Processing Self-Organization for all-optical processing What is at stake? Cavity solitons have a double concern

More information

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida Optical and Photonic Glasses : Femtosecond Laser Irradiation and Acoustooptic Effects Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Femto second

More information

plasma optics Amplification of light pulses: non-ionised media

plasma optics Amplification of light pulses: non-ionised media Amplification of light pulses: non-ionised media since invention of laser: constant push towards increasing focused intensity of the light pulses Chirped pulse amplification D. Strickland, G. Mourou, Optics

More information

Semiclassical formulation

Semiclassical formulation The story so far: Transport coefficients relate current densities and electric fields (currents and voltages). Can define differential transport coefficients + mobility. Drude picture: treat electrons

More information

Design of Uniform Fiber Bragg grating using Transfer matrix method

Design of Uniform Fiber Bragg grating using Transfer matrix method International Journal of Computational Engineering Research Vol, 3 Issue, 5 Design of Uniform Fiber Bragg grating using Transfer matrix method Deba Kumar Mahanta Department of Electrical Engineering, Assam

More information

The Electromagnetic Properties of Materials

The Electromagnetic Properties of Materials The Electromagnetic Properties of Materials Electrical conduction Metals Semiconductors Insulators (dielectrics) Superconductors Magnetic materials Ferromagnetic materials Others Photonic Materials (optical)

More information

Stelios Tzortzakis. Science Program, Texas A&M University at Qatar Institute of Electronic Structure and Laser, FORTH, & University of Crete, Greece

Stelios Tzortzakis. Science Program, Texas A&M University at Qatar Institute of Electronic Structure and Laser, FORTH, & University of Crete, Greece University of Crete Stelios Tzortzakis Science Program, Texas A&M University at Qatar Institute of Electronic Structure and Laser, FORTH, & University of Crete, Greece Introduction o o THz science - Motivation

More information

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland Chapter 4b: χ (2) -nonlinearities with ultrashort pulses.

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland  Chapter 4b: χ (2) -nonlinearities with ultrashort pulses. Ultrafast Laser Physics Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 4b: χ (2) -nonlinearities with ultrashort pulses Ultrafast Laser Physics ETH Zurich Contents Second

More information

The Initial Process of Photoinduced Phase Transition in an Organic Electron-Lattice Correlated System using 10-fs Pulse

The Initial Process of Photoinduced Phase Transition in an Organic Electron-Lattice Correlated System using 10-fs Pulse The Initial Process of Photoinduced Phase Transition in an Organic Electron-Lattice Correlated System using 1-fs Pulse S. Koshihara, K. Onda, Y. Matsubara, T. Ishikawa, Y. Okimoto, T. Hiramatsu, G. Saito,

More information

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures Intensity / a.u. Supplementary figures 110 MAPbI 3 1:1 MaPbI 3-x Cl x 3:1 220 330 0 10 15 20 25 30 35 40 45 2 theta / deg Supplementary Fig. 1 X-ray Diffraction (XRD) patterns of MAPbI3 and MAPbI 3-x Cl

More information

Diode Lasers and Photonic Integrated Circuits

Diode Lasers and Photonic Integrated Circuits Diode Lasers and Photonic Integrated Circuits L. A. COLDREN S. W. CORZINE University of California Santa Barbara, California A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information I. Schematic representation of the zero- n superlattices Schematic representation of a superlattice with 3 superperiods is shown in Fig. S1. The superlattice

More information

Kerr effect in Sr 2 RuO 4 and other unconventional superconductors

Kerr effect in Sr 2 RuO 4 and other unconventional superconductors Kerr effect in Sr 2 RuO 4 and other unconventional superconductors Students: Jing Xia Elizabeth Schemm Variety of samples: Yoshi Maeno (Kyoto University) - Sr 2 RuO 4 single crystals D. Bonn and R. Liang

More information

Photonics applications II. Ion-doped ChGs

Photonics applications II. Ion-doped ChGs Photonics applications II Ion-doped ChGs 1 ChG as a host for doping; pros and cons - Important - Condensed summary Low phonon energy; Enabling emission at longer wavelengths Reduced nonradiative multiphonon

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2013.97 Supplementary Information Far-field Imaging of Non-fluorescent Species with Sub-diffraction Resolution Pu Wang et al. 1. Theory of saturated transient absorption microscopy

More information

Ultra-High Spatial Resolution in Distributed Fibre Sensing

Ultra-High Spatial Resolution in Distributed Fibre Sensing Presentation of EPFL-Group for Fibre Optics: Ultra-High Spatial Resolution in Distributed Fibre Sensing Prof. Luc THEVENAZ & co-workers 2 Postdoc, 4 PhD students, 3 visiting students 1/5 Adm. Assistant

More information

Imaging Self-Organized Domains at the Micron Scale in Antiferromagnetic Elemental Cr Using Magnetic X-ray Microscopy

Imaging Self-Organized Domains at the Micron Scale in Antiferromagnetic Elemental Cr Using Magnetic X-ray Microscopy Mat. Res. Soc. Symp. Proc. Vol. 690 2002 Materials Research Society Imaging Self-Organized Domains at the Micron Scale in Antiferromagnetic Elemental Cr Using Magnetic X-ray Microscopy P. G. Evans, 1 E.

More information

Observation of discrete quadratic surface solitons

Observation of discrete quadratic surface solitons Observation of discrete quadratic surface solitons Georgios A. Siviloglou, Konstantinos G. Makris, Robert Iwanow, Roland Schiek, Demetrios N. Christodoulides and George I. Stegeman College of Optics and

More information

Cavity QED with quantum dots in microcavities

Cavity QED with quantum dots in microcavities Cavity QED with quantum dots in microcavities Martin van Exter, Morten Bakker, Thomas Ruytenberg, Wolfgang Löffler, Dirk Bouwmeester (Leiden) Ajit Barve, Larry Coldren (UCSB) Motivation and Applications

More information

Nonlinear Electrodynamics and Optics of Graphene

Nonlinear Electrodynamics and Optics of Graphene Nonlinear Electrodynamics and Optics of Graphene S. A. Mikhailov and N. A. Savostianova University of Augsburg, Institute of Physics, Universitätsstr. 1, 86159 Augsburg, Germany E-mail: sergey.mikhailov@physik.uni-augsburg.de

More information

Nonlinear spatial beam dynamics in optical NLS systems

Nonlinear spatial beam dynamics in optical NLS systems Nonlinear spatial beam dynamics in optical NLS systems Zhigang Chen San Francisco State University, USA Nankai University, China Introduction: What do we do with light? Spatial solitons & dynamics Photonic

More information

Observation of two-dimensional Anderson localization of light in disordered optical fibers with nonlocal nonlinearity

Observation of two-dimensional Anderson localization of light in disordered optical fibers with nonlocal nonlinearity Observation of two-dimensional Anderson localization of light in disordered optical fibers with nonlocal nonlinearity Claudio Conti Institute for Complex Systems National Research Council ISC-CNR Rome

More information

Integrated devices for quantum information with polarization encoded qubits

Integrated devices for quantum information with polarization encoded qubits Integrated devices for quantum information with polarization encoded qubits Dottorato in Fisica XXV ciclo Linda Sansoni Supervisors: Prof. Paolo Mataloni, Dr. Fabio Sciarrino http:\\quantumoptics.phys.uniroma1.it

More information

Optical Beam Instability and Coherent Spatial Soliton Experiments

Optical Beam Instability and Coherent Spatial Soliton Experiments Optical Beam Instability and Coherent Spatial Soliton Experiments George Stegeman, School of Optics/CREOL, University of Central Florida 1D Kerr Systems Homogeneous Waveguides Discrete Kerr Arrays Joachim

More information

Schemes to generate entangled photon pairs via spontaneous parametric down conversion

Schemes to generate entangled photon pairs via spontaneous parametric down conversion Schemes to generate entangled photon pairs via spontaneous parametric down conversion Atsushi Yabushita Department of Electrophysics National Chiao-Tung University? Outline Introduction Optical parametric

More information

Supplementary Figure 1: SAW transducer equivalent circuit

Supplementary Figure 1: SAW transducer equivalent circuit Supplementary Figure : SAW transducer equivalent circuit Supplementary Figure : Radiation conductance and susceptance of.6um IDT, experiment & calculation Supplementary Figure 3: Calculated z-displacement

More information

Necklace solitary waves on bounded domains

Necklace solitary waves on bounded domains Necklace solitary waves on bounded domains with Dima Shpigelman Gadi Fibich Tel Aviv University 1 Physical setup r=(x,y) laser beam z z=0 Kerr medium Intense laser beam that propagates in a transparent

More information

Light bullets and dynamic pattern formation in nonlinear dissipative systems

Light bullets and dynamic pattern formation in nonlinear dissipative systems Light bullets and dynamic pattern formation in nonlinear dissipative systems Philippe Grelu Laboratoire de Physique de l Université de Bourgogne, Unité Mixte de Recherche 5027 du Centre National de Recherche

More information

Optimisation using measured Green s function for improving spatial coherence in acoustic measurements

Optimisation using measured Green s function for improving spatial coherence in acoustic measurements Ultrasonics 42 (2004) 205 212 www.elsevier.com/locate/ultras Optimisation using measured Green s function for improving spatial coherence in acoustic measurements Matthew Clark *, Steve D. Sharples, Mike

More information

A tutorial on meta-materials and THz technology

A tutorial on meta-materials and THz technology p.1/49 A tutorial on meta-materials and THz technology Thomas Feurer thomas.feurer@iap.unibe.ch Institute of Applied Physics Sidlerstr. 5, 3012 Bern Switzerland p.2/49 Outline Meta-materials Super-lenses

More information

Temperature Tuning Characteristics of Periodically Poled Lithium Niobate for Second Harmonic Generation at 490 nm

Temperature Tuning Characteristics of Periodically Poled Lithium Niobate for Second Harmonic Generation at 490 nm Temperature Tuning Characteristics of Periodically Poled Lithium Niobate for Second Harmonic Generation at 490 nm Movva Sai Krishna *a, U.S. Tripathi a, Ashok Kaul a, K. Thyagarajan b, M.R. Shenoy b a

More information

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford Laser Physics SIMON HOOKER and COLIN WEBB Department of Physics, University of Oxford OXFORD UNIVERSITY PRESS Contents 1 Introduction 1.1 The laser 1.2 Electromagnetic radiation in a closed cavity 1.2.1

More information