Observation of two-dimensional Anderson localization of light in disordered optical fibers with nonlocal nonlinearity

Size: px
Start display at page:

Download "Observation of two-dimensional Anderson localization of light in disordered optical fibers with nonlocal nonlinearity"

Transcription

1 Observation of two-dimensional Anderson localization of light in disordered optical fibers with nonlocal nonlinearity Claudio Conti Institute for Complex Systems National Research Council ISC-CNR Rome (IT)

2 ISC CNR Dep Physics Sapienza (IT) Marco Leonetti Viola Folli University of Wisconsin Milwuakee Salman Karbasi & Arash Mafi

3 Outline Introduction Experiments Disordered fiber Multi-color disorder localized states Power dependent localization length Evidence of a nonlocal effect Theory

4 Above a certain amount of disorder no transport is possible Anderson localization The reason: localized states due to disorder

5 Literature Observation of Anderson localization in Nonlinear Optics Y. Lahini et al. PRL 100, (2008) T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007) Bose-Einstein condensation J. Billy et al. Nature 453, 891 (2008) G. Roati et al. Nature 453, 895 (2008) S. S. Kondov, Science 66, 334 (2011) Linear disordered media (optics) M. Storzer, P. Gross, C. M. Aegerter, G. Maret, PRL 96, (2006) A. A. Chabanov, M. Stoytchev, A. Z. Genack, Nature 404, 850 (2000) T. Sperling at al, Nature Photonics 7, 48 (2013)

6 1D Bosons (BEC) Billy et al. & Roati et al. Nature 2008 Localization length versus strenght of disorder

7 TRANSVERSE Anderson Loc T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007) INDEX CONTRAST PROPAGATION 1cm

8 The simplest model

9 Linearly localized states Gaussian potential Negative eigenvalues Decays as Link between localization length and eigenvalue See book Lifshitz, Gredskul, Pastur Introduction to theory of disordered systems Also CC, PRA 86, (2012) E=-5 V0=4

10 The statistical distribution of eigenvalues There is a tail of negative energies corresponding to exponentially highly localized states Distribution of negative eigenvalues V0=2 The localization length decreases as the Inverse square root of the energy, hence the localization length decreases with the amount of disorder (as observed experimentally) Energy E

11 Including nonlinearity

12 Nonlinearity : theory Effect of nonlinearity and disorder Scattering theory (Gredeskul, Kivshar & others) Chaos (Flach & others) Perturbation theory on Lyapunov exponents (Fishman & others) Spin glass theory (Leuzzi, Conti & others) Self consistent approaches (Tureci & others) Scaling laws (Skipetrov & others) FDTD (Sebbah, Conti & others) Many others... COMPARISON WITH EXPERIMENTAL DATA IS LIMITED The simplest thing to do: Measure the localization length Versus nonlinearity

13 Question: Disorder induced states are un coupled (absence of transport, Anderson regime) What happens in the presence of a long range interaction? Hypothesis: localized states interact We want an experimental evidence!

14 Transverse localization in 2D fibers Our experiments on transverse localization in two dimensional fibers

15 Mixture of PS and PPMA Index contrast 0.1 Propagation >7 cm pieces of PMMA and pieces of PS randomly mixed and fused together n(ps)=1.59 n(pmma)=1.49

16 Calculated mode Observed mode 250 microns

17 Multicolor transverse Anderson-localization - we excite several localizations at different wavelengths simultaneously

18 FIBER TYPICAL OUTPUT SETUP We Wemeasure measurethe the localization localization profile profileatatany any spectral peak spectral peak

19 Output Spectrum Input spectrum At Atany anyspatial spatiallocation location there are several there are several localized localizedmodes modesatat different differentfrequencies frequencies 5mm

20 Nonlinear regime - at any wavelength we study the localization profile Vs power

21 5 mm Mode profile at 820nm Mode at 820nm Mode at 835nm We Weobserve observe focalization focalizationofofany anyofof the thelocalized localizedmode mode when incresing when incresingpower power

22 2D SELF-FOCUSING of Anderson localizations Experiments Localization length Versus Intensity (50 modes) Numerically calculated bound states of the 2D-NLS with Gaussian disorder Theory from the variational approach Folli, Conti, OL 2011 Conti, PRA, 2012

23 Action at a distance between Anderson localizations in nonlinear nonlocal media - thermal nonlinearity is nonlocal

24 MODIFIED SETUP

25 Probe Anderson mode (532nm) 20 microns Pump Anderson Mode (800nm)

26 The size of the probe changes with the pump power! Probe Anderson mode (532nm) PUMP PROBE 25 microns DISPLACEMENT LOCALIZATION

27 The migration of the multicolor Anderson localization A form of transport in the Anderson regime

28 Density map of localizations We count the states in any spatial location 300 microns y x Here localizations FIBER OUTPUT 25 microns

29 Density map of locs Vs power y x 25 microns

30

31 Leonetti et al, Phys. Rev. Lett., 112: (2014)

32 THEORY

33 (transverse) Anderson localization in nonlocal media Link between localization length and power

34 Comparison with experiments At low power : linear trend

35 Modelling the action at a distance Using collective coordinates in the highly nonlocal approximation

36 Equation for the positions Ehrenfest theorem (CC, PRE 72, ) The position of the localization p varies because of nonlinearity The localizations are incoherent Pairwise interaction potential Leonetti et al, Phys. Rev. Lett., 112: (2014)

37 Comparison with experiments Pump and probe Anderson states We consider two states Leonetti et al, Phys. Rev. Lett., 112: (2014)

38 Conclusions Nonlinearity and nonlocality in 2D disorder fibers Action at a distance Transport in the Anderson regime Incoherent Anderson states Variational theoretical approaches THANKS! Leonetti et al, Phys. Rev. Lett., 112: (2014) ; Nature Communications 5, 5534 (2014)

39 Calculated vectorial modes Index distribution Many modes at any spatial location

40 Which the origin of the observed nonlinear focusing? - it's thermal - but thermal is defocusing!

41 Time dynamics of the focusing effect Timescale is compatible with thermal effects (PMMA and PS absorb the infrared light)

42 Finite Element Modelling of temperature profile in the fiber

43 FEM SIMULATION OF THE THERMAL DIFFUSION EQUATION PMMA PS

44 TEMPERATURE IS DIFFERENT IN THE TWO MATERIALS!!!!!! (Temperature is localized)

45 Our interpretation Due to the different thermal properties, temperature increases in the PMMA more than in PS This increases the index contrast and hence the strength of disorder and reduces the localization length SO WE HAVE: A FOCUSING ACTION DUE A DEFOCUSING THERMAL NONLINEARITY!!!! (because of disorder...)

46 Comparison with ordered fibers PPMA PS PS+PMMA input Here Wavelength 1064nm

47 The effect of nonlinearity on the 2D Anderson localization profile T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007) LOCAL NONLINEARITY

Nonlinear Gamow Vectors in nonlocal optical propagation

Nonlinear Gamow Vectors in nonlocal optical propagation VANGUARD Grant 664782 Nonlinear Gamow Vectors in nonlocal optical propagation M.C. Braidotti 1,2, S. Gentilini 1,2, G. Marcucci 3, E. Del Re 1,3 and C. Conti 1,3 1 Institute for Complex Systems (ISC-CNR),

More information

COLD ATOMS AND OPTICAL DISORDER : A NEW TOOL TO STUDY QUANTUM TRANSPORT P. BOUYER

COLD ATOMS AND OPTICAL DISORDER : A NEW TOOL TO STUDY QUANTUM TRANSPORT P. BOUYER COLD ATOMS AND OPTICAL DISORDER : A NEW TOOL TO STUDY QUANTUM TRANSPORT P. BOUYER Laboratoire Charles Fabry de l Institut d Optique Palaiseau, France web site : www.atomoptic.fr TITRE S. Bernon (Talk and

More information

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization. 23 August - 3 September, 2010

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization. 23 August - 3 September, 2010 16-5 Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization 3 August - 3 September, 010 INTRODUCTORY Anderson Localization - Introduction Boris ALTSHULER Columbia

More information

Today: 5 July 2008 ٢

Today: 5 July 2008 ٢ Anderson localization M. Reza Rahimi Tabar IPM 5 July 2008 ١ Today: 5 July 2008 ٢ Short History of Anderson Localization ٣ Publication 1) F. Shahbazi, etal. Phys. Rev. Lett. 94, 165505 (2005) 2) A. Esmailpour,

More information

Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems

Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems Detlef Kip, (1,2) Marin Soljacic, (1,3) Mordechai Segev, (1,4) Evgenia Eugenieva, (5) and Demetrios

More information

Light Localization Characteristics in a Random Configuration of Dielectric Cylindrical Columns

Light Localization Characteristics in a Random Configuration of Dielectric Cylindrical Columns Light Localization Characteristics in a Random Configuration of Dielectric Cylindrical Columns Yuta Inose, 1, 2 Masaru Sakai, 3 Kazuhiro Ema, 1, 2, 4 Akihiko Kikuchi, 1, 2, 4 Katsumi Kishino, 1, 2, 4 1,

More information

Nonlinear Optical Waves in Disordered Ferroelectrics

Nonlinear Optical Waves in Disordered Ferroelectrics PhD candidate: Nonlinear Optical Waves in Disordered Ferroelectrics Davide Pierangeli davide.pierangeli@roma1.infn.it Supervisor: Prof. Eugenio DelRe Physics Department, Unversity of Rome La Sapienza,

More information

Controlling Anderson localization in disordered photonic crystal waveguides

Controlling Anderson localization in disordered photonic crystal waveguides Controlling Anderson localization in disordered photonic crystal waveguides P. D. García, S. Smolka, S. Stobbe, and P. Lodahl DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark,

More information

arxiv: v1 [physics.class-ph] 17 Sep 2013

arxiv: v1 [physics.class-ph] 17 Sep 2013 Anderson Localization Phenomenon in One-dimensional Elastic Systems R. A. Méndez-Sánchez, L. Gutiérrez, and A. Morales arxiv:1309.4395v1 [physics.class-ph] 17 Sep 2013 Instituto de Ciencias Físicas, Universidad

More information

Soliton trains in photonic lattices

Soliton trains in photonic lattices Soliton trains in photonic lattices Yaroslav V. Kartashov, Victor A. Vysloukh, Lluis Torner ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica

More information

Direct observation of Anderson localization of matter-waves in a controlled disorder

Direct observation of Anderson localization of matter-waves in a controlled disorder 1 Direct observation of Anderson localization of matter-waves in a controlled disorder Juliette Billy 1, Vincent Josse 1, Zhanchun Zuo 1, Alain Bernard 1, Ben Hambrecht 1, Pierre Lugan 1, David Clément

More information

One-dimensional Anderson localization in certain correlated random potentials

One-dimensional Anderson localization in certain correlated random potentials One-dimensional Anderson localization in certain correlated random potentials P. Lugan, A. Aspect, and L. Sanchez-Palencia Laboratoire Charles Fabry de l Institut d Optique, CNRS and Univ. Paris-Sud, Campus

More information

Nonlinear Optics and Gap Solitons in Periodic Photonic Structures

Nonlinear Optics and Gap Solitons in Periodic Photonic Structures Nonlinear Optics and Gap Solitons in Periodic Photonic Structures Yuri Kivshar Nonlinear Physics Centre Research School of Physical Sciences and Engineering Australian National University Perspectives

More information

The Higgs particle in condensed matter

The Higgs particle in condensed matter The Higgs particle in condensed matter Assa Auerbach, Technion N. H. Lindner and A. A, Phys. Rev. B 81, 054512 (2010) D. Podolsky, A. A, and D. P. Arovas, Phys. Rev. B 84, 174522 (2011)S. Gazit, D. Podolsky,

More information

Informal Workshop on Cold atoms and Quantum Simulations. Monday 3 and Tuesday 4 December Program. Monday, December 3

Informal Workshop on Cold atoms and Quantum Simulations. Monday 3 and Tuesday 4 December Program. Monday, December 3 Informal Workshop on Cold atoms and Quantum Simulations Monday 3 and Tuesday 4 December 2012 Venue: Department of Theoretical Physics and History of Science UPV/EHU, Seminar room Program Monday, December

More information

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany) Phase Diagram of interacting Bose gases in one-dimensional disordered optical lattices R. Citro In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L.

More information

Echo spectroscopy of Anderson localization

Echo spectroscopy of Anderson localization Source: arxiv:1406.6915v1 Echo spectroscopy of Anderson localization T. Micklitz 1, C. A. Müller 2,3, and A. Altland 4 1 Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, 22290-180, Rio de

More information

Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın

Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın Advisor: M. Özgür Oktel Co-Advisor: Özgür E. Müstecaplıoğlu Outline Superradiance and BEC Superradiance

More information

Nonlinear spatial beam dynamics in optical NLS systems

Nonlinear spatial beam dynamics in optical NLS systems Nonlinear spatial beam dynamics in optical NLS systems Zhigang Chen San Francisco State University, USA Nankai University, China Introduction: What do we do with light? Spatial solitons & dynamics Photonic

More information

Conference Non- linear optical and atomic systems: deterministic and stochastic aspects. January 21-25, 2013

Conference Non- linear optical and atomic systems: deterministic and stochastic aspects. January 21-25, 2013 January 21-25, 2013 An introduction to numerical methods for Schrödinger equations. Xavier ANTOINE (Institut Elie Cartan Nancy (IECN), Université de Lorraine) The aim of this course is to give an introduction

More information

Coherent backscattering in Fock space. ultracold bosonic atoms

Coherent backscattering in Fock space. ultracold bosonic atoms Coherent backscattering in the Fock space of ultracold bosonic atoms Peter Schlagheck 16.2.27 Phys. Rev. Lett. 112, 1443 (24); arxiv:161.435 Coworkers Thomas Engl (Auckland) Juan Diego Urbina (Regensburg)

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Spreading mechanism of wave packets in one dimensional disordered Klein-Gordon chains

Spreading mechanism of wave packets in one dimensional disordered Klein-Gordon chains Spreading mechanism of wave packets in one dimensional disordered Klein-Gordon chains Haris Skokos Max Planck Institute for the Physics of Complex Systems Dresden, Germany E-mail: hskokos@pks.mpg.de URL:

More information

Brillouin-zone spectroscopy of nonlinear photonic lattices

Brillouin-zone spectroscopy of nonlinear photonic lattices Brillouin-zone spectroscopy of nonlinear photonic lattices Guy Bartal, 1 Oren Cohen, 1 Hrvoje Buljan, 1,2 Jason W. Fleischer, 1,3 Ofer Manela, 1 Mordechai Segev 1 1Physics Department, Technion - Israel

More information

Polariton Condensation

Polariton Condensation Polariton Condensation Marzena Szymanska University of Warwick Windsor 2010 Collaborators Theory J. Keeling P. B. Littlewood F. M. Marchetti Funding from Macroscopic Quantum Coherence Macroscopic Quantum

More information

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Talk at Rutherford Appleton Lab, March 13, 2007 Peter Kopietz, Universität Frankfurt collaborators: Nils Hasselmann,

More information

Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems

Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems Detlef Kip, (1,2) Marin Soljacic, (1,3) Mordechai Segev, (1,4) Evgenia Eugenieva, (5) and Demetrios

More information

Mode delocalization in 1D photonic crystal lasers

Mode delocalization in 1D photonic crystal lasers Mode delocalization in 1D photonic crystal lasers Yeheng Wu 1, Kenneth D. Singer 1,2 *, Rolfe G. Petschek 1, Hyunmin Song 2, Eric Baer 2, and Anne Hiltner 2 1 Department of Physics, Case Western Reserve

More information

Dynamic properties of interacting bosons and magnons

Dynamic properties of interacting bosons and magnons Ultracold Quantum Gases beyond Equilibrium Natal, Brasil, September 27 October 1, 2010 Dynamic properties of interacting bosons and magnons Peter Kopietz, Universität Frankfurt collaboration: A. Kreisel,

More information

In Situ Imaging of Cold Atomic Gases

In Situ Imaging of Cold Atomic Gases In Situ Imaging of Cold Atomic Gases J. D. Crossno Abstract: In general, the complex atomic susceptibility, that dictates both the amplitude and phase modulation imparted by an atom on a probing monochromatic

More information

Effect of nonlinearity on wave scattering and localization. Yuri S. Kivshar

Effect of nonlinearity on wave scattering and localization. Yuri S. Kivshar Effect of nonlinearity on wave scattering and localization Yuri S. Kivshar Nonlinear Physics Centre, Australian National University, Canberra, Australia St. Petersburg University of Information Technologies,

More information

Chaos in disordered nonlinear lattices

Chaos in disordered nonlinear lattices Chaos in disordered nonlinear lattices Haris Skokos Physics Department, Aristotle University of Thessaloniki Thessaloniki, Greece E-mail: hskokos@auth.gr URL: http://users.auth.gr/hskokos/ Work in collaboration

More information

FAMILIES OF DIPOLE SOLITONS IN SELF-DEFOCUSING KERR MEDIA AND PARTIAL PARITY-TIME-SYMMETRIC OPTICAL POTENTIALS

FAMILIES OF DIPOLE SOLITONS IN SELF-DEFOCUSING KERR MEDIA AND PARTIAL PARITY-TIME-SYMMETRIC OPTICAL POTENTIALS FAMILIES OF DIPOLE SOLITONS IN SELF-DEFOCUSING KERR MEDIA AND PARTIAL PARITY-TIME-SYMMETRIC OPTICAL POTENTIALS HONG WANG 1,*, JING HUANG 1,2, XIAOPING REN 1, YUANGHANG WENG 1, DUMITRU MIHALACHE 3, YINGJI

More information

Stability of vortex solitons in a photorefractive optical lattice

Stability of vortex solitons in a photorefractive optical lattice Stability of vortex solitons in a photorefractive optical lattice Jianke Yang Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05401, USA E-mail: jyang@emba.uvm.edu New Journal

More information

Self-trapped leaky waves in lattices: discrete and Bragg. soleakons

Self-trapped leaky waves in lattices: discrete and Bragg. soleakons Self-trapped leaky waves in lattices: discrete and Bragg soleakons Maxim Kozlov, Ofer Kfir and Oren Cohen Solid state institute and physics department, Technion, Haifa, Israel 3000 We propose lattice soleakons:

More information

QUANTUM- CLASSICAL ANALOGIES

QUANTUM- CLASSICAL ANALOGIES D. Dragoman M. Dragoman QUANTUM- CLASSICAL ANALOGIES With 78 Figures ^Ü Springer 1 Introduction 1 2 Analogies Between Ballistic Electrons and Electromagnetic Waves 9 2.1 Analog Parameters for Ballistic

More information

Anderson localization of ultrasound in three dimensions

Anderson localization of ultrasound in three dimensions International School of Physics Enrico Fermi Course CLXXIII "Nano Optics and Atomics: Transport of Light and Matter Waves Varenna, June 23 rd to July 3 rd, 29 Anderson localization of ultrasound in three

More information

Self-trapped optical beams: From solitons to vortices

Self-trapped optical beams: From solitons to vortices Self-trapped optical beams: From solitons to vortices Yuri S. Kivshar Nonlinear Physics Centre, Australian National University, Canberra, Australia http://wwwrsphysse.anu.edu.au/nonlinear/ Outline of today

More information

Kicked rotor and Anderson localization with cold atoms

Kicked rotor and Anderson localization with cold atoms Kicked rotor and Anderson localization with cold atoms Dominique Delande Laboratoire Kastler-Brossel Ecole Normale Supérieure et Université Pierre et Marie Curie (Paris, European Union) Cargèse July 2014

More information

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK 161 CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK 7.1 SUMMARY OF THE PRESENT WORK Nonlinear optical materials are required in a wide range of important applications, such as optical

More information

Photon Pair Production using non-linear waveguides

Photon Pair Production using non-linear waveguides Photon Pair Production using non-linear waveguides Alexander Ling J. Chen, J. Fan, A. Pearlmann, A. Migdall Joint Quantum Institute NIST and University of Maryland, College Park Motivation Correlated photon-pairs

More information

Many-Body Anderson Localization in Disordered Bose Gases

Many-Body Anderson Localization in Disordered Bose Gases Many-Body Anderson Localization in Disordered Bose Gases Laurent Sanchez-Palencia Laboratoire Charles Fabry - UMR8501 Institut d'optique, CNRS, Univ. Paris-sud 11 2 av. Augustin Fresnel, Palaiseau, France

More information

Landau Theory of Fermi Liquids : Equilibrium Properties

Landau Theory of Fermi Liquids : Equilibrium Properties Quantum Liquids LECTURE I-II Landau Theory of Fermi Liquids : Phenomenology and Microscopic Foundations LECTURE III Superfluidity. Bogoliubov theory. Bose-Einstein condensation. LECTURE IV Luttinger Liquids.

More information

Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices. Marzena Szymanska

Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices. Marzena Szymanska Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices Marzena Szymanska Collaborators Theory F. M. Marchetti E. Cancellieri C. Tejedor D. Whittaker Experiment D. Sanvitto,

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

Transfer of BECs through Intrinsic Localized Modes (ILMs) in an Optical Lattice (OL)

Transfer of BECs through Intrinsic Localized Modes (ILMs) in an Optical Lattice (OL) Transfer of BECs through Intrinsic Localized Modes (ILMs) in an Optical Lattice (OL) David K. Campbell * Boston University Large Fluctuations meeting, Urbana May 17, 2011 * With Holger Hennig (Harvard)

More information

Recurrent scattering and memory effect at the Anderson transition

Recurrent scattering and memory effect at the Anderson transition Recurrent scattering and memory effect at the Anderson transition Alexandre Aubry Institut Langevin CNRS UMR 7587, ESPCI ParisTech Paris, France Collaborators: John Page, Laura Cobus (University of Manitoba,

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

Ultracold Bose gases in random potentials: elementary excitations and localization effects

Ultracold Bose gases in random potentials: elementary excitations and localization effects Ultracold Bose gases in random potentials: elementary excitations and localization effects Pierre Lugan PhD defense January 25th, 2010 Supervision: Philippe Bouyer & Laurent Sanchez-Palencia Groupe d Optique

More information

Erwin Schrödinger and his cat

Erwin Schrödinger and his cat Erwin Schrödinger and his cat How to relate discrete energy levels with Hamiltonian described in terms of continгous coordinate x and momentum p? Erwin Schrödinger (887-96) Acoustics: set of frequencies

More information

Disordered Ultracold Gases

Disordered Ultracold Gases Disordered Ultracold Gases 1. Ultracold Gases: basic physics 2. Methods: disorder 3. Localization and Related Measurements Brian DeMarco, University of Illinois bdemarco@illinois.edu Localization & Related

More information

Vortices and superfluidity

Vortices and superfluidity Vortices and superfluidity Vortices in Polariton quantum fluids We should observe a phase change by π and a density minimum at the core Michelson interferometry Forklike dislocation in interference pattern

More information

Stability and instability of solitons in inhomogeneous media

Stability and instability of solitons in inhomogeneous media Stability and instability of solitons in inhomogeneous media Yonatan Sivan, Tel Aviv University, Israel now at Purdue University, USA G. Fibich, Tel Aviv University, Israel M. Weinstein, Columbia University,

More information

arxiv: v1 [physics.optics] 22 Jan 2014

arxiv: v1 [physics.optics] 22 Jan 2014 epl draft Numerical study of Anderson localization of terahertz waves in disordered waveguides arxiv:4.66v [physics.optics] Jan 4 C. P. Lapointe, P. Zakharov, F. Enderli, T. Feurer, S. E. Skipetrov and

More information

Dark and gray spatial optical solitons in Kerr-type nonlocal media

Dark and gray spatial optical solitons in Kerr-type nonlocal media Dark and gray spatial optical solitons in Kerr-type nonlocal media Shigen Ouyang and Qi Guo Laboratory of Photonic Information Technology, South China Normal University, Guangzhou, 510631, P. R. China

More information

Statistical regimes of random laser fluctuations

Statistical regimes of random laser fluctuations Statistical regimes of random laser fluctuations Stefano Lepri Istituto dei Sistemi Complessi ISC-CNR Firenze S. Cavalieri, G.-L. Oppo, D.S. Wiersma Stefano Lepri (ISC-CNR) Random laser fluctuations 1

More information

Elements of Quantum Optics

Elements of Quantum Optics Pierre Meystre Murray Sargent III Elements of Quantum Optics Fourth Edition With 124 Figures fya Springer Contents 1 Classical Electromagnetic Fields 1 1.1 Maxwell's Equations in a Vacuum 2 1.2 Maxwell's

More information

Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the

Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the soliton p. 7 The soliton concept in physics p. 11 Linear

More information

arxiv: v2 [physics.optics] 26 Jan 2012

arxiv: v2 [physics.optics] 26 Jan 2012 Nonreciprocal Anderson Localization in Magneto-Optical Random Structures Konstantin Y. Bliokh, 1,2 Sergey A. Gredeskul, 3 Puvanesvari Rajan, 4 Ilya V. Shadrivov, 4 and Yuri S. Kivshar 4 1 Applied Optics

More information

Polarization and spatial coherence of electromagnetic waves in disordered media

Polarization and spatial coherence of electromagnetic waves in disordered media Polarization and spatial coherence of electromagnetic waves in disordered media Kevin Vynck Laboratoire Photonique, Numérique et Nanosciences (LP2N) UMR 5298, CNRS IOGS Univ. Bordeaux Institut d'optique

More information

WAVE INTERFERENCES IN RANDOM LASERS

WAVE INTERFERENCES IN RANDOM LASERS WAVE INTERFERENCES IN RANDOM LASERS Philippe Jacquod U of Arizona P. Stano and Ph. Jacquod, Nature Photonics (2013) What is a laser? Light Amplification by Stimulated Emission of Radiation Three main components

More information

arxiv: v1 [physics.optics] 10 May 2017

arxiv: v1 [physics.optics] 10 May 2017 What is the right theory for Anderson localization of light? Walter Schirmacher 1,,3, Behnam Abaie 4, Arash Mafi 4, Giancarlo Ruocco 1, & Marco Leonetti 1, 1 Center for Life Nano science @ Sapienza, Isituto

More information

Quantum Optical Coherence Tomography

Quantum Optical Coherence Tomography Quantum Optical Coherence Tomography Bahaa Saleh Alexander Sergienko Malvin Teich Quantum Imaging Lab Department of Electrical & Computer Engineering & Photonics Center QuickTime and a TIFF (Uncompressed)

More information

Solitons in Nonlinear Photonic Lattices

Solitons in Nonlinear Photonic Lattices Solitons in Nonlinear Photonic Lattices Moti Segev Physics Department, Technion Israel Institute of Technology Jason W. Fleischer (now @ Princeton) Oren Cohen (now @ Univ. of Colorado) Hrvoje Buljan (now

More information

Fluctuations in the aging dynamics of structural glasses

Fluctuations in the aging dynamics of structural glasses Fluctuations in the aging dynamics of structural glasses Horacio E. Castillo Collaborator: Azita Parsaeian Collaborators in earlier work: Claudio Chamon Leticia F. Cugliandolo José L. Iguain Malcolm P.

More information

Rogue events in complex linear and nonlinear photonic media

Rogue events in complex linear and nonlinear photonic media Rogue events in complex linear and nonlinear photonic media M. Mattheakis 1,2,3*, I. J. Pitsios 1,4,*, G. P. Tsironis 1,2,5, S. Tzortzakis 1,4,6 1. Institute of Electronic Structure and Laser, Foundation

More information

Chaotic behavior of disordered nonlinear systems

Chaotic behavior of disordered nonlinear systems Chaotic behavior of disordered nonlinear systems Haris Skokos Department of Mathematics and Applied Mathematics, University of Cape Town Cape Town, South Africa E-mail: haris.skokos@uct.ac.za URL: http://math_research.uct.ac.za/~hskokos/

More information

.O. Demokritov niversität Münster, Germany

.O. Demokritov niversität Münster, Germany Quantum Thermodynamics of Magnons.O. Demokritov niversität Münster, Germany Magnon Frequency Population BEC-condensates http://www.uni-muenster.de/physik/ap/demokritov/ k z k y Group of NonLinea Magnetic

More information

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

Stochastic nonlinear Schrödinger equations and modulation of solitary waves Stochastic nonlinear Schrödinger equations and modulation of solitary waves A. de Bouard CMAP, Ecole Polytechnique, France joint work with R. Fukuizumi (Sendai, Japan) Deterministic and stochastic front

More information

Optical manipulation of molecular ensembles in the gas phase

Optical manipulation of molecular ensembles in the gas phase Optical manipulation of molecular ensembles in the gas phase P.F. Barker a a Dept. of Physics and Astronomy, University College London London, WC1E 6BT, United Kingdom Abstract. A review of developments

More information

Administrative details:

Administrative details: Administrative details: Anything from your side? www.photonics.ethz.ch 1 Where do we stand? Optical imaging: Focusing by a lens Angular spectrum Paraxial approximation Gaussian beams Method of stationary

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Electromagnetic Waves Spring 2016 Semester Matthew Jones Electromagnetism Geometric optics overlooks the wave nature of light. Light inconsistent with longitudinal

More information

Random Lasers - Physics & Application

Random Lasers - Physics & Application Random Lasers - Physics & Application HuiCao Depts. of Applied Physics & Physics, Yale University Group members Jonathan Andreasen Yong Ling Bo Liu Heeso Noh Brandon Redding Xiaohua Wu Junying Xu Alexey

More information

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014 2583-12 Workshop on Coherent Phenomena in Disordered Optical Systems 26-30 May 2014 Nonlinear Excitations of Bose-Einstein Condensates with Higherorder Interaction Etienne WAMBA University of Yaounde and

More information

On the Dirty Boson Problem

On the Dirty Boson Problem On the Dirty Boson Problem Axel Pelster 1. Experimental Realizations of Dirty Bosons 2. Theoretical Description of Dirty Bosons 3. Huang-Meng Theory (T=0) 4. Shift of Condensation Temperature 5. Hartree-Fock

More information

Fluids with dipolar coupling

Fluids with dipolar coupling Fluids with dipolar coupling Rosensweig instability M. D. Cowley and R. E. Rosensweig, J. Fluid Mech. 30, 671 (1967) CO.CO.MAT SFB/TRR21 STUTTGART, ULM, TÜBINGEN FerMix 2009 Meeting, Trento A Quantum Ferrofluid

More information

Interference between quantum gases

Interference between quantum gases Anderson s question, and its answer Interference between quantum gases P.W. Anderson: do two superfluids which have never "seen" one another possess a relative phase? MIT Jean Dalibard, Laboratoire Kastler

More information

MODERN OPTICS. P47 Optics: Unit 9

MODERN OPTICS. P47 Optics: Unit 9 MODERN OPTICS P47 Optics: Unit 9 Course Outline Unit 1: Electromagnetic Waves Unit 2: Interaction with Matter Unit 3: Geometric Optics Unit 4: Superposition of Waves Unit 5: Polarization Unit 6: Interference

More information

The Phase of a Bose-Einstein Condensate by the Interference of Matter Waves. W. H. Kuan and T. F. Jiang

The Phase of a Bose-Einstein Condensate by the Interference of Matter Waves. W. H. Kuan and T. F. Jiang CHINESE JOURNAL OF PHYSICS VOL. 43, NO. 5 OCTOBER 2005 The Phase of a Bose-Einstein Condensate by the Interference of Matter Waves W. H. Kuan and T. F. Jiang Institute of Physics, National Chiao Tung University,

More information

Quantum lattice representation of dark solitons ABSTRACT

Quantum lattice representation of dark solitons ABSTRACT Quantum lattice representation of solitons George Vahala a, Linda Vahala b, Jeffrey Yepez c a Dept. of Physics, William & Mary, Williamsburg, VA 23187 b Dept. of Electrical & Computer Engineering, Old

More information

X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources

X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources Christian Gutt Department of Physics, University ofsiegen, Germany gutt@physik.uni-siegen.de Outline How to measure dynamics

More information

Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs)

Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs) Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs) FRISNO-9 Dominique Elser 15/02/2007 GAWBS Theory Thermally excited acoustic fiber vibrations at certain resonance frequencies

More information

Quantised Vortices in an Exciton- Polariton Condensate

Quantised Vortices in an Exciton- Polariton Condensate 4 th International Conference on Spontaneous Coherence in Excitonic Systems Quantised Vortices in an Exciton- Polariton Condensate Konstantinos G. Lagoudakis 1, Michiel Wouters 2, Maxime Richard 1, Augustin

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Ultracold Fermi Gases with unbalanced spin populations

Ultracold Fermi Gases with unbalanced spin populations 7 Li Bose-Einstein Condensate 6 Li Fermi sea Ultracold Fermi Gases with unbalanced spin populations Nir Navon Fermix 2009 Meeting Trento, Italy 3 June 2009 Outline Introduction Concepts in imbalanced Fermi

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

Brownian soliton motion

Brownian soliton motion Brownian soliton motion Yaroslav V. Kartashov, 1 Victor A. Vysloukh, and Lluis Torner 1 1 ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, and Universitat Politecnica de Catalunya,

More information

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

Laser heating of noble gas droplet sprays: EUV source efficiency considerations Laser heating of noble gas droplet sprays: EUV source efficiency considerations S.J. McNaught, J. Fan, E. Parra and H.M. Milchberg Institute for Physical Science and Technology University of Maryland College

More information

RANDOM MATRICES and ANDERSON LOCALIZATION

RANDOM MATRICES and ANDERSON LOCALIZATION RANDOM MATRICES and ANDERSON LOCALIZATION Luca G. Molinari Physics Department Universita' degli Studi di Milano Abstract: a particle in a lattice with random potential is subject to Anderson localization,

More information

Simulation of Phase Dynamics in Active Multimode Interferometers

Simulation of Phase Dynamics in Active Multimode Interferometers The University of Tokyo Simulation of Phase Dynamics in Active Multimode Interferometers 4/09/2008 Salah Ibrahim Nakano/Sugiyama/Tanemura Lab. Research Center for Advanced Science and Technology Outline

More information

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Richard Miles and Arthur Dogariu Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Workshop on Oxygen Plasma Kinetics Sept 20, 2016 Financial support: ONR and MetroLaser

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Second sound and the superfluid fraction in a resonantly interacting Fermi gas

Second sound and the superfluid fraction in a resonantly interacting Fermi gas Second sound and the superfluid fraction in a resonantly interacting Fermi gas Meng Khoon Tey Tsinghua University China Workshop on Probing and Understanding Exotic Superconductors and Superfluids Trieste,

More information

Phase transitions in Hubbard Model

Phase transitions in Hubbard Model Phase transitions in Hubbard Model Anti-ferromagnetic and superconducting order in the Hubbard model A functional renormalization group study T.Baier, E.Bick, C.Krahl, J.Mueller, S.Friederich Phase diagram

More information

arxiv: v2 [cond-mat.quant-gas] 23 Jan 2016

arxiv: v2 [cond-mat.quant-gas] 23 Jan 2016 arxiv:1511.02501v2 [cond-mat.quant-gas] 23 Jan 2016 Dimensional reduction and localization of a Bose-Einstein condensate in a quasi-1d bichromatic optical lattice L. Salasnich 1,2 and S.K. Adhikari 3 1

More information

Wave Turbulence and Condensation in an Optical Experiment

Wave Turbulence and Condensation in an Optical Experiment Wave Turbulence and Condensation in an Optical Experiment S. Residori, U. Bortolozzo Institut Non Linéaire de Nice, CNRS, France S. Nazarenko, J. Laurie Mathematics Institute, University of Warwick, UK

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

6. Interference of BECs

6. Interference of BECs 6. Interference of BECs Josephson effects Weak link: tunnel junction between two traps. Josephson oscillation An initial imbalance between the population of the double well potential leads to periodic

More information

Supplementary Figures

Supplementary Figures Supplementary Figures iso ( =2900 cm -1 ) 1.0 0.8 0.6 0.4 0.2 0.0-0.2-0.4 pump cm -1 3450 cm -1 cm -1 cm -1-0.5 0.0 0.5 1.0 1.5 2.0 2.5 delay [ps] Supplementary Figure 1: Raw infrared pump-probe traces.

More information