Recurrent scattering and memory effect at the Anderson transition

Size: px
Start display at page:

Download "Recurrent scattering and memory effect at the Anderson transition"

Transcription

1 Recurrent scattering and memory effect at the Anderson transition Alexandre Aubry Institut Langevin CNRS UMR 7587, ESPCI ParisTech Paris, France Collaborators: John Page, Laura Cobus (University of Manitoba, Winnipeg, Canada) Sergey Skipetrov, Bart van Tiggelen (LPMMC, Grenoble, France) Arnaud Derode (Institut Langevin, Paris, France)

2 Introduction Experimental flexibility of ultrasound Multi-element array Time-resolved measurement of the amplitude and phase of the wave Numerous applications Ultrasound Imaging: Medical diagnosis Non destructive evaluation Focusing: Medical therapy Telecommunications Time reversal: Imaging and focusing through complex media Interest of a matrix approach Acquisition of the inter-element matrix K. Source i Array of transducers This matrix contains all the information available on the medium under investigation Receiver j k ij

3 Introduction Matrix K in «simple» media C. Prada and M. Fink, Wave Motion, 20: , 1994 Singular value decomposition of K : Diagonal matrix containing the N singular values ( 1 > 2 > > N ) U and V : Unitary matrices whose columns are the singular vectors Simple media: one eigenstate one scatterer 1 =reflectivity E=V 1 E=V 2 2 =reflectivity Each eigenvector V i back-propagates respectively towards each scatterer of the medium

4 Introduction Matrix K in complex media? Practical interest: Interest for detection and imaging (separation single / multiple scattering) Characterization of scattering media Fundamental interest: Link with random matrix theory Study of Anderson localization (recurrent scattering)

5 Introduction One relevant parameter: the scattering mean free path l e Single scattering (t <<l e /c) Classical imaging techniques (ultrasound imaging, D.O.R.T method, Kirchhoff migration) Multiple scattering (t >>l e /c) Nightmare for imaging Statistical approach, diffusion equation Measurements of transport parameters (l e, D ) Strong interference effects halt the wave within the scattering medium Return probability, recurrent scattering

6 Introduction Which frequency? Ultrasound 1 5 MHz Which medium, which scattering regime? Ballistic regime Diffusive regime Anderson localization Disorder Soft tissues Bone Coarse grain steels Mesoglasses 1

7 Outline Propagation operator in weakly scattering media Link with random matrix theory Single/multiple scattering Memory effect Propagation operator in strongly disordered media Memory effect Recurrent scattering Coherent backscattering Return probability

8 Propagation operator in weakly scattering media A. Aubry, A. Derode, Phys. Rev. Lett., 2009 J. Appl. Phys., 2009 WRCM, 2010 J. Acoust. Soc. Am., 2011

9 Experimental procedure 1/ Acquisition of the inter-element matrix 2/ Time-frequency analysis Keep the temporal resolution provided by ultrasonic measurements while working in the Fourier domain time frequency

10 Statistical properties of K / multiple scattering Experiment in a multiple scattering medium Real part of K Matrix K (32 32) Random distribution of scatterers K(t,f) = random matrix SVD No equivalence between eigenstates and scatterers of the medium Quarter circle law Numerical simulations Experiment Statistical approach Distribution of singular values = Quarter circle law V. Marcenko and L. Pastur, Math. USSR-Sbornik 1, 457, 1967

11 Statistical properties of K / single scattering Experiment in a single scattering medium Soft tissues In the single scattering regime, we are far from the expected quarter circle law Single scattering Multiple scattering Deterministic coherence along the antidiagonals of K Random feature in the multiple scattering regime

12 Optical memory effect in backscattering Speckle is not random at it might seems s a s a' s a W W s b Scattering medium s b' s b Scattering medium Small rotation of the incident field Small rotation of the speckle Despite disorder, it remains an information on the nature of the incident beam. Single scattering: the memory effect persists over the whole angular domain Multiple scattering: The memory effect is restricted to a small angular domain Freund et al., Phys. Rev. Lett., 1988 Feng et al., Phys. Rev. Lett., 1988

13 Memory effect in backscattering Far-field s a' s b' s b s a Memory effect condition: W Scattering medium Intermediate field i i' j' j Array of transducers a Scattering medium Δs a = Δs b i+j=i'+j' (Antidiagonals of K) W Single scattering: Multiple scattering: Memory effect Deterministic coherence whatever the distance between i and j Short-range correlations governed by the size of the diffusive halo Coherence length Spatial coherence along the antidiagonals of K

14 Propagation operator in strongly scattering media A. Aubry, L. A. Cobus, S. E. Skipetrov, B. A. van Tiggelen, A. Derode, and J. H. Page, arxiv: , 2013

15 Anderson localization of elastic waves H. Hu, A. Strybulevych, J.H. Page, S.E. Skipetrov, and B. Van Tiggelen, Nature Physics 4, 945, 2008 Mesoglasses fabricated by brazing aluminum beads together to form a solid porous 3D elastic network. Pulsed transmission measurements: Localization between 1.2 and 1.25 MHz P.W. Anderson, Phys. Rev., 1959 scattering loops constructive interference Figure courtesy of John Page

16 Statistical properties of K / strong disorder Source i Real part of K t=185 µs, f=1.25 MHz Receiver j Long-range correlations even at long times of flight in the strongly scattering regime Recurrent scattering

17 Spatial intensity profile Mean backscattered intensity Typical spatial intensity profiles in the single/multiple scattering regime Single scattering Multiple scattering distance source receiver S R S=R p + p - Incoherent contribution Coherent backscattering peak Wolf and Maret, Phys. Rev. Lett., 1985 van Albada and Lagendijk, Phys. Rev. Lett., 1985

18 Normalized intensity Spatial intensity profile Normalized intensity Spatial intensity profile t=185 µs, f=1.25 MHz distance source - receiver Coherent backscattering enhancement is below 2 even at long time of flight distance source - receiver Recurrent scattering

19 Source i Source i Separation recurrent scattering / conventional multiple scattering Normalized intensity Source i Raw matrix K 1 Conventional multiple scattering Receiver j Recurrent scattering Receiver j Receiver j total intensity Recurrent scattering Conventional multiple scattering distance source - receiver

20 time [µs] Conventional multiple scattering / Coherent backscattering Diffusive regime Space-time evolution of the mean backscattered intensity at f=1.8 MHz The CB peak width scales as f=1.8 MHz diffusive behavior x~λa/w x 2 W~Dt distance source receiver [mm] time [µs]

21 time [µs] Conventional multiple scattering / Coherent backscattering (CB) Manifestation of Localization Saturation of the growth of the diffusive halo x~λa/w Space-time evolution of the mean backscattered intensity at f=1.215 MHz The CB peak narrowing saturates MHz localized regime distance source receiver [mm] time [µs]

22 Recurrent scattering ratio Recurrent scattering ratio Recurrent scattering intensity ratio = recurrent scattering intensity total backscattered intensity Recurrent scattering intensity ratio VS time time [µs] The recurrent scattering contribution is substantial even at long times of flight in the localization band (>70% at t=200 µs)

23 Time decay of the return probability Return probability Recurrent scattering intensity Return probability = Probability for a wave to come back close to its starting spot Key quantity in self-consistent theory of Anderson localization (renormalization of the diffusion constant) time [µs] MHz localized regime Diffusive regime: Localized regime: S.E. Skipetrov and B.A. van Tiggelen, Phys. Rev. Lett., 2006 The measured return probability displays a very slow decay around the mobility edge (unpredicted by SC theory, multifractality?)

24 Mean of the first singular values Intense recurrent scattering paths in the localized band DORT analysis of the array response matrix K (t=150 µs) Discrepancy between the two first (=largest) singular values and RMT predictions around 1.2 MHz Singular value decomposition of K K = UΛV i λ 1 λ 2 dots: experiment dashed line: random matrix theory (Hankel) Frequency [MHz] The largest singular values may be associated to intense recurrent scattering paths λ 3

25 Intense recurrent scattering paths in the localized band Weakly scattering media: one eigenstate one scatterer Strongly scattering media: one eigenstate one recurrent scattering path Numerical back-propagation of the first singular vector at the surface of the scattering sample (f=1.2 MHz) Hot spot = entry-exit point of a recurrent scattering path Hot spots switch on at regular intervals of time Hypothesis: The same RS path travelled several times

26 Conclusion & Perspectives

27 Conclusion & Perspectives Propagation operator in scattering media Statistical behaviour of the array response matrix (Random Matrix Theory) Deterministic coherence of the single scattering contribution Memory effect Perspectives: Separation single/multiple scattering for non-destructive testing applications (Coll. EDF) Extension to other fields of wave physics: optics (Amaury Badon, Dayan Li), seismology (?) etc. Scattering matrix - transmission/reflection open/closed channels (Benoît Gérardin) Recurrent scattering in strongly scattering media Recurrent scattering and memory effect Manifestation of Anderson localization: Coherent backscattering, Return probability Correspondence between eigenstates of K and scattering loops Perspectives: Theoretical understanding, random lasers (?)

28 Posters Benoît Gérardin Matrix approach of wave propagation in disordered elastic wave guides Scattering matrix, transmission/reflection matrix Open/closed scattering channels Bimodal law Amaury Badon Passive measurements of Green s function in optics Correlations of incoherent scattered wave-fields

29 Thanks for your attention! Alexandre Aubry Institut Langevin CNRS UMR 7587, ESPCI ParisTech Paris, France Collaborators: John Page, Laura Cobus (University of Manitoba, Winnipeg, Canada) Sergey Skipetrov, Bart van Tiggelen (LPMMC, Grenoble, France) Arnaud Derode (Institut Langevin, Paris, France)

Random matrix theory applied to acoustic backscattering and imaging in complex media

Random matrix theory applied to acoustic backscattering and imaging in complex media Random matrix theory applied to acoustic backscattering and imaging in complex media Alexandre Aubry(1,2), Arnaud Derode(2) (1) John Pendry's group, Imperial College London, United Kingdom (2) Mathias

More information

Singular value distribution of the propagation matrix in random scattering media. Abstract

Singular value distribution of the propagation matrix in random scattering media. Abstract Aubry et al. Singular value distribution of the propagation matrix in random scattering media Alexandre Aubry and Arnaud Derode Institut Langevin, ESPCI ParisTech CNRS UMR 7587, Université Denis Diderot

More information

Anderson localization of ultrasound in three dimensions

Anderson localization of ultrasound in three dimensions International School of Physics Enrico Fermi Course CLXXIII "Nano Optics and Atomics: Transport of Light and Matter Waves Varenna, June 23 rd to July 3 rd, 29 Anderson localization of ultrasound in three

More information

arxiv: v2 [physics.class-ph] 21 Aug 2009

arxiv: v2 [physics.class-ph] 21 Aug 2009 Aubry et al. Detection and imaging in a random medium: a matrix method to overcome multiple scattering and aberration Alexandre Aubry and Arnaud Derode arxiv:0906.0532v2 [physics.class-ph] 21 Aug 2009

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Physical Acoustics Session 2pPA: Material Characterization 2pPA10. Frequency-resolved

More information

Twin Peaks: momentum-space dynamics of ultracold matter waves in random potentials

Twin Peaks: momentum-space dynamics of ultracold matter waves in random potentials Twin Peaks: momentum-space dynamics of ultracold matter waves in random potentials T. Karpiuk N. Cherroret K.L. Lee C. Müller B. Grémaud C. Miniatura IHP, 7 Nov 2012 Experimental and Numerical scenario

More information

Time-Reversed Waves and Subwavelength Focusing

Time-Reversed Waves and Subwavelength Focusing Time-Reversed Waves and Subwavelength Focusing Mathias Fink, Geoffroy Lerosey, Fabrice Lemoult, Julien de Rosny Arnaud Tourin, Arnaud Derode, Philippe Roux, Ros-Kiri Ing, Carsten Draeger Institut Langevin

More information

Polarization and spatial coherence of electromagnetic waves in disordered media

Polarization and spatial coherence of electromagnetic waves in disordered media Polarization and spatial coherence of electromagnetic waves in disordered media Kevin Vynck Laboratoire Photonique, Numérique et Nanosciences (LP2N) UMR 5298, CNRS IOGS Univ. Bordeaux Institut d'optique

More information

Phononic Crystals. J.H. Page

Phononic Crystals. J.H. Page Phononic Crystals J.H. Page University of Manitoba with Suxia Yang and M.L. Cowan at U of M, Ping Sheng and C.T. Chan at HKUST, & Zhengyou Liu at Wuhan University. We study ultrasonic waves in complex

More information

Bart van Tiggelen Laboratoire de Physique et Modélisation des Milieux Condensés CNRS/University of Grenoble, France

Bart van Tiggelen Laboratoire de Physique et Modélisation des Milieux Condensés CNRS/University of Grenoble, France Analogies between Quantum Waves and Classical Waves : deceiving, surprising, and complementary Bart van Tiggelen Laboratoire de Physique et Modélisation des Milieux Condensés CNRS/University of Grenoble,

More information

Optimisation using measured Green s function for improving spatial coherence in acoustic measurements

Optimisation using measured Green s function for improving spatial coherence in acoustic measurements Ultrasonics 42 (2004) 205 212 www.elsevier.com/locate/ultras Optimisation using measured Green s function for improving spatial coherence in acoustic measurements Matthew Clark *, Steve D. Sharples, Mike

More information

Quantum Mesoscopic Physics: Coherent Backscattering of Light by Cold Atoms

Quantum Mesoscopic Physics: Coherent Backscattering of Light by Cold Atoms J. Phys. IV France 1 (2003) Pr1-1 c EDP Sciences, Les Ulis Quantum Mesoscopic Physics: Coherent Backscattering of Light by Cold Atoms Thierry Chanelière, Guillaume Labeyrie, Christian Miniatura, David

More information

Today: 5 July 2008 ٢

Today: 5 July 2008 ٢ Anderson localization M. Reza Rahimi Tabar IPM 5 July 2008 ١ Today: 5 July 2008 ٢ Short History of Anderson Localization ٣ Publication 1) F. Shahbazi, etal. Phys. Rev. Lett. 94, 165505 (2005) 2) A. Esmailpour,

More information

A small object is placed a distance 2.0 cm from a thin convex lens. The focal length of the lens is 5.0 cm.

A small object is placed a distance 2.0 cm from a thin convex lens. The focal length of the lens is 5.0 cm. TC [66 marks] This question is about a converging (convex) lens. A small object is placed a distance 2.0 cm from a thin convex lens. The focal length of the lens is 5.0 cm. (i) Deduce the magnification

More information

Bart van Tiggelen Laboratoire de Physique et Modélisation des Milieux Condensés CNRS/University

Bart van Tiggelen Laboratoire de Physique et Modélisation des Milieux Condensés CNRS/University Dynamic correlations, interference and time-dependent speckles Bart van Tiggelen Laboratoire de hysique et Modélisation des Milieux Condensés CNRS/University of Grenoble, France Collaborators: Michel Campillo

More information

Suppression and revival of weak localization by manipulation of time reversal symmetry

Suppression and revival of weak localization by manipulation of time reversal symmetry Suppression and revival of weak localization by manipulation of time reversal symmetry Varenna school on Quantum matter at ultralow temperature JULY 11, 2014 Alain Aspect Institut d Optique Palaiseau http://www.lcf.institutoptique.fr/alain-aspect-homepage

More information

Multiple scattering between two elastic cylinders and invariants of the time-reversal operator: Theory and experiment

Multiple scattering between two elastic cylinders and invariants of the time-reversal operator: Theory and experiment Multiple scattering between two elastic cylinders and invariants of the time-reversal operator: Theory and experiment Jean-Gabriel Minonzio, a Claire Prada, Alexandre Aubry, and Mathias Fink Laboratoire

More information

TERRESTRIAL REDSHIFTS FROM A DIFFUSE LIGHT SOURCE. FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

TERRESTRIAL REDSHIFTS FROM A DIFFUSE LIGHT SOURCE. FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands March 25, 1999 TERRESTRIAL REDSHIFTS FROM A DIFFUSE LIGHT SOURCE Ad Lagendijk a FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands (Received ) Abstract Enhanced

More information

Today s menu. Last lecture. Measurement of volume flow rate. Measurement of volume flow rate (cont d...) Differential pressure flow meters

Today s menu. Last lecture. Measurement of volume flow rate. Measurement of volume flow rate (cont d...) Differential pressure flow meters Last lecture Analog-to-digital conversion (Ch. 1.1). Introduction to flow measurement systems (Ch. 12.1). Today s menu Measurement of volume flow rate Differential pressure flowmeters Mechanical flowmeters

More information

Measurement of local elastic modulus with CLUE

Measurement of local elastic modulus with CLUE Measurement of local elastic modulus with CLUE Alexander A.Karabutov 1, Alexander A.Karabutov (Jr.) 2, Elena V.Savateeva 3 1 International Laser Center of Moscow State University aak@ilc.edu.ru 2 Deptm.of

More information

Imaging and time reversal in random media

Imaging and time reversal in random media 0 1 2 Imaging and time reversal in random media Liliana Borcea George Papanicolaou Chrysoula Tsogka James Berryman December 15, 2002 Abstract We present a general method for estimating the location of

More information

arxiv: v1 [physics.optics] 7 Jan 2016

arxiv: v1 [physics.optics] 7 Jan 2016 Near-field to far-field characterization of speckle patterns generated by disordered nanomaterials arxiv:161.1481v1 [physics.optics] 7 Jan 216 Valentina Parigi 1, Elodie Perros 1, Guillaume Binard 2,3,

More information

Ultrasonic wave transport in strongly scattering media

Ultrasonic wave transport in strongly scattering media Ultrasonic wave transport in strongly scattering media J. H. Page Department of Physics and Astronomy University of Manitoba Winnipeg, MB Canada R3T 2N2 Summary. Ultrasonic experiments are well suited

More information

Origin of Coda Waves: Earthquake Source Resonance

Origin of Coda Waves: Earthquake Source Resonance Origin of Coda Waves: Earthquake Source Resonance Yinbin Liu Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada Email: yliu@eoas.ubc.ca Abstract

More information

Remarkable properties of Lamb modes in plates

Remarkable properties of Lamb modes in plates Women in Applied Mathematics Heraklion, May 2-5, 2011 Remarkable properties of Lamb modes in plates Claire Prada, Daniel Royer, Dominique Clorennec, Franck Philippe Maximin Ces, Todd Murray and Oluwaseyi

More information

Doppler echocardiography & Magnetic Resonance Imaging. Doppler echocardiography. History: - Langevin developed sonar.

Doppler echocardiography & Magnetic Resonance Imaging. Doppler echocardiography. History: - Langevin developed sonar. 1 Doppler echocardiography & Magnetic Resonance Imaging History: - Langevin developed sonar. - 1940s development of pulse-echo. - 1950s development of mode A and B. - 1957 development of continuous wave

More information

Diffusing acoustic wave spectroscopy

Diffusing acoustic wave spectroscopy PHYSICAL REVIEW E, VOLUME 65, 066605 Diffusing acoustic wave spectroscopy M. L. Cowan, 1 I. P. Jones, 1, * J. H. Page, 1,2, and D. A. Weitz 2 1 Department of Physics and Astronomy, University of Manitoba,

More information

Coherent backscattering in Fock space. ultracold bosonic atoms

Coherent backscattering in Fock space. ultracold bosonic atoms Coherent backscattering in the Fock space of ultracold bosonic atoms Peter Schlagheck 16.2.27 Phys. Rev. Lett. 112, 1443 (24); arxiv:161.435 Coworkers Thomas Engl (Auckland) Juan Diego Urbina (Regensburg)

More information

Lamb Waves in Plate Girder Geometries

Lamb Waves in Plate Girder Geometries Lamb Waves in Plate Girder Geometries D.W. Greve, 1 N. L. Tyson 2, and I.J. Oppenheim 2 1 Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213 2 Civil and Environmental

More information

Pixel-based Beamforming for Ultrasound Imaging

Pixel-based Beamforming for Ultrasound Imaging Pixel-based Beamforming for Ultrasound Imaging Richard W. Prager and Nghia Q. Nguyen Department of Engineering Outline v Introduction of Ultrasound Imaging v Image Formation and Beamforming v New Time-delay

More information

arxiv: v3 [physics.optics] 21 Dec 2016

arxiv: v3 [physics.optics] 21 Dec 2016 Correlation-enhanced control of wave focusing in disordered media arxiv:1607.06403v3 [physics.optics] 21 Dec 2016 Chia Wei Hsu, 1 Seng Fatt Liew, 1 Arthur Goetschy, 2 Hui Cao, 1 and A. Douglas Stone 1

More information

COLD ATOMS AND OPTICAL DISORDER : A NEW TOOL TO STUDY QUANTUM TRANSPORT P. BOUYER

COLD ATOMS AND OPTICAL DISORDER : A NEW TOOL TO STUDY QUANTUM TRANSPORT P. BOUYER COLD ATOMS AND OPTICAL DISORDER : A NEW TOOL TO STUDY QUANTUM TRANSPORT P. BOUYER Laboratoire Charles Fabry de l Institut d Optique Palaiseau, France web site : www.atomoptic.fr TITRE S. Bernon (Talk and

More information

NATO ASI on Photonic Crystals and Light Localization, Crete, June 19-30, 2000 ACOUSTIC BAND GAP MATERIALS

NATO ASI on Photonic Crystals and Light Localization, Crete, June 19-30, 2000 ACOUSTIC BAND GAP MATERIALS NATO ASI on Photonic Crystals and Light Localization, Crete, June 19-30, 2000 ACOUSTIC BAND GAP MATERIALS J.H. Page 1, A.L. Goertzen 1,*, Suxia Yang 1,2, Zhengyou Liu 2,3, C.T. Chan 2 and Ping Sheng 2

More information

Registration of CBS Effects from Wedge-shaped Samples Containing Particles of Alumina

Registration of CBS Effects from Wedge-shaped Samples Containing Particles of Alumina VII International Conference on Photonics and Information Optics Volume 2018 Conference Paper Registration of CBS Effects from Wedge-shaped Samples Containing Particles of Alumina Sh. M. ISMAILOV 1,2 and

More information

Random lasing in closely packed resonant scatterers

Random lasing in closely packed resonant scatterers Wu et al. Vol. 21, No. 1/January 2004/J. Opt. Soc. Am. B 159 Random lasing in closely packed resonant scatterers Xiaohua H. Wu, Alexey Yamilov, Heeso Noh, and Hui Cao Department of Physics and Astronomy,

More information

Theoretical and Experimental Investigation of Rayleigh Waves on Spherical and Cylindrical Surfaces

Theoretical and Experimental Investigation of Rayleigh Waves on Spherical and Cylindrical Surfaces 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Theoretical and Experimental Investigation of Rayleigh Waves on Spherical and Cylindrical

More information

Today s menu. Last lecture. Ultrasonic measurement systems. What is Ultrasound (cont d...)? What is ultrasound?

Today s menu. Last lecture. Ultrasonic measurement systems. What is Ultrasound (cont d...)? What is ultrasound? Last lecture Measurement of volume flow rate Differential pressure flowmeters Mechanical flowmeters Vortex flowmeters Measurement of mass flow Measurement of tricky flows" Today s menu Ultrasonic measurement

More information

arxiv: v1 [physics.app-ph] 10 Aug 2018

arxiv: v1 [physics.app-ph] 10 Aug 2018 Retrieving the scattering strength using noise correlation in a reverberant medium arxiv:1808.03450v1 [physics.app-ph] 10 Aug 2018 Aida Hejazi Nooghabi, 1, 2 Lapo Boschi, 1 Philippe Roux, 3 and Julien

More information

Brownian Motion in a Speckle Light Field: Tunable. Anomalous Diffusion and Deterministic Optical Manipulation

Brownian Motion in a Speckle Light Field: Tunable. Anomalous Diffusion and Deterministic Optical Manipulation Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Deterministic Optical Manipulation Giorgio Volpe a,1, Giovanni Volpe b & Sylvain Gigan a a. Institut Langevin, UMR7587 of CNRS

More information

Model of quantum stochastic absorption in absorbing disordered media

Model of quantum stochastic absorption in absorbing disordered media Model of quantum stochastic absorption in absorbing disordered media Prabhakar Pradhan* Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, USA Received

More information

Fundamental concepts on statistical tilt correlations

Fundamental concepts on statistical tilt correlations CWP-892 Fundamental concepts on statistical tilt correlations Aaron C. Prunty and Roel K. Snieder Center for Wave Phenomena and Department of Geophysics, Colorado School of Mines, Golden CO 80401 email

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

arxiv: v2 [physics.optics] 26 Jul 2016

arxiv: v2 [physics.optics] 26 Jul 2016 Particle-like wave packets in complex scattering systems Benoît Gérardin, Jérôme Laurent, Philipp Ambichl, Claire Prada, Stefan Rotter, and Alexandre Aubry, ESPCI Paris, PSL Research University, CNRS,

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION ABSTRACT In this paper the three-dimensional transient wave propagation is investigated due to a point force applied at the interface of a fluid and a poroelastic solid. Using the total response, it is

More information

Multiple Defect Detection by Applying the Time Reversal Principle on Dispersive Waves in Beams

Multiple Defect Detection by Applying the Time Reversal Principle on Dispersive Waves in Beams 18th World Conference on Nondestructive Testing, 16-20 April 2012, Durban, South Africa Multiple Defect Detection by Applying the Time Reversal Principle on Dispersive Waves in Beams Robert ERNST 1, Mario

More information

Anderson localization and enhanced backscattering in correlated potentials

Anderson localization and enhanced backscattering in correlated potentials Anderson localization and enhanced backscattering in correlated potentials Dominique Delande Laboratoire Kastler-Brossel Ecole Normale Supérieure et Université Pierre et Marie Curie (Paris) in collaboration

More information

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Dynamics of fluctuations in high temperature superconductors far from equilibrium L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Superconductors display amazing properties: Dissipation-less

More information

Imaging and time reversal in random media

Imaging and time reversal in random media Imaging and time reversal in random media Liliana Borcea George Papanicolaou Chrysoula Tsogka James Berryman June 4, 2002 Abstract We present a general method for estimating the location of small, well-separated

More information

(1) (2) (3) Main Menu. Summary. reciprocity of the correlational type (e.g., Wapenaar and Fokkema, 2006; Shuster, 2009):

(1) (2) (3) Main Menu. Summary. reciprocity of the correlational type (e.g., Wapenaar and Fokkema, 2006; Shuster, 2009): The far-field approximation in seismic interferometry Yingcai Zheng Yaofeng He, Modeling Imaging Laboratory, University of California, Santa Cruz, California, 95064. Summary Green s function retrieval

More information

LAMB WAVES GENERATION USING A TRANSDUCER EMBEDDED IN A COMPOSITE PLATE

LAMB WAVES GENERATION USING A TRANSDUCER EMBEDDED IN A COMPOSITE PLATE LAMB WAVES GENERATION USING A TRANSDUCER EMBEDDED IN A COMPOSITE PLATE Emmanuel Moulin 1, Jamal Assaad 1, Christophe Delebarre 1 and Daniel Osmont 2 1 IEMN, UMR CNRS 9929, OAE Department, Université de

More information

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University Quantum Memory with Atomic Ensembles Yong-Fan Chen Physics Department, Cheng Kung University Outline Laser cooling & trapping Electromagnetically Induced Transparency (EIT) Slow light & Stopped light Manipulating

More information

Slow and stored light using Rydberg atoms

Slow and stored light using Rydberg atoms Slow and stored light using Rydberg atoms Julius Ruseckas Institute of Theoretical Physics and Astronomy, Vilnius University, Lithuania April 28, 2016 Julius Ruseckas (Lithuania) Rydberg slow light April

More information

Study of Laser Plasma Interactions Using an Eulerian Vlasov Code

Study of Laser Plasma Interactions Using an Eulerian Vlasov Code PSFC/JA-04-6 Study of Laser Plasma Interactions Using an Eulerian Vlasov Code D. J. Strozzi, M. M. Shoucri*, and A. Bers March 2004 Plasma Science and Fusion Center Massachusetts Institute of Technology

More information

Structure of Biological Materials

Structure of Biological Materials ELEC ENG 3BA3: Structure of Biological Materials Notes for Lecture #19 Monday, November 22, 2010 6.5 Nuclear medicine imaging Nuclear imaging produces images of the distribution of radiopharmaceuticals

More information

Disordered Solids. real crystals spin glass. glasses. Grenoble

Disordered Solids. real crystals spin glass. glasses. Grenoble Disordered Solids real crystals spin glass glasses Grenoble 21.09.11-1 Tunneling of Atoms in Solids Grenoble 21.09.11-2 Tunneln Grenoble 21.09.11-3 KCl:Li Specific Heat specific heat roughly a factor of

More information

Controlling Light Through Optical Disordered Media : Transmission Matrix Approach

Controlling Light Through Optical Disordered Media : Transmission Matrix Approach Controlling Light Through Optical Disordered Media : Transmission Matrix Approach Sébastien Popoff, Geoffroy Lerosey, Mathias Fink, Albert Boccara, Sylvain Gigan To cite this version: Sébastien Popoff,

More information

Optics of complex micro structures

Optics of complex micro structures Optics of complex micro structures dielectric materials λ L disordered partially ordered ordered random multiple scattering liquid crystals quasi crystals (Fibonacci) photonic crystals Assembly of photonic

More information

Multiple Light Scattering from Disordered Media. The Effect of Brownian Motion of Scatterers*

Multiple Light Scattering from Disordered Media. The Effect of Brownian Motion of Scatterers* Z. Phys. B - Condensed Matter 65, 49-413 (1987) Condensed Zeitschrift Matter for Physik B 9 Springer-Verlag 1987 Multiple Light Scattering from Disordered Media. The Effect of Brownian Motion of Scatterers*

More information

SIMULATION OF ULTRASONIC NDT IN COMPOSITE RADIUS

SIMULATION OF ULTRASONIC NDT IN COMPOSITE RADIUS SIMULATION OF ULTRASONIC NDT IN COMPOSITE RADIUS N. Dominguez 1, O. Grellou 2, S. Van-der-Veen 2 1 European Aeronautic Defense and Space Company (EADS), Innovation Works Dept., 1 rue Marius Terce, 325

More information

13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII), May 2013, Le Mans, France

13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII), May 2013, Le Mans, France 3th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII), 2-24 May 23, Le Mans, France www.ndt.net/?id=5532 Biot waves in porous ceramic plates : influence of boundary conditions

More information

arxiv: v1 [physics.optics] 15 Mar 2017

arxiv: v1 [physics.optics] 15 Mar 2017 Inverse Design of Perfectly Transmitting Eigenchannels in Scattering Media arxiv:73.4922v [physics.optics] 5 Mar 27 M. Koirala, R. Sarma, 2 H. Cao, 2 and A. Yamilov, Department of Physics, Missouri University

More information

Ultrasonic Measurement of Minute Displacement of Object Cyclically Actuated by Acoustic Radiation Force

Ultrasonic Measurement of Minute Displacement of Object Cyclically Actuated by Acoustic Radiation Force Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 4608 4612 Part 1, No. 7A, July 2003 #2003 The Japan Society of Applied Physics Ultrasonic Measurement of Minute Displacement of Object Cyclically Actuated by Acoustic

More information

arxiv: v1 [quant-ph] 31 Jul 2009

arxiv: v1 [quant-ph] 31 Jul 2009 Average transmission probability of a random stack arxiv:0907.5557v1 [quant-ph] 31 Jul 2009 1. Introduction Yin Lu, 1,2 Christian Miniatura 1,3,4 and Berthold-Georg Englert 1,4 1 Centre for Quantum Technologies,

More information

IMPROVEMENT OF TIME REVERSAL PROCESSING IN TITANIUM INSPECTIONS

IMPROVEMENT OF TIME REVERSAL PROCESSING IN TITANIUM INSPECTIONS IMPROVEMENT OF TIME REVERSAL PROCESSING IN TITANIUM INSPECTIONS Veronique Miette Mathias Fink Franyois Wu Laboratoire Ondes et Acoustique ESPCI, University Paris VII, 755 Paris, France INTRODUCTION We

More information

P137 Our Experiences of 3D Synthetic Seismic Modeling with Tip-wave Superposition Method and Effective Coefficients

P137 Our Experiences of 3D Synthetic Seismic Modeling with Tip-wave Superposition Method and Effective Coefficients P137 Our Experiences of 3D Synthetic Seismic Modeling with Tip-wave Superposition Method and Effective Coefficients M. Ayzenberg (StatoilHydro), A. Aizenberg (Institute of Petroleum Geology and Geophysics),

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS2023W1 SEMESTER 1 EXAMINATION 2016-2017 WAVE PHYSICS Duration: 120 MINS (2 hours) This paper contains 9 questions. Answers to Section A and Section B must be in separate answer

More information

Time-lapse travel time change of multiply scattered acoustic waves

Time-lapse travel time change of multiply scattered acoustic waves Time-lapse travel time change of multiply scattered acoustic waves Carlos Pacheco Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines, Golden, Colorado 8040 Roel Snieder Center

More information

Kicked rotor and Anderson localization with cold atoms

Kicked rotor and Anderson localization with cold atoms Kicked rotor and Anderson localization with cold atoms Dominique Delande Laboratoire Kastler-Brossel Ecole Normale Supérieure et Université Pierre et Marie Curie (Paris, European Union) Cargèse July 2014

More information

The MID instrument.

The MID instrument. The MID instrument International Workshop on the Materials Imaging and Dynamics Instrument at the European XFEL Grenoble, Oct 28/29, 2009 Thomas Tschentscher thomas.tschentscher@xfel.eu Outline 2 History

More information

Mathematical analysis of ultrafast ultrasound imaging

Mathematical analysis of ultrafast ultrasound imaging Mathematical analysis of ultrafast ultrasound imaging Giovanni S Alberti Department of Mathematics, University of Genoa Joint work with H. Ammari (ETH), F. Romero (ETH) and T. Wintz (Sony). IPMS 18, May

More information

Non-Destructive Testing of Concrete Based on Analysis of Velocity Dispersion of Laser Ultrasonics

Non-Destructive Testing of Concrete Based on Analysis of Velocity Dispersion of Laser Ultrasonics ECNDT 26 - Poster 223 Non-Destructive Testing of Concrete Based on Analysis of Velocity Dispersion of Laser Ultrasonics Kenichiro TSUYUKI, Ryuta KATAMURA, Satoru MIURA, Kajima Technical Research Institute,

More information

Nonlinear effects in ultrasound fields of diagnostic-type transducers used for kidney stone propulsion: characterization in water

Nonlinear effects in ultrasound fields of diagnostic-type transducers used for kidney stone propulsion: characterization in water The 2th International Symposium on Nonlinear Acoustics, Lyon, June 29 th, 21 Nonlinear effects in ultrasound fields of diagnostic-type transducers used for kidney stone propulsion: characterization in

More information

EFFECTS OF ACOUSTIC SCATTERING AT ROUGH SURFACES ON THE

EFFECTS OF ACOUSTIC SCATTERING AT ROUGH SURFACES ON THE EFFECTS OF ACOUSTIC SCATTERING AT ROUGH SURFACES ON THE SENSITIVITY OF ULTRASONIC INSPECTION Peter B. Nagy and Laszlo Adler Department of Welding Engineering The Ohio State University Columbus, Ohio 4321

More information

Mesoscopic Physics with Seismic waves «not nano but kilo»

Mesoscopic Physics with Seismic waves «not nano but kilo» Mesoscopic Physics with Seismic waves «not nano but kilo» Bart van Tiggelen Laboratoire de Physique et Modélisation des Milieux Condensés CNRS/University of Grenoble, France Collaborators: Michel Campillo

More information

A model for the ultrasonic field radiated by an Electro-Magnetic Acoustic Transducer in a ferromagnetic solid

A model for the ultrasonic field radiated by an Electro-Magnetic Acoustic Transducer in a ferromagnetic solid 13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII), 2-24 May 213, Le Mans, France www.ndt.net/?id=1557 More Info at Open Access Database www.ndt.net/?id=1557 A model

More information

Complete Polarization Control in Multimode Fibers with Polarization and Mode Coupling: Supplementary Information PER

Complete Polarization Control in Multimode Fibers with Polarization and Mode Coupling: Supplementary Information PER Complete Polarization Control in Multimode Fibers with Polarization and Mode Coupling: Supplementary Information Wen Xiong, Chia Wei Hsu, Yaron Bromberg, 2 Jose Enrique Antonio-Lopez, 3 Rodrigo Amezcua

More information

Suppression of thermal lensing effects in intra-cavity coherent combining of lasers

Suppression of thermal lensing effects in intra-cavity coherent combining of lasers Optics Communications 276 (27) 39 44 www.elsevier.com/locate/optcom Suppression of thermal lensing effects in intra-cavity coherent combining of lasers Sharona Sedghani *, Vardit Eckhouse, Asher A. Friesem,

More information

Physical Modelling of a Dispersed Multi Channel System

Physical Modelling of a Dispersed Multi Channel System Physical Modelling of a Dispersed Multi Channel System Rudolf Sprik Van der Waals-Zeeman Instituut, Universiteit van Amsterdam, Valckenierstraat 65-67, 118 XE Amsterdam, The Netherlands - E-mail: sprik@science.uva.nl

More information

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization Serena De Paolis *, Francesca Lionetto and Alfonso Maffezzoli

More information

Degree of polarization in laser speckles from turbid media: Implications in tissue optics

Degree of polarization in laser speckles from turbid media: Implications in tissue optics Journal of Biomedical Optics 7(3), 307 312 (July 2002) Degree of polarization in laser speckles from turbid media: Implications in tissue optics Jun Li Gang Yao Lihong V. Wang Texas A&M University Optical

More information

Varying the effective refractive index to measure optical transport in random media

Varying the effective refractive index to measure optical transport in random media Varying the effective refractive index to measure optical transport in random media Sanli Faez, P. M. Johnson, and Ad Lagendijk FOM Institute for Atomic and Molecular Physics AMOLF, Science Park 113, 1098

More information

High-Intensity Shock-Ignition Experiments in Planar Geometry

High-Intensity Shock-Ignition Experiments in Planar Geometry High-Intensity Shock-Ignition Experiments in Planar Geometry Low intensity High intensity 4 nm CH 3 nm Mo 138 nm quartz VISAR SOP Simulated peak pressure (Mbar) 1 5 Laser backscatter 17.5 kev Mo K a Hard

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS OPTION I-2 MEDICAL IMAGING Reading Activity Answers IB Assessment Statements Option I-2, Medical Imaging: X-Rays I.2.1. I.2.2. I.2.3. Define

More information

Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a).

Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a). 7.1. Low-Coherence Interferometry (LCI) Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a). The light is split by the beam splitter (BS) and

More information

Lichtausbreitung in streuenden Medien: Prinzip und Anwendungsbeispiele

Lichtausbreitung in streuenden Medien: Prinzip und Anwendungsbeispiele Lichtausbreitung in streuenden Medien: Prinzip und Anwendungsbeispiele Alwin Kienle 06.12.2013 Institut für Lasertechnologien in der Medizin und Meßtechnik an der Universität Ulm Overview 1) Theory of

More information

ULTRASONIC WAVE PROPAGATION IN DISSIMILAR METAL WELDS APPLICATION OF A RAY-BASED MODEL AND COMPARISON WITH EXPERIMENTAL RESULTS

ULTRASONIC WAVE PROPAGATION IN DISSIMILAR METAL WELDS APPLICATION OF A RAY-BASED MODEL AND COMPARISON WITH EXPERIMENTAL RESULTS ULTRASONIC WAVE PROPAGATION IN DISSIMILAR METAL WELDS APPLICATION OF A RAY-BASED MODEL AND COMPARISON WITH EXPERIMENTAL RESULTS Audrey GARDAHAUT 1, Hugues LOURME 1, Frédéric JENSON 1, Shan LIN 2, Masaki

More information

On the beam deflection method applied to ultrasound absorption measurements

On the beam deflection method applied to ultrasound absorption measurements On the beam deflection method applied to ultrasound absorption measurements K. Giese To cite this version: K. Giese. On the beam deflection method applied to ultrasound absorption measurements. Journal

More information

Random Matrix Theory Lecture 1 Introduction, Ensembles and Basic Laws. Symeon Chatzinotas February 11, 2013 Luxembourg

Random Matrix Theory Lecture 1 Introduction, Ensembles and Basic Laws. Symeon Chatzinotas February 11, 2013 Luxembourg Random Matrix Theory Lecture 1 Introduction, Ensembles and Basic Laws Symeon Chatzinotas February 11, 2013 Luxembourg Outline 1. Random Matrix Theory 1. Definition 2. Applications 3. Asymptotics 2. Ensembles

More information

Laser characterization of ultrasonic wave propagation in random media

Laser characterization of ultrasonic wave propagation in random media PHYSICAL REVIEW E 67, 046618 2003 Laser characterization of ultrasonic wave propagation in random media John A. Scales* and Alison E. Malcolm Physical Acoustics Laboratory and Center for Wave Phenomena,

More information

Introduction to Wave Scattering, Localization and Mesoscopic Phenomena

Introduction to Wave Scattering, Localization and Mesoscopic Phenomena Springer Series in Materials Science 88 Introduction to Wave Scattering, Localization and Mesoscopic Phenomena Bearbeitet von Ping Sheng Neuausgabe 2006. Buch. xv, 329 S. Hardcover ISBN 978 3 540 29155

More information

Nonlinear Optical Waves in Disordered Ferroelectrics

Nonlinear Optical Waves in Disordered Ferroelectrics PhD candidate: Nonlinear Optical Waves in Disordered Ferroelectrics Davide Pierangeli davide.pierangeli@roma1.infn.it Supervisor: Prof. Eugenio DelRe Physics Department, Unversity of Rome La Sapienza,

More information

THE ULTRASONIC FIELD OF FOCUSED TRANSDUCERS THROUGH A LIQUID- M. EI Amrani Intercontrole 13 rue du Capricome, Rungis Cedex, France

THE ULTRASONIC FIELD OF FOCUSED TRANSDUCERS THROUGH A LIQUID- M. EI Amrani Intercontrole 13 rue du Capricome, Rungis Cedex, France THE ULTRASONIC FIELD OF FOCUSED TRANSDUCERS THROUGH A LIQUID- SOLID INTERFACE INTRODUCTION M. EI Amrani Intercontrole 13 rue du Capricome, 94583 Rungis Cedex, France P. Calmon, O. Roy CEREMIST A, Commissariat

More information

Light diffusion with gain and random lasers

Light diffusion with gain and random lasers PHYSICAL REVIEW E VOLUME 54, NUMBER 4 OCTOBER 1996 Light diffusion with gain and random lasers Diederik S. Wiersma * FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The

More information

Semiclassical formulation

Semiclassical formulation The story so far: Transport coefficients relate current densities and electric fields (currents and voltages). Can define differential transport coefficients + mobility. Drude picture: treat electrons

More information

Mandatory Assignment 2013 INF-GEO4310

Mandatory Assignment 2013 INF-GEO4310 Mandatory Assignment 2013 INF-GEO4310 Deadline for submission: 12-Nov-2013 e-mail the answers in one pdf file to vikashp@ifi.uio.no Part I: Multiple choice questions Multiple choice geometrical optics

More information

gives rise to multitude of four-wave-mixing phenomena which are of great

gives rise to multitude of four-wave-mixing phenomena which are of great Module 4 : Third order nonlinear optical processes Lecture 26 : Third-order nonlinearity measurement techniques: Z-Scan Objectives In this lecture you will learn the following Theory of Z-scan technique

More information

Jones calculus for optical system

Jones calculus for optical system 2/14/17 Electromagnetic Processes In Dispersive Media, Lecture 6 1 Jones calculus for optical system T. Johnson Key concepts in the course so far What is meant by an electro-magnetic response? What characterises

More information

Towards Proton Computed Tomography

Towards Proton Computed Tomography SCIPP Towards Proton Computed Tomography L. R. Johnson, B. Keeney, G. Ross, H. F.-W. Sadrozinski, A. Seiden, D.C. Williams, L. Zhang Santa Cruz Institute for Particle Physics, UC Santa Cruz, CA 95064 V.

More information

Phased Array Inspection at Elevated Temperatures

Phased Array Inspection at Elevated Temperatures Phased Array Inspection at Elevated Temperatures Mohammad Marvasti 1, Mike Matheson 2, Michael Wright, Deepak Gurjar, Philippe Cyr, Steven Peters Eclipse Scientific Inc., 97 Randall Dr., Waterloo, Ontario,

More information

EE 5345 Biomedical Instrumentation Lecture 6: slides

EE 5345 Biomedical Instrumentation Lecture 6: slides EE 5345 Biomedical Instrumentation Lecture 6: slides 129-147 Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University slides can be viewed at: http:// www.seas.smu.edu/~cd/ee5345.html

More information