Lamb Waves in Plate Girder Geometries

Size: px
Start display at page:

Download "Lamb Waves in Plate Girder Geometries"

Transcription

1 Lamb Waves in Plate Girder Geometries D.W. Greve, 1 N. L. Tyson 2, and I.J. Oppenheim 2 1 Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, ABSTRACT Lamb waves generated by wafer-type transducers have been previously studied in rectangular plates, and in this paper we describe finite element simulations and laboratory experiments extending those studies to plate girders. A Lamb wave generated in the web of a girder is shown to induce a wave traveling at a different speed in the flanges, and to develop a wavefront geometry in the web that is influenced by reflection from the web-to-flange joints. We compare simulation results to waves measured on steel plate girder specimens. The topic is of interest because steel plate girders must be inspected or monitored to detect fatigue cracks, and this work provides information on the area that may be illuminated by each wafer-type transducer, coupled to the orientation and size of fatigue crack that might be resolved when Lamb waves are used for pulse-echo flaw detection. I. Introduction Steel plate girders are the most common highway or railway bridge structural member and are very efficient for their purposes; however, they incur fatigue cracks and must be inspected frequently. Presently inspection is a visual mapping process in which crack location, orientation, and length are recorded. We seek to develop resident active sensors to monitor cracks at critical locations; we believe that such a technology would improve structural health monitoring practices, and we note that there would be particular benefits for the inspection of cracks in locations that are otherwise difficult to access. We have previously conducted experimental and simulation studies of Lamb waves generated in thin elastic plates by piezoceramic wafer-type transducers [1]. Those studies confirmed our expectations that Lamb waves can return reflections from cracks or other discontinuities, and produced simple guidelines for choosing the transducer dimensions and the forcing function for selective mode generation. Because plate girders are fabricated from thin plates, we expect Lamb waves to be useful for monitoring their structural condition. However, the many welded joints and complex shapes make it difficult to interpret reflected waveforms. In this paper we combine finite element simulations with selected experiments to understand some aspects of wave propagation in these structures. Simulations were performed with FEMLAB 2.3 or FEMLAB 3.0 (in two and three dimensions, respectively) in the time-stepping mode. The excitation was a 5-cycle pulse, a shaped sinusoid with center frequency f, of the form sin(2π ft) sin( 2 πft) t < 5 / f 10 F( t) =. 0 t 5 / f Details of the approach used for simulation in two dimensions are published elsewhere [1]; in three dimensions the GMRES linear system solver and the weak solution form were used. Solution output times were chosen to be roughly 1/8 th the period of the center frequency, and the element size was generally chosen to be a fraction of the wavelength. The computational burden of this latter condition, as reflected in the number of elements used in the simulation, is much more modest in two dimensions than in three dimensions. For that reason, simulations for three-dimensional problems were limited to smaller regions and required considerably greater computation time.

2 II. Simulation of reflections from a part-thickness crack in a plate Reflections from flaws in a plate have been simulated by others including Rose and coworkers [2] and Lowe and Diligent [3]. We report here simulations of Lamb wave generation by a wafer-type transducer, and the interaction of the generated wave with a part-thickness slot. Simulations were performed for an aluminum plate 1.59 mm in thickness with a piezoelectric emitting transducer 0.64 cm long and cm thick, containing a rectangular slot 0.01 cm wide penetrating halfway through the plate thickness. The simulations were performed for a plate 0.6 m in length, symmetric about x = 0, excited by a pulsed voltage waveform with center frequency f = 400 khz. Figure 1. Particle velocity (y-direction) at bottom surface The analysis was performed under the assumption of plane strain, reducing the problem to two dimensions. Figure 1 plots the y velocity at the bottom surface as a function of time. It is convenient to plot the y velocity because A0 and S0 modes both have significant displacement normal to the surface. Consequently both modes can be seen in the same plot. At t = 25 µs we see both A0 and S0 modes to have been generated by the transducer. With wafer transducers, both modes are generated except in special cases where the mode wavelength is an integral multiple of the transducer length [1],[4]. At the center frequency of 400 khz, the A0 mode is slower, has a shorter wavelength, and exhibits more dispersion than the S0 mode. The S0 mode begins to interact with the slot at t = 35 µs and the A0 mode begins to interact with the slot at t = 55 µs. Interaction of the S0 mode with the slot results in four distinct pulses: transmitted and reflected S0 modes, and transmitted and reflected A0 modes produced by mode conversion. The A0 mode also results in transmitted and reflected pulses, although mode conversion to S0 is not discernible in these simulation results.

3 The large number of distinct pulses resulting from interaction with simple defects represents a challenge for the practical application of Lamb waves for flaw detection. In general it will not be practical simply to look for defectrelated echoes as is done in traditional ultrasonic inspection. Options include: various techniques for comparing waveforms [5]; careful design of the transducer to reduce the number of emitted modes [4]; and time-reversal acoustics [6]. In all cases it is useful to understand the interaction of various types of defects with Lamb wave, especially in complex geometries. In the remainder of this paper we consider three different specific cases of particular interest. III. Simulation of reflections from a crack at a web-flange welded joint We studied reflections occurring at a welded joint between a web 0.63 cm thick and a flange of varying thickness. Figure 2 shows both the geometry of the joint, together with a model of a crack halfway through the web thickness at the weld location. Figure 2. Reflection of an incident S0 wave at a welded joint with a crack We simulated the reflections of an S0 mode, originating in the web, with and without the crack. Simulations were performed with a center frequency of 200 khz. Figure 2 shows the simulation results for a flange thickness of 1.26

4 cm (in Figure 2 the girder is rotated 90 o from its customary orientation). In this plot the arrows indicate the displacement, and colors indicate the von Mises stress, with red corresponding to the highest stress. We see the S0 wave approaching the joint at 50 µs. At 60 and 70 µs the wave begins to interact with the joint. At 80 and 90 µs there is a reflected S0 wave leaving the joint, together with waves propagating into the flange. In order to quantify these results we have calculated the total energy in the reflected S0 mode relative to the energy in the incident pulse. The results are shown in Fig. 3 as a function of flange thickness, with and without the crack present. Without a crack the reflected energy is small, particularly when the flange is thicker than the plate, which is the usual situation in a structural girder. The reflected energy is seen to reach a minimum for a flange thickness of 1.90 cm, or 0.75 in. At this thickness there is a good match between the displacements of the incident S0 mode and an S1 mode in the flange (not shown). When the crack is present, the reflected energy is substantially increased, indicating that crack detection should be feasible. Figure 3. Reflected energy from welded joint with and without the presence of a crack for various flange thicknesses. However, in structures we must consider reflections in a complex three dimensional geometry. Simulations in this case are more difficult because of the large number of elements that are needed to model the waves. In the following section we present some simulations of small regions that provide insight into this difficult problem. IV. Simulation of wave propagation in a rolled beam Figure 4. Displacement in the z direction for a wave excited in a rolled beam

5 We next consider propagation of guided waves originating at mid-height of the web in a rolled beam. Figure 4 shows the propagation of 150 khz waves in a beam 15 cm deep, with flanges 7.5 cm wide and a web 0.5 cm thick; the beam is again rotated 90 o from is customary orientation, with planes of symmetry about z = 0 and x = 0. An S0 mode was generated by applying a time-dependent force in the z direction to an area element at the origin; this is roughly equivalent to a point-force excitation in the two dimensional problem. In Figure 4 the colors indicate displacement in the z-direction, with red positive and blue negative. The wave is initially launched with a semicircular wavefront that becomes nearly a straight wavefront as propagation proceeds. We also see a wave reflected from the flange, which lengthens the tail of the pulse propagating in the web, as well as some propagation into the flange. Figure 5 shows the z displacement as a function of time for various locations along the centerline of the beam; the tail extending well past the duration of the exciting pulse is clearly visible. Figure 5. Simulated z displacement as a function of time at various distances along the axis of the beam. V. Simulation of wave propagation in a plate girder Rolled beam products are limited in overall depth and in their proportions of width to thickness. Most steel bridges are instead designed as plate girders, in which thin plates are welded together to create an optimal member, but typically also requiring transverse stiffener plates. Cracks at or near welded joints sometimes occur and represent a potential cause of failure or reduced load rating. We explore here the propagation of guided waves in the plate girder geometry and also the potential for crack detection. Figure 6. Plate girder geometry Figure 6 shows a portion of a plate girder, in its customary orientation, and Figure 7 shows the corresponding simulation model with a plane of symmetry at the mid-height of the web. The web and stiffener are 0.64 cm thick,

6 and the flange is 1.28 cm thick. An S0 wave at a center frequency of 200 khz was produced by radial forces applied to a circular zone at the mid-height of the web. The simulation domain is symmetric about that surface and all other edges are free. Figure 7. Simulated z displacement in a plate girder at 20, 30, and 45 µs; pulse center frequency of 200 khz. Figure 7 shows the simulated z displacement (in-plane with respect to the web) at t = 20, 30, and 45 µs. When the wave reaches the transverse stiffener, a portion of the wave propagates into the stiffener and another portion continues past the stiffener within the web. (There is also a small reflection from the stiffener, but it is not visible in Figure 7.) When the wave reaches the flange, much of the energy is transmitted into the flange and only a small amount is reflected. These results suggest that reflections will be comparatively small in intact structures. Because free surfaces are perfect reflectors, we can expect significant reflections from cracks, at least when cracks are oriented nearly perpendicular to the direction of wave propagation.

7 VI. Experimental measurements of wave propagation in a plate girder 61 cm 30 cm 91 cm 15 cm Figure 8. Measured reflections, at three center frequencies, for model plate girder Reflections occur at joints in intact structures, and it will be necessary to distinguish those reflections from ones that occur at defect locations. We have conducted preliminary experimental studies using a laboratory specimen of a steel plate girder, scaled to realistic cross-sectional proportions. The web is 91 cm deep and 0.32 cm thick, for a height-thickness ratio of 284, and the flange is 10 cm wide and 0.64 cm thick, for a width-thickness ratio of 16; the specimen is 61 cm long, with no stiffeners. A PZT transducer (0.6 cm in diameter) was located on the web 15 cm from a free edge and 30 cm from the upper flange, and reflected signals at three different center frequencies are shown in Figure 8. The transducer was used in pulse-echo mode with a transmit/receive switch. The first reflection after the input circuit recovers from the exciting signal is a strong reflection of the S0 mode from the nearest free surface. This is followed by the A0 mode reflection from that surface, and then a weak reflection from the S0 mode reflected from the flange; a weak reflection from the flange is consistent with the simulations presented above. The remaining reflections that have significant amplitude can be assigned to reflections from the more distant free edge and flange. 61 cm 91 cm 30 cm 15 cm Figure 9. Measured reflections, comparing absence and presence of weld discontinuity Figure 9 shows results from a second set of experiments, conducted at a center frequency of 379 khz, in which a PZT wafer-type transducer was located on the web 15 cm from the web-flange joint and 30 cm from the nearest free edge, permitting a relatively clear interpretation of reflections from that joint. A flaw was created by a sawcut, located in the web along the web-flange joint, with a length of 3 cm. Figure 9 shows the measured reflections in the unflawed and flawed cases, and reflections from the flaw region are observed to be significant.

8 VII. Summary Simulations in two-dimensions and in three-dimensions show relatively weak reflections of Lamb waves from welded joints between steel plates. This is especially true for the web-flange joint in plate girders, where the flange is invariably thicker than the web, a situation that leads to particularly small reflections. Cracks that are oriented perpendicular to the direction of wave propagation, on the other hand, cause strong reflections. These results suggest that guided waves can be useful for flaw detection. The existence of multiple small reflections, particularly in complex geometries, motivates the development of techniques for distinguishing flaw reflections from baseline reflections. Pulse-echo experiments have been performed, using wafer-type transducers mounted on the web, that extend Lamb wave studies from the two-dimensional geometry of flat plates to the three-dimensional geometry of plate girders. The experiments indicate that reflections from the web-flange joints are relatively weak, corroborating observations made in the simulation studies. The experiments also show that a discontinuity in a web-flange weld, oriented normal to the direction of the Lamb waves, produces strong reflections. Acknowledgements We are grateful to the National Science Foundation for support of this work under Grant No. CMS Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. References [1] J.H. Nieuwenhuis, J. Neumann, D.W. Greve and I.J. Oppenheim, Generation and detection of guided waves using PZT wafer transducers, (to be published in IEEE Trans. UFFC). [2] Y. Cho, D.D. Hongerholt, and J.L. Rose, Lamb wave scattering analysis for reflector characterization, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 44, 46 (1997). [3] M. J. S. Lowe and O. Diligent, Low-frequency reflection characteristics of the S0 Lamb wave from a rectangular notch in a plate, J. Acoust. Soc. Am. 111 (1), Pt. 1, Jan [4] V. Giurgiutiu, Lamb Wave Generation with Piezoelectric Wafer Active Sensors for Structural Health Monitoring, Proceedings of the SPIE - The International Society for Optical Engineering, vol. 5056, pp (2003). [5] For example, see S.W. Kercel, M.B. Klein, B. Pouet, Wavelet and wavelet-packet analysis of Lamb wave signatures in laser ultrasonics, Proceedings of the SPIE - The International Society for Optical Engineering, vol. 4056, pp (2000). [6] Prada, C., and M. Fink Separation of interfering acoustic scattered signals using the invariants of the time-reversal operator. Application to Lamb waves characterization, Journal of the Acoustical Society of America, 104(2):

Lamb Wave Behavior in Bridge Girder Geometries

Lamb Wave Behavior in Bridge Girder Geometries Lamb Wave Behavior in Bridge Girder Geometries I. J. Oppenheim a*, D. W. Greve b, N. L. Tyson a a Dept. of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 b Dept.

More information

ARCHIVES OF CIVIL ENGINEERING, LX, 4, 2014 APPLICATION OF GUIDED WAVE PROPAGATION IN DIAGNOSTICS OF STEEL BRIDGE COMPONENTS 1.

ARCHIVES OF CIVIL ENGINEERING, LX, 4, 2014 APPLICATION OF GUIDED WAVE PROPAGATION IN DIAGNOSTICS OF STEEL BRIDGE COMPONENTS 1. DOI: 10.2478/ace-2014-0033 ARCHIVES OF CIVIL ENGINEERING, LX, 4, 2014 APPLICATION OF GUIDED WAVE PROPAGATION IN DIAGNOSTICS OF STEEL BRIDGE COMPONENTS M. RUCKA 1, B. ZIMA 2, R. KĘDRA 3 Early detection

More information

SIMULATION OF LAMB WAVE EXCITATION FOR DIFFERENT ELAS- TIC PROPERTIES AND ACOUSTIC EMISSION SOURCE GEOMETRIES

SIMULATION OF LAMB WAVE EXCITATION FOR DIFFERENT ELAS- TIC PROPERTIES AND ACOUSTIC EMISSION SOURCE GEOMETRIES SIMULATION OF LAMB WAVE EXCITATION FOR DIFFERENT ELAS- TIC PROPERTIES AND ACOUSTIC EMISSION SOURCE GEOMETRIES Abstract MARKUS G. R. SAUSE and SIEGFRIED HORN University of Augsburg, Institute for Physics,

More information

ACOUSTIC EMISSION SOURCE DETECTION USING THE TIME REVERSAL PRINCIPLE ON DISPERSIVE WAVES IN BEAMS

ACOUSTIC EMISSION SOURCE DETECTION USING THE TIME REVERSAL PRINCIPLE ON DISPERSIVE WAVES IN BEAMS ACOUSTIC EMISSION SOURCE DETECTION USING THE TIME REVERSAL PRINCIPLE ON DISPERSIVE WAVES IN BEAMS ERNST ROBERT 1,DUAL JURG 1 1 Institute of Mechanical Systems, Swiss Federal Institute of Technology, ETH

More information

PROPERTY STUDY ON EMATS WITH VISUALIZATION OF ULTRASONIC PROPAGATION

PROPERTY STUDY ON EMATS WITH VISUALIZATION OF ULTRASONIC PROPAGATION More Info at Open Access Database www.ndt.net/?id=18576 PROPERTY STUDY ON EMATS WITH VISUALIZATION OF ULTRASONIC PROPAGATION T. Yamamoto, T. Furukawa, I. Komura Japan Power Engineering and Inspection Corporation,

More information

A Novel Sensor Design for Generation and Detection of Shear-Horizontal Waves Based on Piezoelectric Fibres

A Novel Sensor Design for Generation and Detection of Shear-Horizontal Waves Based on Piezoelectric Fibres 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic A Novel Sensor Design for Generation and Detection of Shear-Horizontal Waves Based on Piezoelectric

More information

Electromagnetic Acoustic Transducers for In and Out of plane Ultrasonic Wave Detection

Electromagnetic Acoustic Transducers for In and Out of plane Ultrasonic Wave Detection 7th World Conference on Nondestructive Testing, 5-8 Oct 8, Shanghai, China Electromagnetic Acoustic Transducers for In and Out of plane Ultrasonic Wave Detection Xiaoming JIAN, Steve DIXON, Karl QUIK Phoenix

More information

Non-Destructive Testing of Concrete Based on Analysis of Velocity Dispersion of Laser Ultrasonics

Non-Destructive Testing of Concrete Based on Analysis of Velocity Dispersion of Laser Ultrasonics ECNDT 26 - Poster 223 Non-Destructive Testing of Concrete Based on Analysis of Velocity Dispersion of Laser Ultrasonics Kenichiro TSUYUKI, Ryuta KATAMURA, Satoru MIURA, Kajima Technical Research Institute,

More information

A FEM STUDY ON THE INFLUENCE OF THE GEOMETRIC CHARACTERISTICS OF METALLIC FILMS IRRADIATED BY NANOSECOND LASER PULSES

A FEM STUDY ON THE INFLUENCE OF THE GEOMETRIC CHARACTERISTICS OF METALLIC FILMS IRRADIATED BY NANOSECOND LASER PULSES 8 th GRACM International Congress on Computational Mechanics Volos, 12 July 15 July 2015 A FEM STUDY ON THE INFLUENCE OF THE GEOMETRIC CHARACTERISTICS OF METALLIC FILMS IRRADIATED BY NANOSECOND LASER PULSES

More information

Simulation of Piezoelectric Induced Lamb Waves in Plates

Simulation of Piezoelectric Induced Lamb Waves in Plates Simulation of Piezoelectric Induced Lamb Waves in Plates C. WILLBERG, J. M. VIVAR-PEREZ, Z. AHMAD and U. GABBERT ABSTRACT The use of Lamb waves for damage detection and non-destructive evaluation have

More information

Finite Element Simulation of Piezoelectric Wafer Active Sensors for Structural Health Monitoring with Coupled-Filed Elements

Finite Element Simulation of Piezoelectric Wafer Active Sensors for Structural Health Monitoring with Coupled-Filed Elements Finite Element Simulation of Piezoelectric Wafer Active Sensors for Structural Health Monitoring with Coupled-Filed Elements Weiping Liu, Victor Giurgiutiu Department of Mechanical Engineering, Univ. of

More information

6th NDT in Progress Lamb waves in an anisotropic plate of a single crystal silicon wafer

6th NDT in Progress Lamb waves in an anisotropic plate of a single crystal silicon wafer 6th NDT in Progress 2011 International Workshop of NDT Experts, Prague, 10-12 Oct 2011 Lamb waves in an anisotropic plate of a single crystal silicon wafer Young-Kyu PARK 1, Young H. KIM 1 1 Applied Acoustics

More information

Numerical Study: Time-Reversed Reciprocal Method and Damage Detection Method for Weld Fracture

Numerical Study: Time-Reversed Reciprocal Method and Damage Detection Method for Weld Fracture Chapter 4 Numerical Study: Time-Reversed Reciprocal Method and Damage Detection Method for Weld Fracture A numerical study is performed to gain insight into applying the proposed method of detecting high-frequency

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 8, 29 http://asa.aip.org 18th Meeting Acoustical Society of America San Antonio, Texas 26-3 October 29 Session 2aEA: Engineering Acoustics 2aEA8. Time Reversal

More information

AE Source Orientation by Plate Wave Analysis * Michael R. Gorman Aeronautics and Astronautics Naval Postgraduate School Monterey, CA 93943

AE Source Orientation by Plate Wave Analysis * Michael R. Gorman Aeronautics and Astronautics Naval Postgraduate School Monterey, CA 93943 AE Source Orientation by Plate Wave Analysis * Michael R. Gorman Aeronautics and Astronautics Naval Postgraduate School Monterey, CA 93943 William H. Prosser NASA Langley Research Center Hampton, VA 23665

More information

Methods Based on the Phenomenon of Elastic Wave Propagation (Guided Waves) Interaction with Damage

Methods Based on the Phenomenon of Elastic Wave Propagation (Guided Waves) Interaction with Damage Propagation (Guided Waves) Interaction with Damage Wieslaw Ostachowicz Polish Academy of Sciences Institute of Fluid Flow Machinery Department of Mechanics of Intelligent Structures 14 Fiszera Street 80231

More information

Multiple Defect Detection by Applying the Time Reversal Principle on Dispersive Waves in Beams

Multiple Defect Detection by Applying the Time Reversal Principle on Dispersive Waves in Beams 18th World Conference on Nondestructive Testing, 16-20 April 2012, Durban, South Africa Multiple Defect Detection by Applying the Time Reversal Principle on Dispersive Waves in Beams Robert ERNST 1, Mario

More information

Piecewise semi-analytical modeling of guided wave generation by piezoelectric transducers

Piecewise semi-analytical modeling of guided wave generation by piezoelectric transducers International Workshop on MRT MTERIL, TRUCTURE NDT in Canada 13Conference & NDT for the Energy Industry October 7-1, 13 Calgary, lberta, CND Piecewise semi-analytical modeling of guided wave generation

More information

SPECTRAL FINITE ELEMENT METHOD

SPECTRAL FINITE ELEMENT METHOD SPECTRAL FINITE ELEMENT METHOD Originally proposed by Patera in 1984 for problems in fluid dynamics Adopted for problems of propagation of acoustic and seismic waves Snapshot of the propagation of seismic

More information

Sensor Measurements For Diagnostic Equipment

Sensor Measurements For Diagnostic Equipment Sensor Measurements For Diagnostic Equipment Mossi, K. Virginia Commonwealth University 601 West Main Street, Room 318 Richmond, VA 23284 kmmossi@vcu.edu (804) 827-5275 Scott, L.A. Dominion Energy, Inc.

More information

EVALUATING THERMALLY DAMAGED POLYIMIDE INSULATED WIRING (MIL-W-81381) WITH ULTRASOUND

EVALUATING THERMALLY DAMAGED POLYIMIDE INSULATED WIRING (MIL-W-81381) WITH ULTRASOUND EVALUATING THERMALLY DAMAGED POLYIMIDE INSULATED WIRING (MIL-W-81381) WITH ULTRASOUND Eric I. Madaras NASA Langley Research Center Nondestructive Evaluation Sciences Branch NASA, Hampton, VA 23681 Robert

More information

Damage Inspection of Fiber Reinforced Polymer-Concrete Systems using a Distant Acoustic-Laser NDE Technique

Damage Inspection of Fiber Reinforced Polymer-Concrete Systems using a Distant Acoustic-Laser NDE Technique SPIE Smart Structures/NDE March 11, 2010, San Diego, CA Session 10: Civil Infrastructure Health Monitoring I Damage Inspection of Fiber Reinforced Polymer-Concrete Systems using a Distant Acoustic-Laser

More information

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization Serena De Paolis *, Francesca Lionetto and Alfonso Maffezzoli

More information

High Frequency Guided Wave Propagation in Monocrystalline Silicon Wafers

High Frequency Guided Wave Propagation in Monocrystalline Silicon Wafers High Frequency Guided Wave Propagation in Monocrystalline Silicon Wafers Marco Pizzolato a), Bernard Masserey a), Jean-Luc Robyr a) and Paul Fromme b) a) Department of Mechanical Engineering, University

More information

Finite Element and Plate Theory Modeling of Acoustic Emission Waveforms. NASA Langley Research Center. Hampton, VA *University of Denver

Finite Element and Plate Theory Modeling of Acoustic Emission Waveforms. NASA Langley Research Center. Hampton, VA *University of Denver Finite Element and Plate Theory Modeling of Acoustic Emission Waveforms W. H. Prosser, M. A. Hamstad + *, J. Gary +, and A. O Gallagher + NASA Langley Research Center Hampton, VA 23681-1 *University of

More information

Non-contact evaluation of thickness reduction of plates and pipes using EMAT-generated guided wave

Non-contact evaluation of thickness reduction of plates and pipes using EMAT-generated guided wave IV Conferencia Panamericana de END Buenos Aires Octubre 7 Non-contact evaluation of thickness reduction of plates and pipes using EMAT-generated guided wave Ik-Keun Park, Yong-Kwon Kim and Jin-Hyuk Lee

More information

LECTURE NO. 4-5 INTRODUCTION ULTRASONIC * PULSE VELOCITY METHODS

LECTURE NO. 4-5 INTRODUCTION ULTRASONIC * PULSE VELOCITY METHODS LECTURE NO. 4-5 ULTRASONIC * PULSE VELOCITY METHODS Objectives: To introduce the UPV methods To briefly explain the theory of pulse propagation through concrete To explain equipments, procedures, calibrations,

More information

CHAPTER 4 BASICS OF ULTRASONIC MEASUREMENT AND ANFIS MODELLING

CHAPTER 4 BASICS OF ULTRASONIC MEASUREMENT AND ANFIS MODELLING 37 CHAPTER 4 BASICS OF ULTRASONIC MEASUREMENT AND ANFIS MODELLING 4.1 BASICS OF ULTRASONIC MEASUREMENT All sound waves, whether audible or ultrasonic, are mechanical vibrations involving movement in the

More information

Axial Higher Order Modes Cluster (A-HOMC) Guided Wave for Pipe Inspection.

Axial Higher Order Modes Cluster (A-HOMC) Guided Wave for Pipe Inspection. 384 Proceedings of the National Seminar & Exhibition on Non-Destructive Evaluation NDE 2009, December 10-12, 2009 Axial Higher Order Modes Cluster (A-HOMC) Guided Wave for Pipe Inspection. Chandrasekaran

More information

Structural Health Monitoring Using Smart Piezoelectric Material

Structural Health Monitoring Using Smart Piezoelectric Material Structural Health Monitoring Using Smart Piezoelectric Material Kevin K Tseng and Liangsheng Wang Department of Civil and Environmental Engineering, Vanderbilt University Nashville, TN 37235, USA Abstract

More information

EFIT SIMULATIONS FOR ULTRASONIC NDE

EFIT SIMULATIONS FOR ULTRASONIC NDE EFIT SIMULATIONS FOR ULTRASONIC NDE René Marklein, Karl-Jörg Langenberg, Klaus Mayer (University of Kassel, Department of Electrical and Computer Engineering, Electromagnetic Field Theory, Wilhelmshöher

More information

VIABILITY OF APPLYING MECHANICAL IMPEDANCE BASED STRUCTURAL HEALTH MONITORING FOR PIPELINE: A REVIEW

VIABILITY OF APPLYING MECHANICAL IMPEDANCE BASED STRUCTURAL HEALTH MONITORING FOR PIPELINE: A REVIEW VIABILITY OF APPLYING MECHANICAL IMPEDANCE BASED STRUCTURAL HEALTH MONITORING FOR PIPELINE: A REVIEW Shahruddin Mahzan, Hatem Mostafa Elwalwal and Muheieddin Meftah Farag Elghanudi Structural Integrity

More information

Dispersion Relations in Plate Structures Studied with a Scanning Laser Vibrometer

Dispersion Relations in Plate Structures Studied with a Scanning Laser Vibrometer ECNDT 2006 - Mo.2.1.4 Dispersion Relations in Plate Structures Studied with a Scanning Laser Vibrometer Bernd KÖHLER, Fraunhofer Institute for Non-Destructive Testing, Dresden, Germany Abstract. Scanning

More information

Development of PC-Based Leak Detection System Using Acoustic Emission Technique

Development of PC-Based Leak Detection System Using Acoustic Emission Technique Key Engineering Materials Online: 004-08-5 ISSN: 66-9795, Vols. 70-7, pp 55-50 doi:0.408/www.scientific.net/kem.70-7.55 004 Trans Tech Publications, Switzerland Citation & Copyright (to be inserted by

More information

ULTRASONIC MEASUREMENT OF IN-PLANE MODULI OF PULTRUDED COMPOSITES

ULTRASONIC MEASUREMENT OF IN-PLANE MODULI OF PULTRUDED COMPOSITES ULTRASONIC MEASUREMENT OF IN-PLANE MODULI OF PULTRUDED COMPOSITES R. Prabhakaran 1, M. Saha 2, and T. Galloway 3 1,2 Department of Mechanical Engineering, Old Dominion University Norfolk, Virginia 23529,

More information

Available online at ScienceDirect. Physics Procedia 63 (2015 ) 54 60

Available online at   ScienceDirect. Physics Procedia 63 (2015 ) 54 60 Available online at www.sciencedirect.com ScienceDirect Physics Procedia 63 (2015 ) 54 60 43 rd Annual Symposium of the Ultrasonic Industry Association, UIA Symposium 2014 Phase velocity method for guided

More information

ULTRASONIC TESTING OF RAILS INCLUDING VERTICAL CRACKS-

ULTRASONIC TESTING OF RAILS INCLUDING VERTICAL CRACKS- ULTRASONIC TESTING OF RAILS INCLUDING VERTICAL CRACKS- NUMERICAL MODELING AND EXPERIMENTAL RESULTS INTRODUCTION F. Schubert, B. Koehler Fraunhofer-IZFP, Branch Lab EADQ Kruegerstrasse 22 D-01326 Dresden

More information

SEISMIC WAVE PROPAGATION IN FRACTURED CARBONATE ROCK

SEISMIC WAVE PROPAGATION IN FRACTURED CARBONATE ROCK Proceedings of the Project Review, Geo-Mathematical Imaging Group (Purdue University, West Lafayette IN), Vol. 1 (2010) pp. 211-220. SEISMIC WAVE PROPAGATION IN FRACTURED CARBONATE ROCK WEIWEI LI AND LAURA

More information

APPLICATION-DIRECTED MODELING OF RADIATION AND PROPAGATION OF ELASTIC WAVES IN ANISOTROPIC MEDIA: GPSS AND OPOSSM

APPLICATION-DIRECTED MODELING OF RADIATION AND PROPAGATION OF ELASTIC WAVES IN ANISOTROPIC MEDIA: GPSS AND OPOSSM APPLICATION-DIRECTED MODELING OF RADIATION AND PROPAGATION OF ELASTIC WAVES IN ANISOTROPIC MEDIA: GPSS AND OPOSSM M. Spies, F. Walte Fraunhofer-Institute for Nondestructive Testing (IzfP) 66123 Saarbriicken,

More information

Application of Normal Mode Expansion to AE Waves in Finite Plates1

Application of Normal Mode Expansion to AE Waves in Finite Plates1 Application of Normal Mode Expansion to AE Waves in Finite Plates1 M. R. Gorman2 and W. H. Prosser3 INTRODUCTION Breckenridge et al. (1975), Hsu (1985) and Pao (1978) adapted approaches from seismology

More information

Doppler echocardiography & Magnetic Resonance Imaging. Doppler echocardiography. History: - Langevin developed sonar.

Doppler echocardiography & Magnetic Resonance Imaging. Doppler echocardiography. History: - Langevin developed sonar. 1 Doppler echocardiography & Magnetic Resonance Imaging History: - Langevin developed sonar. - 1940s development of pulse-echo. - 1950s development of mode A and B. - 1957 development of continuous wave

More information

COMSOL for Modelling of STW Devices

COMSOL for Modelling of STW Devices COMSOL for Modelling of STW Devices V. Yantchev *1 and V. Plessky **2 1 Chalmers University of Technology, Biophysical Technology Laboratory, Göteborg, Sweden 2 GVR Trade SA, Chez-le-Bart, Switzerland

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

DEVELOPMENT OF A NON-CONTACTING STRESS MEASUREMENT SYSTEM DURING TENSILE TESTING USING THE ELECTROMAGNETIC ACOUSTIC TRANSDUCER FOR A LAMB WAVE

DEVELOPMENT OF A NON-CONTACTING STRESS MEASUREMENT SYSTEM DURING TENSILE TESTING USING THE ELECTROMAGNETIC ACOUSTIC TRANSDUCER FOR A LAMB WAVE DEVELOPMENT OF A NON-CONTACTING STRESS MEASUREMENT SYSTEM DURING TENSILE TESTING USING THE ELECTROMAGNETIC ACOUSTIC TRANSDUCER FOR A LAMB WAVE Riichi Murayama, Shinichi Tokunaga, Kouichi Hirata Fukuoka

More information

Surface Magnetic Non-Destructive Testing

Surface Magnetic Non-Destructive Testing Surface Magnetic Non-Destructive Testing Evangelos Hristoforou 1,*, Konstantinos Kosmas 1 and Eleftherios Kayafas 2 1 School of Mining and Metallurgy Engineering, National Technical University of Athens,

More information

Part 7. Nonlinearity

Part 7. Nonlinearity Part 7 Nonlinearity Linear System Superposition, Convolution re ( ) re ( ) = r 1 1 = r re ( 1 + e) = r1 + r e excitation r = r() e response In the time domain: t rt () = et () ht () = e( τ) ht ( τ) dτ

More information

Noncontact monitoring of fatigue crack growth using high frequency guided waves

Noncontact monitoring of fatigue crack growth using high frequency guided waves Noncontact monitoring of fatigue crack growth using high frequency guided waves B. Masserey a and P. Fromme b a Department of Mechanical Engineering, University of Applied Sciences, Fribourg, Switzerland

More information

Durability and Survivability of Piezoelectric Wafer Active Sensors Mounted on Aluminum Structures for Aerospace Vehicle Health Monitoring

Durability and Survivability of Piezoelectric Wafer Active Sensors Mounted on Aluminum Structures for Aerospace Vehicle Health Monitoring Durability and Survivability of Piezoelectric Wafer Active Sensors Mounted on Aluminum Structures for Aerospace Vehicle Health Monitoring Victor Giurgiutiu, Bin Lin, James Doane University of South Carolina

More information

DYNAMICS AND DAMAGE ASSESSMENT IN IMPACTED CROSS-PLY CFRP PLATE UTILIZING THE WAVEFORM SIMULATION OF LAMB WAVE ACOUSTIC EMISSION

DYNAMICS AND DAMAGE ASSESSMENT IN IMPACTED CROSS-PLY CFRP PLATE UTILIZING THE WAVEFORM SIMULATION OF LAMB WAVE ACOUSTIC EMISSION DYNAMICS AND DAMAGE ASSESSMENT IN IMPACTED CROSS-PLY CFRP PLATE UTILIZING THE WAVEFORM SIMULATION OF LAMB WAVE ACOUSTIC EMISSION ABSTRACT Y. MIZUTAMI, H. NISHINO, M. TAKEMOTO and K. ONO* Aoyama Gakuin

More information

A model for the ultrasonic field radiated by an Electro-Magnetic Acoustic Transducer in a ferromagnetic solid

A model for the ultrasonic field radiated by an Electro-Magnetic Acoustic Transducer in a ferromagnetic solid 13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII), 2-24 May 213, Le Mans, France www.ndt.net/?id=1557 More Info at Open Access Database www.ndt.net/?id=1557 A model

More information

Numerical and Experimental analysis of long range guided waves for NonDestructiveTesting of pipes.

Numerical and Experimental analysis of long range guided waves for NonDestructiveTesting of pipes. Numerical and Experimental analysis of long range guided waves for NonDestructiveTesting of pipes. F. BERTONCINI, M. RAUGI Department of Electric Systems and Automation University of Pisa Via Diotisalvi

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS2023W1 SEMESTER 1 EXAMINATION 2016-2017 WAVE PHYSICS Duration: 120 MINS (2 hours) This paper contains 9 questions. Answers to Section A and Section B must be in separate answer

More information

Guided Wave Experimentation using CLoVER Transducers for Structural Health Monitoring

Guided Wave Experimentation using CLoVER Transducers for Structural Health Monitoring 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 16t 7-10 April 2008, Schaumburg, IL AIAA 2008-1970 Guided Wave Experimentation using CLoVER Transducers for Structural

More information

Smart Pigs. Adrian Belanger March 7,

Smart Pigs. Adrian Belanger March 7, Smart Pigs Adrian Belanger March 7, 2017 www.tdwilliamson.com Registered trademarks of T.D. Williamson, Inc. in the United States and in other countries. Copyright 2015 Oil and Gas Pipeline Network 2 Pipeline

More information

LAMB WAVES GENERATION USING A TRANSDUCER EMBEDDED IN A COMPOSITE PLATE

LAMB WAVES GENERATION USING A TRANSDUCER EMBEDDED IN A COMPOSITE PLATE LAMB WAVES GENERATION USING A TRANSDUCER EMBEDDED IN A COMPOSITE PLATE Emmanuel Moulin 1, Jamal Assaad 1, Christophe Delebarre 1 and Daniel Osmont 2 1 IEMN, UMR CNRS 9929, OAE Department, Université de

More information

An Increase in Elastic Buckling Strength of Plate Girder by the Influence of Transverse Stiffeners

An Increase in Elastic Buckling Strength of Plate Girder by the Influence of Transverse Stiffeners GRD Journals- Global Research and Development Journal for Engineering Volume 2 Issue 6 May 2017 ISSN: 2455-5703 An Increase in Elastic Buckling Strength of Plate Girder by the Influence of Transverse Stiffeners

More information

Evaluation of a surface acoustic wave motor with a multi-contact-point slider

Evaluation of a surface acoustic wave motor with a multi-contact-point slider Smart Mater. Struct. 7 (1998) 305 311. Printed in the UK PII: S0964-1726(98)91230-7 Evaluation of a surface acoustic wave motor with a multi-contact-point slider Minoru Kuribayashi Kurosawa, Makoto Chiba

More information

MATERIALS CHARACfERIZA TION USING ACOUSTIC NONLINEARITY PARAMETERS AND HARMONIC GENERATION: ENGINEERING MATERIALS. William T. Yost

MATERIALS CHARACfERIZA TION USING ACOUSTIC NONLINEARITY PARAMETERS AND HARMONIC GENERATION: ENGINEERING MATERIALS. William T. Yost MATERIALS CHARACfERIZA TION USING ACOUSTIC NONLINEARITY PARAMETERS AND HARMONIC GENERATION: ENGINEERING MATERIALS William T. Yost NASA-Langley Research Center Hampton, VA 23665-5225 John H. Cantrell Cavendish

More information

Mechanics of Solids notes

Mechanics of Solids notes Mechanics of Solids notes 1 UNIT II Pure Bending Loading restrictions: As we are aware of the fact internal reactions developed on any cross-section of a beam may consists of a resultant normal force,

More information

Guided Wave Structural Health Monitoring using CLoVER Transducer in Composite Plates

Guided Wave Structural Health Monitoring using CLoVER Transducer in Composite Plates 5th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference7th 4-7 May 29, Palm Springs, California AIAA 29-26 7th AIAA/ASME/AHS Adaptive Structures Conference, 4-7 May 29,

More information

Strain Measurement. Prof. Yu Qiao. Department of Structural Engineering, UCSD. Strain Measurement

Strain Measurement. Prof. Yu Qiao. Department of Structural Engineering, UCSD. Strain Measurement Strain Measurement Prof. Yu Qiao Department of Structural Engineering, UCSD Strain Measurement The design of load-carrying components for machines and structures requires information about the distribution

More information

ULTRASONIC INSPECTION, MATERIAL NOISE AND. Mehmet Bilgen and James H. Center for NDE Iowa State University Ames, IA 50011

ULTRASONIC INSPECTION, MATERIAL NOISE AND. Mehmet Bilgen and James H. Center for NDE Iowa State University Ames, IA 50011 ULTRASONIC INSPECTION, MATERIAL NOISE AND SURFACE ROUGHNESS Mehmet Bilgen and James H. Center for NDE Iowa State University Ames, IA 511 Rose Peter B. Nagy Department of Welding Engineering Ohio State

More information

DIMENSIONAL ANALYSIS OF A HIGH POWER ULTRASONIC SYSTEM USED IN ELECTRODISCHARGE MACHINING

DIMENSIONAL ANALYSIS OF A HIGH POWER ULTRASONIC SYSTEM USED IN ELECTRODISCHARGE MACHINING Nonconventional Technologies Review Romania, March, 2012 2012 Romanian Association of Nonconventional Technologies DIMENSIONAL ANALYSIS OF A HIGH POWER ULTRASONIC SYSTEM USED IN ELECTRODISCHARGE MACHINING

More information

EFFECTS OF ACOUSTIC SCATTERING AT ROUGH SURFACES ON THE

EFFECTS OF ACOUSTIC SCATTERING AT ROUGH SURFACES ON THE EFFECTS OF ACOUSTIC SCATTERING AT ROUGH SURFACES ON THE SENSITIVITY OF ULTRASONIC INSPECTION Peter B. Nagy and Laszlo Adler Department of Welding Engineering The Ohio State University Columbus, Ohio 4321

More information

FRACTURE IN PBX 9501 AT LOW RATES

FRACTURE IN PBX 9501 AT LOW RATES FRACTURE IN PBX 9501 AT LOW RATES Cheng Liu & Richard Browning Los Alamos National Laboratory Los Alamos, NM 87545 Tensile, or mode I, fractures in PBX 9501 have a very large process zone that runs well

More information

1106. Numerical investigation of dynamical properties of vibroactive pad during hot imprint process

1106. Numerical investigation of dynamical properties of vibroactive pad during hot imprint process 1106. Numerical investigation of dynamical properties of vibroactive pad during hot imprint process B. Narijauskaitė 1, A. Palevičius 2, G. Janušas 3, R. Šakalys 4 International Studies Centre, Kaunas

More information

ACOUSTIC TRANSMISSION WITH MODE CONVERSION PHENOMENON

ACOUSTIC TRANSMISSION WITH MODE CONVERSION PHENOMENON ABCM Symposium Series in Mechatronics - Vol. 2 - pp.113-120 Copyright 2006 by ABCM Proceedings of COBEM 2005 Copyright 2005 by ABCM 18th International Congress of Mechanical Engineering November 6 11,

More information

Post-earthquake Damage Detection Using Embedded Electro-mechanical Impedance Sensors for Concrete Dams

Post-earthquake Damage Detection Using Embedded Electro-mechanical Impedance Sensors for Concrete Dams Post-earthquake Damage Detection Using Embedded Electro-mechanical Impedance Sensors for Concrete Dams X. Feng, E.T. Dandjekpo & J. Zhou Faculty of Infrastructure, Dalian University of Technology, China

More information

Nondestructive Evaluation of Pavements Ð Ultrasonic Tomography

Nondestructive Evaluation of Pavements Ð Ultrasonic Tomography Nondestructive Evaluation of Pavements Ð Ultrasonic Tomography Kyle Hoegh, Graduate Student Dr. Lev Khazanovich, Associate Professor Civil Engineering Department University of Minnesota Ð Twin Cities Outline!

More information

CFRP Bonds Evaluation Using Piezoelectric Transducer

CFRP Bonds Evaluation Using Piezoelectric Transducer 4th International Symposium on NDT in Aerospace 2012 - Th.1.B.2 CFRP Bonds Evaluation Using Piezoelectric Transducer Paweł MALINOWSKI*, Łukasz SKARBEK*, Tomasz WANDOWSKI*, Wiesław OSTACHOWICZ* * Institute

More information

Chapter 3. Experimentation and Data Acquisition

Chapter 3. Experimentation and Data Acquisition 48 Chapter 3 Experimentation and Data Acquisition In order to achieve the objectives set by the present investigation as mentioned in the Section 2.5, an experimental set-up has been fabricated by mounting

More information

On the study of elastic wave scattering and Rayleigh wave velocity measurement of concrete with steel bar

On the study of elastic wave scattering and Rayleigh wave velocity measurement of concrete with steel bar NDT&E International 33 (2000) 401 407 www.elsevier.com/locate/ndteint On the study of elastic wave scattering and Rayleigh wave velocity measurement of concrete with steel bar T.-T. Wu*, J.-H. Sun, J.-H.

More information

SPEED OF SOUND MEASUREMENT IN SOLIDS USING POLYVINYLIDENE FLUORIDE (PVDF) SENSORS

SPEED OF SOUND MEASUREMENT IN SOLIDS USING POLYVINYLIDENE FLUORIDE (PVDF) SENSORS Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS2013 September 16-18, 2013, Snowbird, Utah, USA SMASIS2013-3206 SPEED OF SOUND MEASUREMENT

More information

DYNAMIC ROTARY TORQUE MEASUREMENT USING SURFACE ACOUSTIC WAVES

DYNAMIC ROTARY TORQUE MEASUREMENT USING SURFACE ACOUSTIC WAVES DYNAMIC ROTARY TORQUE MEASUREMENT USING SURFACE ACOUSTIC WAVES Abstract A. Lonsdale Technical Director Sensor Technology Ltd The subject of torque measurement has previously been addressed extensively.

More information

Determination of group velocity of propagation of Lamb waves in aluminium plate using piezoelectric transducers

Determination of group velocity of propagation of Lamb waves in aluminium plate using piezoelectric transducers ARTICLE IN PRESS Applied and Computational Mechanics 11 (2017) XXX YYY Determination of group velocity of propagation of Lamb waves in aluminium plate using piezoelectric transducers Z. Lašová a,,r.zemčík

More information

Receiver. Johana Brokešová Charles University in Prague

Receiver. Johana Brokešová Charles University in Prague Propagation of seismic waves - theoretical background Receiver Johana Brokešová Charles University in Prague Seismic waves = waves in elastic continuum a model of the medium through which the waves propagate

More information

V Predicted Weldment Fatigue Behavior AM 11/03 1

V Predicted Weldment Fatigue Behavior AM 11/03 1 V Predicted Weldment Fatigue Behavior AM 11/03 1 Outline Heavy and Light Industry weldments The IP model Some predictions of the IP model AM 11/03 2 Heavy industry AM 11/03 3 Heavy industry AM 11/03 4

More information

Ultrasonic Measurement of Minute Displacement of Object Cyclically Actuated by Acoustic Radiation Force

Ultrasonic Measurement of Minute Displacement of Object Cyclically Actuated by Acoustic Radiation Force Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 4608 4612 Part 1, No. 7A, July 2003 #2003 The Japan Society of Applied Physics Ultrasonic Measurement of Minute Displacement of Object Cyclically Actuated by Acoustic

More information

Extensional and Flexural Waves in a Thin-Walled Graphite/Epoxy Tube * William H. Prosser NASA Langley Research Center Hampton, VA 23665

Extensional and Flexural Waves in a Thin-Walled Graphite/Epoxy Tube * William H. Prosser NASA Langley Research Center Hampton, VA 23665 Extensional and Flexural Waves in a Thin-Walled Graphite/Epoxy Tube * William H. Prosser NASA Langley Research Center Hampton, VA 23665 Michael R. Gorman Aeronautics and Astronautics Naval Postgraduate

More information

Chapter 33: ELECTROMAGNETIC WAVES 559

Chapter 33: ELECTROMAGNETIC WAVES 559 Chapter 33: ELECTROMAGNETIC WAVES 1 Select the correct statement: A ultraviolet light has a longer wavelength than infrared B blue light has a higher frequency than x rays C radio waves have higher frequency

More information

SUBSURFACE WAVES IN SOLIDS WITH CURVED SURFACE AND ACOUSTICAL IMPEDANCE ON IT

SUBSURFACE WAVES IN SOLIDS WITH CURVED SURFACE AND ACOUSTICAL IMPEDANCE ON IT SUBSURFACE WAVES IN SOLIDS WITH CURVED SURFACE AND ACOUSTICAL IMPEDANCE ON IT A. Baev, P. Prokhorenko, and M. Asadchaya Institute of Applied Physics, Minsk, Belarus Abstract: This paper presents the results

More information

D Radaj, C M Sonsino and W Pricke. Fatigue assessment of welded joints by local approaches

D Radaj, C M Sonsino and W Pricke. Fatigue assessment of welded joints by local approaches D Radaj, C M Sonsino and W Pricke Fatigue assessment of welded joints by local approaches Second edition Foreword Preface Author contact details Introduction 1.1 Fatigue strength assessment of welded joints

More information

Single-phase driven ultrasonic motor using two orthogonal bending modes of sandwiching. piezo-ceramic plates

Single-phase driven ultrasonic motor using two orthogonal bending modes of sandwiching. piezo-ceramic plates Single-phase driven ultrasonic motor using two orthogonal bending modes of sandwiching piezo-ceramic plates Yuting Ma 1,2, Minkyu Choi 2 and Kenji Uchino 2 1 CAS Key Lab of Bio-Medical Diagnostics, Suzhou

More information

Laboratory 4 Bending Test of Materials

Laboratory 4 Bending Test of Materials Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional.50 Credits Laboratory 4 Bending Test of Materials. Objective

More information

Structural Health Monitoring Using Peak Of Frequency Response

Structural Health Monitoring Using Peak Of Frequency Response Proceedings of the 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, Turkey, May 27-29, 2007 258 Structural Health Monitoring Using Peak Of Frequency Response ARASH

More information

Application of one-bit time reversal technique to mechanical strain monitoring in plates

Application of one-bit time reversal technique to mechanical strain monitoring in plates Universidade de São Paulo Biblioteca Digital da Produção Intelectual - BDPI Departamento de Mecatrônica e Sistemas Mecânicos - EP/PMR Comunicações em Eventos - EP/PMR 2014-09-03 Application of one-bit

More information

FROM NEAR FIELD TO FAR FIELD AND BEYOND

FROM NEAR FIELD TO FAR FIELD AND BEYOND More info about this article: h Czech Society for Nondestructive Testing 32 nd European Conference on Acoustic Emission Testing Prague, Czech Republic, September 07-09, 2016 FROM NEAR FIELD TO FAR FIELD

More information

Fatigue failure mechanisms of thin-walled hybrid plate girders

Fatigue failure mechanisms of thin-walled hybrid plate girders Fatigue failure mechanisms of thin-walled hybrid plate girders Pavol Juhás1,* 1Institute of Technology and Business in České Budějovice, Department of Civil Engineering, Okružní 517/10, 37001 České Budějovice,

More information

Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators

Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators Barmac K. Taleghani 1, Joel F. Campbell 2 1 Army Research Laboratory, Vehicle Technology Center, MS 230 NASA Langley Research Center,

More information

Finite element modeling of pulsed spiral coil Electromagnetic Acoustic Transducer (EMAT) for testing of plate

Finite element modeling of pulsed spiral coil Electromagnetic Acoustic Transducer (EMAT) for testing of plate Finite element modeling of pulsed spiral coil Electromagnetic Acoustic Transducer (EMAT) for testing of plate R. Dhayalan, Anish Kumar, B. Purnachandra Rao and T. Jayakumar Ultrasonic Measurement Section

More information

Lecture #2 Nanoultrasonic imaging

Lecture #2 Nanoultrasonic imaging Lecture #2 Nanoultrasonic imaging Dr. Ari Salmi www.helsinki.fi/yliopisto 24.1.2014 1 Background Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 24.1.2014

More information

POD(a) = Pr (Y(a) > '1').

POD(a) = Pr (Y(a) > '1'). PROBABILITY OF DETECTION MODELING FOR ULTRASONIC TESTING Pradipta Sarkar, William Q. Meeker, R. Bruce Thompson, Timothy A. Gray Center for Nondestructive Evaluation Iowa State University Ames, IA 511 Warren

More information

Mandatory Assignment 2013 INF-GEO4310

Mandatory Assignment 2013 INF-GEO4310 Mandatory Assignment 2013 INF-GEO4310 Deadline for submission: 12-Nov-2013 e-mail the answers in one pdf file to vikashp@ifi.uio.no Part I: Multiple choice questions Multiple choice geometrical optics

More information

Analytical Study Guideline for Structural Health Monitoring of Steel Canister in Dry Cask Storage System by Using Multimodal Ultrasonic Lamb Waves

Analytical Study Guideline for Structural Health Monitoring of Steel Canister in Dry Cask Storage System by Using Multimodal Ultrasonic Lamb Waves Analytical Study Guideline for Structural Health Monitoring of Steel Canister in Dry Cask Storage System by Using Multimodal Ultrasonic Lamb Waves Ayman Kamal, Victor Giurgiutiu Department of Mechanical

More information

Supplementary Figure 1: SAW transducer equivalent circuit

Supplementary Figure 1: SAW transducer equivalent circuit Supplementary Figure : SAW transducer equivalent circuit Supplementary Figure : Radiation conductance and susceptance of.6um IDT, experiment & calculation Supplementary Figure 3: Calculated z-displacement

More information

FATIGUE DAMAGE PROGRESSION IN PLASTICS DURING CYCLIC BALL INDENTATION

FATIGUE DAMAGE PROGRESSION IN PLASTICS DURING CYCLIC BALL INDENTATION FATIGUE DAMAGE PROGRESSION IN PLASTICS DURING CYCLIC BALL INDENTATION AKIO YONEZU, TAKAYASU HIRAKAWA, TAKESHI OGAWA and MIKIO TAKEMOTO Department of Mechanical Engineering, College of Science and Engineering,

More information

Model-Assisted Probability of Detection for Ultrasonic Structural Health Monitoring

Model-Assisted Probability of Detection for Ultrasonic Structural Health Monitoring 4th European-American Workshop on Reliability of NDE - Th.2.A.2 Model-Assisted Probability of Detection for Ultrasonic Structural Health Monitoring Adam C. COBB and Jay FISHER, Southwest Research Institute,

More information

SIMULATION OF THE INSPECTION OF PLANAR NON MAGNETIC MATERIALS WITH ELECTRO MAGNETIC ACOUSTIC TRANSDUCERS

SIMULATION OF THE INSPECTION OF PLANAR NON MAGNETIC MATERIALS WITH ELECTRO MAGNETIC ACOUSTIC TRANSDUCERS SIMULATION OF THE INSPECTION OF PLANAR NON MAGNETIC MATERIALS WITH ELECTRO MAGNETIC ACOUSTIC TRANSDUCERS D. Prémel, C. Reboud, S. Chatillon, F. Reverdy and S. Mahaut CEA LIST, F-91191 Gif-sur-Yvette, France

More information

MODELLING AND SIMULATION OF ULTRASOUND NON LINEARITIES MEASUREMENT FOR BIOLOGICAL MEDIUMS

MODELLING AND SIMULATION OF ULTRASOUND NON LINEARITIES MEASUREMENT FOR BIOLOGICAL MEDIUMS ICSV14 Cairns Australia 9-12 July, 2007 MODELLING AND SIMULATION OF ULTRASOUND NON LINEARITIES MEASUREMENT FOR BIOLOGICAL MEDIUMS Djilali Kourtiche, Rachid Guelaz and Mustapha Nadi LIEN, Nancy-Université,

More information

Practical Results of Ultrasonic Imaging by Inverse Wave Field Extrapolation

Practical Results of Ultrasonic Imaging by Inverse Wave Field Extrapolation ECNDT 2006 - Th.2.3.1 Practical Results of Ultrasonic Imaging by Inverse Wave Field Extrapolation Niels PÖRTZGEN, RTD Group, Rotterdam, The Netherlands Abstract: Array technology in non-destructive inspection

More information