EE 5345 Biomedical Instrumentation Lecture 6: slides

Size: px
Start display at page:

Download "EE 5345 Biomedical Instrumentation Lecture 6: slides"

Transcription

1 EE 5345 Biomedical Instrumentation Lecture 6: slides Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University slides can be viewed at: EE 7345/5345, SMU Electrical Engineering Department,

2 Transducer Properties (cont.) transducer d nf φ D λ λ or 2 4 d nf = near-field distance = φ = divergence angle: wave fronts D 2 4λ sinφ. λ = 12 D EE 5345, SMU Electrical Engineering Department 130

3 Transducer Properties (cont.) λ λ or 2 4 ~ E = Acos(2πf t) c = f λ crystal will vibrate at same frequency, f, as that of the applied voltage. c: speed of sound in tissue: about 1500 m/s λ: wavelength of sound EE 5345, SMU Electrical Engineering Department 131

4 Transducer Properties (cont.) S = change in crystal thickness/original crystal thickness = ge E: applied electric field g: constant Material g (m/v)x10-12 quartz 2.3 barium titanate lead zirconate titanate (PET-4) 290 lead zirconate titanate (PET-5) 370 EE 5345, SMU Electrical Engineering Department 132

5 Transducer Properties (cont.) If crystal undergoes mechanical compression, a voltage is generated proportional to the compression. In imaging, the piezoelectric crystal is used to generate ultrasound, which is transmitted into the tissue. Some of the ultrasound is reflected by the tissue. Voltage is turned off and the crystal is then used to convert the reflected pressure waves to a voltage. The information in the reflected pressure waves can be used to image tissue. EE 5345, SMU Electrical Engineering Department 133

6 Basic Ultrasonic Imaging Configuration transducer 2αct cte T R ~ p ( t ) signal processing patient pulse generator p(t) monitor EE 5345, SMU Electrical Engineering Department 134

7 Ultrasound Attennuation in Tissue due to: Divergence of wavefronts in the far-field. Convergence of wave energy to heat (exponential with distance): p( z) = p e o αz p(z): sound pressure at distance z from transducer face α: attenuation coefficient p 0 : sound pressure at transducer face EE 5345, SMU Electrical Engineering Department 135

8 Attenuation Coefficients at 1MHz Material α (db/cm) Air 10 Blood 0.18 Bone 3-10 Lung 40 Muscle Other soft tissues Water source: Medical Imaging Systems, A. Macovsky, Prentice Hall EE 5345, SMU Electrical Engineering Department 136

9 Ultrasound Scattering due to: Rayleigh scattering: due to acoustic impedance irregularities (i.e. red blood cells) Specular reflection at planar interfaces: tissue characterized by acoustic impedance Z. Z ρ: density = ρc c: speed of sound in tissue sound waves encountering tissue boundary having different acoustic impedances is partially reflected at the interface. EE 5345, SMU Electrical Engineering Department 137

10 Propagation Velocity Tissue Mean Velocity (m/s) Air 330 Fat 1450 Aqueous Humor of eye 1500 Vitreous Humor of eye 1520 Brain 1541 Liver 1549 Kidney 1561 Blood 1570 Lens of eye 1620 Skull bone 4080 Muscle 1585 Spleen 1566 source: Medical Imaging Systems, A. Macovsky, Prentice Hall EE 5345, SMU Electrical Engineering Department 138

11 Models for Ultrasounic Backscatter (Reflection) Specular reflection: incident θ i θ r θ t z transmitted reflected Z 1 Z 2 tissue interface EE 5345, SMU Electrical Engineering Department 139

12 Specular Reflection (cont.) R: reflectivity = reflected pressure incident pressure = Z Z cosθ cosθ Z + Z 2 i 1 2 i 1 cosθ cosθ t t Materials at Interface Reflectivity (θ i = θ t = 0) Brain-skull bone 0.66 Fat-bone 0.69 Fat-blood 0.08 Fat-kidney 0.08 Fat- muscle 0.10 Fat-liver 0.09 Lens-aqueous humor 0.10 Lens-vitreous humor 0.09 Muscle-blood 0.03 Muscle-kidney 0.03 Muscle-liver 0.01 soft tissue-air soft tissue-pzt5 crystal 0.89 source: Medical Imaging Systems, A. Macovsky, Prentice Hall EE 5345, SMU Electrical Engineering Department 140

13 Models for Ultrasonic Backscatter (cont.) Isotropic scattering 1-D model assumptions: transmitted ultrasound assumed to consist of planar waves (no diffraction). sound propagates with uniform velocity c. attennuation coefficient α is uniform throught body. body is modeled as an array of isotropic (invariant with respect to direction) scatterers. EE 5345, SMU Electrical Engineering Department 141

14 Isotropic scattering 1-D model (cont.): Reflected ultrasound has convolution property: 2αz ~ e p( t) = r( z) p t z 2z c dz ~ p ( t ) : reflected ultrasound pressure wave p( t) r( z) ( ) r z = 1 4z : transmitted ultrasound pressure wave : reflectivity profile ( ) δz z δz 2αz e 1 z :attennuation due to heat loss :attennuation due to reflected wave divergence (diffraction spreading) EE 5345, SMU Electrical Engineering Department 142

15 Comparison of Backscatter Models Note that if Z(z) is a step function, Z 1 h(z) is an impulse function and corresponds to specular reflection. ~ p ( t ) = p ( t ) Z 2 z Isotropic scattering model is more general, it considers gradual changes in reflectivity. Attennuation is compensated for by electronics. EE 5345, SMU Electrical Engineering Department 143

16 Imaging Modalities: based on measurement of backscatter A-Mode Scan (eye, cataract detection): transmitted pulse t reflected pulses (one per tissue boundry) t tissue boundries EE 5345, SMU Electrical Engineering Department 144

17 Imaging Modalities (cont.) M-Mode Scan: at t = t 1 : at t = t 2 : M etc. t t A-mode scans Can image moving tissue boundaries by stacking A- mode scans obtained at different times on top of each other. Used to image heart valves. Trandsucer is stationary. EE 5345, SMU Electrical Engineering Department 145

18 Imaging Modalities (cont.) B-Mode Scan (sonograms) t A-mode scans t EE 5345, SMU Electrical Engineering Department 146

19 Noise Sources in Ultrasound Scans Additive White Noise: due to piezoelectric materials and semiconductor material in instrumentation amplifiers. Speckle Noise: reflected ultrasound is coming from an array of randomly positioned point scatterers (reflectors), reflected wave fronts add constructively and destructively. Speckle can be reduced by averaging several images together. EE 5345, SMU Electrical Engineering Department 147

Doppler echocardiography & Magnetic Resonance Imaging. Doppler echocardiography. History: - Langevin developed sonar.

Doppler echocardiography & Magnetic Resonance Imaging. Doppler echocardiography. History: - Langevin developed sonar. 1 Doppler echocardiography & Magnetic Resonance Imaging History: - Langevin developed sonar. - 1940s development of pulse-echo. - 1950s development of mode A and B. - 1957 development of continuous wave

More information

Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2006 Ultrasound Lecture 1

Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2006 Ultrasound Lecture 1 Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2006 Ultrasound Lecture 1 From Suetens 2002 1 Basic System Echo occurs at t=2z/c where c is approximately 1500 m/s or 1.5 mm/µs Macovski

More information

Basic System. Basic System. Sonosite 180. Acuson Sequoia. Echo occurs at t=2z/c where c is approximately 1500 m/s or 1.5 mm/µs

Basic System. Basic System. Sonosite 180. Acuson Sequoia. Echo occurs at t=2z/c where c is approximately 1500 m/s or 1.5 mm/µs Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2007 Ultrasound Lecture Sonosite 80 From Suetens 2002 Acuson Sequoia Basic System Basic System Echo occurs at t=2/c where c is approximately

More information

Structure of Biological Materials

Structure of Biological Materials ELEC ENG 3BA3: Structure of Biological Materials Notes for Lecture #19 Monday, November 22, 2010 6.5 Nuclear medicine imaging Nuclear imaging produces images of the distribution of radiopharmaceuticals

More information

Outline of today Medical Imaging systems. Wave types. 1. Discussion assignment on B-mode imaging

Outline of today Medical Imaging systems. Wave types. 1. Discussion assignment on B-mode imaging Outline of today 3545 Medical Imaging systems. Discussion assignment on B-mode imaging Lecture : Ultrasound physics. Derivation of wave equation and role of speed of sound Jørgen Arendt Jensen Department

More information

31545 Medical Imaging systems

31545 Medical Imaging systems 31545 Medical Imaging systems Lecture 2: Ultrasound physics Jørgen Arendt Jensen Department of Electrical Engineering (DTU Elektro) Biomedical Engineering Group Technical University of Denmark September

More information

Chapter 2. Interaction with Soft Tissue

Chapter 2. Interaction with Soft Tissue Chapter 2 Interaction with Soft Tissue Ultrasound interacts with human soft tissue in several predictable ways that allow engineers to design instruments that provide diagnostic information that forms

More information

Today s menu. Last lecture. Ultrasonic measurement systems. What is Ultrasound (cont d...)? What is ultrasound?

Today s menu. Last lecture. Ultrasonic measurement systems. What is Ultrasound (cont d...)? What is ultrasound? Last lecture Measurement of volume flow rate Differential pressure flowmeters Mechanical flowmeters Vortex flowmeters Measurement of mass flow Measurement of tricky flows" Today s menu Ultrasonic measurement

More information

EE 5345 Biomedical Instrumentation Lecture 12: slides

EE 5345 Biomedical Instrumentation Lecture 12: slides EE 5345 Biomedical Instrumentation Lecture 1: slides 4-6 Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University slides can be viewed at: http:// www.seas.smu.edu/~cd/ee5345.html EE

More information

31545 Medical Imaging systems

31545 Medical Imaging systems Simulation of ultrasound systems and non-linear imaging 545 Medical Imaging systems Lecture 9: Simulation of ultrasound systems and non-linear imaging Jørgen Arendt Jensen Department of Electrical Engineering

More information

Today s menu. Last lecture. Measurement of volume flow rate. Measurement of volume flow rate (cont d...) Differential pressure flow meters

Today s menu. Last lecture. Measurement of volume flow rate. Measurement of volume flow rate (cont d...) Differential pressure flow meters Last lecture Analog-to-digital conversion (Ch. 1.1). Introduction to flow measurement systems (Ch. 12.1). Today s menu Measurement of volume flow rate Differential pressure flowmeters Mechanical flowmeters

More information

Medical Imaging Physics Spring Quarter Week 3-2

Medical Imaging Physics Spring Quarter Week 3-2 Medical Imaging Physics Spring Quarter Week 3-2 Ultrasound Daor Balzar balzar@du.edu www.du.edu/~balzar Outline Ultrasound Light, Eyes and Vision Reading assignment: CSG 12; D 15 Homework D 12: 5,6 and

More information

3. Which of the following statements is (are) TRUE about detector crystals in Anger cameras?

3. Which of the following statements is (are) TRUE about detector crystals in Anger cameras? BioE 1330 - Exam 2 11/13/2018 Answer Sheet - Correct answer is A for all questions 1. Unlike CT, in nuclear medicine A. Bremsstrahlung is not used to produce high-energy photons. B. signal can be increased

More information

Sound wave bends as it hits an interface at an oblique angle. 4. Reflection. Sound wave bounces back to probe

Sound wave bends as it hits an interface at an oblique angle. 4. Reflection. Sound wave bounces back to probe : Ultrasound imaging and x-rays 1. How does ultrasound imaging work?. What is ionizing electromagnetic radiation? Definition of ionizing radiation 3. How are x-rays produced? Bremsstrahlung Auger electron

More information

A small object is placed a distance 2.0 cm from a thin convex lens. The focal length of the lens is 5.0 cm.

A small object is placed a distance 2.0 cm from a thin convex lens. The focal length of the lens is 5.0 cm. TC [66 marks] This question is about a converging (convex) lens. A small object is placed a distance 2.0 cm from a thin convex lens. The focal length of the lens is 5.0 cm. (i) Deduce the magnification

More information

ULTRASOUND. Ultrasound physical phenomenon properties basics of medical applications, History. History

ULTRASOUND. Ultrasound physical phenomenon properties basics of medical applications, History. History Ultrasound physical phenomenon properties basics of medical applications, ULTRASOUND History History Dr. Leopold Auenbrugger 76 - medical doctor first suggests the method of percussion in diagnostics Dr.

More information

(INCLUDING THIS FRONT PAGE)

(INCLUDING THIS FRONT PAGE) I'IFIITIIBIFI UNIVERSITY OF SCIEI'ICE RITD TECHNOLOGY FACULTY OF HEALTH AND APPLIED SCIENCES DEPARTMENT OF NATURAL AND APPLIED SCIENCES QUALIFICATION: BACHELOR OF SCIENCE (MAJOR AND MINOR) QUALIFICATION

More information

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam (closed book, 1 sheets of notes double sided allowed, no calculator or other electronic devices allowed) 1. Ultrasound Physics (15 pt) A) (9

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS OPTION I-2 MEDICAL IMAGING Reading Activity Answers IB Assessment Statements Option I-2, Medical Imaging: X-Rays I.2.1. I.2.2. I.2.3. Define

More information

Supplement (videos)

Supplement (videos) Supplement (videos) Ruben s tube (sound): http://www.youtube.com/watch?v=gpcquuwqayw Doppler US (diagnostic use): http://www.youtube.com/watch?v=fgxzg-j_hfw http://www.youtube.com/watch?v=upsmenyoju8 High

More information

Technical University of Denmark

Technical University of Denmark Technical University of Denmark Page 1 of 11 pages Written test, 9 December 2010 Course name: Introduction to medical imaging Course no. 31540 Aids allowed: none. "Weighting": All problems weight equally.

More information

Simulation of Contrast Agent Enhanced Ultrasound Imaging based on Field II

Simulation of Contrast Agent Enhanced Ultrasound Imaging based on Field II Simulation of Contrast Agent Enhanced Ultrasound Imaging based on Field II Tobias Gehrke, Heinrich M. Overhoff Medical Engineering Laboratory, University of Applied Sciences Gelsenkirchen tobias.gehrke@fh-gelsenkirchen.de

More information

Chapter 12 Sound in Medicine

Chapter 12 Sound in Medicine Infrasound < 0 Hz Earthquake, atmospheric pressure changes, blower in ventilator Not audible Headaches and physiological disturbances Sound 0 ~ 0,000 Hz Audible Ultrasound > 0 khz Not audible Medical imaging,

More information

Introduction to Medical Imaging. Medical Imaging

Introduction to Medical Imaging. Medical Imaging Introduction to Medical Imaging BME/EECS 516 Douglas C. Noll Medical Imaging Non-invasive visualization of internal organs, tissue, etc. I typically don t include endoscopy as an imaging modality Image

More information

Electrical Engineering 3BA3: Structure of Biological Materials

Electrical Engineering 3BA3: Structure of Biological Materials Electrical Engineering 3BA3: Structure of Biological Materials Day Class Instructor: Dr. I. C. BRUCE Duration of Examination: 3 Hours McMaster University Final Examination December, 2004 This examination

More information

EXEMPLARY PROBLEMS APPENDIX B CHAPTER 1

EXEMPLARY PROBLEMS APPENDIX B CHAPTER 1 APPENDIX B EXEMPLARY PROBLEMS CHAPTER 1 1.1 A two - dimensional planar acoustic wave is defined by the function U = A e j ( ω t kx x ky y ). This wave impinges upon a perfect reflecting line that is parallel

More information

Department of Engineering Science. Robin Cleveland

Department of Engineering Science. Robin Cleveland Department of Engineering Science Robin Cleveland robin.cleveland@eng.ox.ac.uk 1 Engineering Science What is Engineering? What is Engineering Science at Oxford? Biomedical Ultrasound Applications 2 Scientists

More information

Part III Minor Option in Medical Physics 2018 Examples Sheet

Part III Minor Option in Medical Physics 2018 Examples Sheet Part III Minor Option in Medical Physics 2018 Examples Sheet Any errors or comments should be addressed sent to: seb53@cam.ac.uk URLs that may be useful: Stanford Event Generation Simulator: http://tinyurl.com/pkg476r

More information

Piezoelectric Materials and Devices

Piezoelectric Materials and Devices Piezoelectric Materials and Devices Applications in Engineering and Medical Sciences M. S. VIJAYA CRC Press Taylor & Francis Croup Boca Raton London NewYork CRC Press is an imprint of the Taylor & Francis

More information

BNG/ECE 487 FINAL (W16)

BNG/ECE 487 FINAL (W16) BNG/ECE 487 FINAL (W16) NAME: 4 Problems for 100 pts This exam is closed-everything (no notes, books, etc.). Calculators are permitted. Possibly useful formulas and tables are provided on this page. Fourier

More information

Donald School Journal of Ultrasound Physical Bases in Obstetrics of Medical and Ultrasound Gynecology, April-June 2009;3(2):1-9

Donald School Journal of Ultrasound Physical Bases in Obstetrics of Medical and Ultrasound Gynecology, April-June 2009;3(2):1-9 Donald School Journal of Ultrasound Physical Bases in Obstetrics of Medical and Ultrasound Gynecology, April-June 2009;3(2):1-9 Physical Bases of Medical Ultrasound Jasminka Brnjas-Kraljevic Department

More information

EE 4372 Tomography. Carlos E. Davila, Dept. of Electrical Engineering Southern Methodist University

EE 4372 Tomography. Carlos E. Davila, Dept. of Electrical Engineering Southern Methodist University EE 4372 Tomography Carlos E. Davila, Dept. of Electrical Engineering Southern Methodist University EE 4372, SMU Department of Electrical Engineering 86 Tomography: Background 1-D Fourier Transform: F(

More information

D. BARD DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY

D. BARD DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY Transmission, Reflections, Eigenfrequencies, Eigenmodes Tranversal and Bending waves D. BARD DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY Outline Introduction Types of waves Eigenfrequencies & Eigenmodes

More information

A method of the forward problem for magneto-acousto-electrical tomography

A method of the forward problem for magneto-acousto-electrical tomography Technology and Health Care 24 (216) S733 S738 DOI 1.3233/THC-16122 IOS Press S733 A method of the forward problem for magneto-acousto-electrical tomography Jingxiang Lv a,b,c, Guoqiang Liu a,, Xinli Wang

More information

Physics and Knobology

Physics and Knobology Physics and Knobology Cameron Jones, MD 02/01/2012 SOUND: Series of pressure waves traveling through a medium What is ULTRASOUND Physics Words WAVELENGTH: Distance traveled in one cycle FREQUENCY: number

More information

Principle and application of ultrasonic wave

Principle and application of ultrasonic wave Topics on ultrasonic wave Principle and application of ultrasonic wave Writer Handong Li ( ) Emendator: Yabin Zhu ( ) 1 brief introduction to the special subject Ultrasonic wave is an acoustic wave whose

More information

The Physics of Doppler Ultrasound. HET408 Medical Imaging

The Physics of Doppler Ultrasound. HET408 Medical Imaging The Physics of Doppler Ultrasound HET408 Medical Imaging 1 The Doppler Principle The basis of Doppler ultrasonography is the fact that reflected/scattered ultrasonic waves from a moving interface will

More information

Examples of cooperation

Examples of cooperation Visibility of Physics and Mathematics workability especially in a hospital Examples of cooperation Viborg Katedralskole & he Police Force in Viborg Department of Clinical Physiology, Region Hospital Viborg

More information

Signal Loss. A1 A L[Neper] = ln or L[dB] = 20log 1. Proportional loss of signal amplitude with increasing propagation distance: = α d

Signal Loss. A1 A L[Neper] = ln or L[dB] = 20log 1. Proportional loss of signal amplitude with increasing propagation distance: = α d Part 6 ATTENUATION Signal Loss Loss of signal amplitude: A1 A L[Neper] = ln or L[dB] = 0log 1 A A A 1 is the amplitude without loss A is the amplitude with loss Proportional loss of signal amplitude with

More information

Chapter 1. The Nature of Sound. The Nature of Sound

Chapter 1. The Nature of Sound. The Nature of Sound Chapter 1 The Nature of Sound Waves carry energy, not matter, from one place to another. Sound waves carry energy as packets of particle compressions. Much like a spring that is compressed, energy is stored

More information

CHAPTER 4 RADIATION ATTENUATION

CHAPTER 4 RADIATION ATTENUATION HDR202 PHYSICS FOR RADIOGRAPHERS 2 CHAPTER 4 RADIATION ATTENUATION PREPARED BY: MR KAMARUL AMIN BIN ABDULLAH SCHOOL OF MEDICAL IMAGING FACULTY OF HEALTH SCIENCES Learning Objectives At the end of the lesson,

More information

MODELLING AND SIMULATION OF ULTRASOUND NON LINEARITIES MEASUREMENT FOR BIOLOGICAL MEDIUMS

MODELLING AND SIMULATION OF ULTRASOUND NON LINEARITIES MEASUREMENT FOR BIOLOGICAL MEDIUMS ICSV14 Cairns Australia 9-12 July, 2007 MODELLING AND SIMULATION OF ULTRASOUND NON LINEARITIES MEASUREMENT FOR BIOLOGICAL MEDIUMS Djilali Kourtiche, Rachid Guelaz and Mustapha Nadi LIEN, Nancy-Université,

More information

Mandatory Assignment 2013 INF-GEO4310

Mandatory Assignment 2013 INF-GEO4310 Mandatory Assignment 2013 INF-GEO4310 Deadline for submission: 12-Nov-2013 e-mail the answers in one pdf file to vikashp@ifi.uio.no Part I: Multiple choice questions Multiple choice geometrical optics

More information

Examples of cooperation

Examples of cooperation Visibility of Physics and Mathematicsworkabilityespeciallyin a hospital Examples of cooperation Viborg Katedralskole & he Police Force in Viborg Department of Clinical Physiology, Region Hospital Viborg

More information

A Brief Introduction to Medical Imaging. Outline

A Brief Introduction to Medical Imaging. Outline A Brief Introduction to Medical Imaging Outline General Goals Linear Imaging Systems An Example, The Pin Hole Camera Radiations and Their Interactions with Matter Coherent vs. Incoherent Imaging Length

More information

Ultrasonic Testing Classroom Training Book, Second Edition

Ultrasonic Testing Classroom Training Book, Second Edition Ultrasonic Testing Classroom Training Book, Second Edition Errata 1st Printing 02/15 The following text corrections pertain to the second edition of the Ultrasonic Testing Classroom Training Book. Subsequent

More information

Physics 210 Medical Physics Midterm Exam Winter 2015 February 13, 2015

Physics 210 Medical Physics Midterm Exam Winter 2015 February 13, 2015 Physics 210 Medical Physics Midterm Exam Winter 2015 February 13, 2015 Name Problem 1 /24 Problem 2 /24 Problem 3 /24 Total /76 I affirm that I have carried out my academic endeavors with full academic

More information

Change in Ultrasonic Backscattered Energy for Temperature Imaging: Factors Affecting Temperature Accuracy and Spatial Resolution in 3D

Change in Ultrasonic Backscattered Energy for Temperature Imaging: Factors Affecting Temperature Accuracy and Spatial Resolution in 3D Change in Ultrasonic Backscattered Energy for Temperature Imaging: Factors Affecting Temperature Accuracy and Spatial Resolution in 3D R. Martin Arthur 1, Jason W. Trobaugh 1, William L. Straube 2, Yuzheng

More information

Physical principles of Harmonic Imaging Min Joo Choi, PhD

Physical principles of Harmonic Imaging Min Joo Choi, PhD Physical principles of Harmonic Imaging Min Joo Choi, PhD Department Biomedical Engineering College of Medicine, Cheju National University School of Medicine, King s College of London, University of London

More information

PHYSICS A 2825/02. Health Physics. OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced GCE. 1 hour 30 minutes

PHYSICS A 2825/02. Health Physics. OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced GCE. 1 hour 30 minutes OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced GCE PHYSICS A 2825/02 Health Physics Monday 27 JUNE 2005 Afternoon 1 hour 30 minutes Candidates answer on the question paper. Additional materials: Electronic

More information

AQA Physics /7408

AQA Physics /7408 AQA Physics - 7407/7408 Module 10: Medical physics You should be able to demonstrate and show your understanding of: 10.1 Physics of the eye 10.1.1 Physics of vision The eye as an optical refracting system,

More information

STATISTICAL ANALYSIS OF ULTRASOUND ECHO FOR SKIN LESIONS CLASSIFICATION HANNA PIOTRZKOWSKA, JERZY LITNIEWSKI, ELŻBIETA SZYMAŃSKA *, ANDRZEJ NOWICKI

STATISTICAL ANALYSIS OF ULTRASOUND ECHO FOR SKIN LESIONS CLASSIFICATION HANNA PIOTRZKOWSKA, JERZY LITNIEWSKI, ELŻBIETA SZYMAŃSKA *, ANDRZEJ NOWICKI STATISTICAL ANALYSIS OF ULTRASOUND ECHO FOR SKIN LESIONS CLASSIFICATION HANNA PIOTRZKOWSKA, JERZY LITNIEWSKI, ELŻBIETA SZYMAŃSKA *, ANDRZEJ NOWICKI Institute of Fundamental Technological Research, Department

More information

Practical Results of Ultrasonic Imaging by Inverse Wave Field Extrapolation

Practical Results of Ultrasonic Imaging by Inverse Wave Field Extrapolation ECNDT 2006 - Th.2.3.1 Practical Results of Ultrasonic Imaging by Inverse Wave Field Extrapolation Niels PÖRTZGEN, RTD Group, Rotterdam, The Netherlands Abstract: Array technology in non-destructive inspection

More information

Medical Imaging Signals and Systems Jerry L. Prince and Jonathan M. Links Upper Saddle River, NJ: Pearson Prentice Hall, 2006

Medical Imaging Signals and Systems Jerry L. Prince and Jonathan M. Links Upper Saddle River, NJ: Pearson Prentice Hall, 2006 i Medical Imaging Signals and Systems Jerry L. Prince and Jonathan M. Links Upper Saddle River, NJ: Pearson Prentice Hall, 2006 Errata, Version 1.02, August 8, 2006 This errata applies to the first printing

More information

Microwave-induced thermoacoustic tomography using multi-sector scanning

Microwave-induced thermoacoustic tomography using multi-sector scanning Microwave-induced thermoacoustic tomography using multi-sector scanning Minghua Xu, Geng Ku, and Lihong V. Wang a) Optical Imaging Laboratory, Biomedical Engineering Program, Texas A&M University, 3120

More information

IMPROVEMENT OF TIME REVERSAL PROCESSING IN TITANIUM INSPECTIONS

IMPROVEMENT OF TIME REVERSAL PROCESSING IN TITANIUM INSPECTIONS IMPROVEMENT OF TIME REVERSAL PROCESSING IN TITANIUM INSPECTIONS Veronique Miette Mathias Fink Franyois Wu Laboratoire Ondes et Acoustique ESPCI, University Paris VII, 755 Paris, France INTRODUCTION We

More information

Angular Spectrum Decomposition Analysis of Second Harmonic Ultrasound Propagation and its Relation to Tissue Harmonic Imaging

Angular Spectrum Decomposition Analysis of Second Harmonic Ultrasound Propagation and its Relation to Tissue Harmonic Imaging The 4 th International Workshop on Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization, June 9, 006 at ABSTRACT Angular Spectrum Decomposition Analysis of Second Harmonic

More information

Outline. Fundamentals of ultrasound Focusing in ultrasound Ultrasonic blood flow estimation Nonlinear ultrasonics

Outline. Fundamentals of ultrasound Focusing in ultrasound Ultrasonic blood flow estimation Nonlinear ultrasonics 生醫超音波技術 台大電機系李百祺 Outline Fundamentals of ultrasound Focusing in ultrasound Ultrasonic blood flow estimation Nonlinear ultrasonics What is ultrasound? Characteristics of Ultrasound A mechanical wave: Characterized

More information

ISUOG Basic Training Physical Principles of Ultrasound including Safety

ISUOG Basic Training Physical Principles of Ultrasound including Safety ISUOG Physical Principles of Ultrasound including Safety Goals To understand Physics of ultrasound How is a b-mode image is generated The effects of ultrasound on human tissue To know Settings of your

More information

Workshop 2: Acoustic Output Measurements

Workshop 2: Acoustic Output Measurements 37 th th UIA Symposium, Washington DC Workshop 2: Acoustic Output Measurements Mark Hodnett Senior Research Scientist Quality of Life Division National Physical Laboratory Teddington Middlesex, UK Workshop

More information

Waves Encountering Barriers

Waves Encountering Barriers Waves Encountering Barriers Reflection and Refraction: When a wave is incident on a boundary that separates two regions of different wave speed, part of the wave is reflected and part is transmitted. Figure

More information

Development of water immerse type ultrasound probe with PZT film deposited by hydrothermal method

Development of water immerse type ultrasound probe with PZT film deposited by hydrothermal method Development of water immerse type ultrasound probe with PZT film deposited by hydrothermal method Naoki KATSURA 1,3, Mutsuo ISHIKAWA 3,4, Toshio,SATO 1,2,3, Masaaki TAKEUCHI 1, Norimichi KAWASHIMA 1,2,3,

More information

Ultrasonic Measurement of Minute Displacement of Object Cyclically Actuated by Acoustic Radiation Force

Ultrasonic Measurement of Minute Displacement of Object Cyclically Actuated by Acoustic Radiation Force Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 4608 4612 Part 1, No. 7A, July 2003 #2003 The Japan Society of Applied Physics Ultrasonic Measurement of Minute Displacement of Object Cyclically Actuated by Acoustic

More information

Research on sound absorbing mechanism and the preparation of new backing material for ultrasound transducers

Research on sound absorbing mechanism and the preparation of new backing material for ultrasound transducers Research on sound absorbing mechanism and the preparation of new backing material for ultrasound transducers Guofeng Bai a) Xiujuan Zhang b) Fusheng Sui c) Jun Yang d) Key Laboratory of Noise and Vibration

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS2023W1 SEMESTER 1 EXAMINATION 2016-2017 WAVE PHYSICS Duration: 120 MINS (2 hours) This paper contains 9 questions. Answers to Section A and Section B must be in separate answer

More information

glass Calculate the magnitude of the Young modulus for glass. State your answer to (a) in terms of SI fundamental units.

glass Calculate the magnitude of the Young modulus for glass. State your answer to (a) in terms of SI fundamental units. Q1.The term ultrasound refers to vibrations in a material that occur at frequencies too high to be detected by a human ear. When ultrasound waves move through a solid, both longitudinal and transverse

More information

PHYSICS A level component 3 Light, Nuclei and Options

PHYSICS A level component 3 Light, Nuclei and Options Surname Centre Number Candidate Number Other Names 2 GCE A LEVEL NEW A420U30-1 S17-A420U30-1 PHYSICS A level component 3 Light, Nuclei and Options THURSDAY, 29 JUNE 2017 MORNING 2 hours 15 minutes For

More information

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization Serena De Paolis *, Francesca Lionetto and Alfonso Maffezzoli

More information

Acoustic Shadowing Due to Refractive and Reflective Effects

Acoustic Shadowing Due to Refractive and Reflective Effects Acoustic Shadowing Due to Refractive and Reflective Effects F. GRAHAM SOMMER, 2 R. A. FILLY, AND MICHAEL J. MINTON Acoustic shadowing may be seen distal to the margins of rounded structures having different

More information

I have nothing to disclose

I have nothing to disclose Critical Ultrasound for Patient Care April 6-8, 2016 Sonoma, CA Critical Ultrasound for Patient Care I have nothing to disclose April 6-8, 2016 Sonoma, CA UC SF University of California San Francisco UC

More information

Take-Home Final Exam Last Possible Due Date: Dec. 21, 2004, 5 p.m.

Take-Home Final Exam Last Possible Due Date: Dec. 21, 2004, 5 p.m. Take-Home Final Exam Last Possible Due Date: Dec 1, 004, 5 pm Your solutions to the exam should be handed in to the instructor (BIRB 1088) or to Eve Gochis, the MRI lab administrator (BIRB 107) no later

More information

QUANTITATIVE MODEL OF ULTRASOUND PROPAGATION IN BIOLOGICAL MEDIA

QUANTITATIVE MODEL OF ULTRASOUND PROPAGATION IN BIOLOGICAL MEDIA U.P.B. Sci. Bull., Series A, Vol. 76, Iss. 4, 014 ISSN 13-707 QUANTITATIVE MODEL OF ULTRASOUND PROPAGATION IN BIOLOGICAL MEDIA AnaMaria CIUBARA 1, Dana DOROHOI, Feride SEVERCAN 3, Dorina CREANGA 4 Mathematical

More information

CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015

CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015 CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015 [Most of the material for this lecture has been taken from the Wireless Communications & Networks book by Stallings (2 nd edition).] Effective

More information

ULTRASONIC INSPECTION OF TITANIUM ALLOYS WITH A TIME REVERSAL

ULTRASONIC INSPECTION OF TITANIUM ALLOYS WITH A TIME REVERSAL ULTRASONIC INSPECTION OF TITANIUM ALLOYS WITH A TIME REVERSAL MIRROR Najet Chakroun Veronique Miette' Mathias Fink Franyois Wu Gerard Mangenet Lionel Beffy 'Laboratoire Ondes et Acoustique Espci, University

More information

OPTICAL COMMUNICATIONS S

OPTICAL COMMUNICATIONS S OPTICAL COMMUNICATIONS S-108.3110 1 Course program 1. Introduction and Optical Fibers 2. Nonlinear Effects in Optical Fibers 3. Fiber-Optic Components I 4. Transmitters and Receivers 5. Fiber-Optic Measurements

More information

Optimisation using measured Green s function for improving spatial coherence in acoustic measurements

Optimisation using measured Green s function for improving spatial coherence in acoustic measurements Ultrasonics 42 (2004) 205 212 www.elsevier.com/locate/ultras Optimisation using measured Green s function for improving spatial coherence in acoustic measurements Matthew Clark *, Steve D. Sharples, Mike

More information

Physics Mechanics. Lecture 34 Waves and sound II

Physics Mechanics. Lecture 34 Waves and sound II 1 Physics 170 - Mechanics Lecture 34 Waves and sound II 2 Sound Waves Sound waves are pressure waves in solids, liquids, and gases. They are longitudinal in liquids and gases, and may have transverse components

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XII Sound sound waves Doppler effect Standing waves Light Reflection and refraction Lightning Review Last lecture: 1. Vibration and waves Hooke s law Potential energy

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XII Sound sound waves Doppler effect Standing waves Light Reflection and refraction http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Vibration

More information

Estimating the spatial autocorrelation function for ultrasound scatterers in isotropic media

Estimating the spatial autocorrelation function for ultrasound scatterers in isotropic media Estimating the spatial autocorrelation function for ultrasound scatterers in isotropic media Jiang-Feng Chen, a) James A. Zagzebski, b) Fang Dong, and Ernest L. Madsen Department of Medical Physics, University

More information

MEDICAL IMAGING. METHODS OF MODERN IMAGING, BASED ON ELECTRO-MAGNETIC RADIATION (radiowaves, infrared radiation, X-rays, γ-rays ) AND ULTRASOUND

MEDICAL IMAGING. METHODS OF MODERN IMAGING, BASED ON ELECTRO-MAGNETIC RADIATION (radiowaves, infrared radiation, X-rays, γ-rays ) AND ULTRASOUND MEDICAL IMAGING MEDICAL IMAGING METHODS OF MODERN IMAGING, BASED ON ELECTRO-MAGNETIC RADIATION (radiowaves, infrared radiation, X-rays, γ-rays ) AND ULTRASOUND MEDICAL IMAGING RADIOLOGY NUCLEAR MEDICINE

More information

Nonlinear effects in ultrasound fields of diagnostic-type transducers used for kidney stone propulsion: characterization in water

Nonlinear effects in ultrasound fields of diagnostic-type transducers used for kidney stone propulsion: characterization in water The 2th International Symposium on Nonlinear Acoustics, Lyon, June 29 th, 21 Nonlinear effects in ultrasound fields of diagnostic-type transducers used for kidney stone propulsion: characterization in

More information

Fast simulation of nonlinear radio frequency ultrasound images in inhomogeneous nonlinear media: CREANUIS

Fast simulation of nonlinear radio frequency ultrasound images in inhomogeneous nonlinear media: CREANUIS Proceedings of the Acoustics 2012 Nantes Conference Fast simulation of nonlinear radio frequency ultrasound images in inhomogeneous nonlinear media: CREANUIS F. Varray a, M. Toulemonde a,b, O. Basset a

More information

Piezoelectric sensing and actuation CEE575

Piezoelectric sensing and actuation CEE575 Piezoelectric sensing and actuation CEE575 Sensor: Mechanical energy to electrical energy Actuator: Electrical energy converted to mechanical energy (motion) Materials For many years, natural crystals

More information

CMPT 889: Lecture 8 Digital Waveguides

CMPT 889: Lecture 8 Digital Waveguides CMPT 889: Lecture 8 Digital Waveguides Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University February 10, 2012 1 Motion for a Wave For the string, we are interested in the

More information

Physics General Physics. Lecture 25 Waves. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 25 Waves. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 25 Waves Fall 2016 Semester Prof. Matthew Jones 1 Final Exam 2 3 Mechanical Waves Waves and wave fronts: 4 Wave Motion 5 Two Kinds of Waves 6 Reflection of Waves When

More information

Chapter 1 - Introduction to Human Anatomy and Physiology

Chapter 1 - Introduction to Human Anatomy and Physiology Chapter 1 - Introduction to Human Anatomy and Physiology 1.3 - LEVELS OF ORGANIZATION Early investigators, limited in their ability to observe small structures such as cells, focused their attention on

More information

LECTURE 8 DOPPLER EFFECT AND SHOCK WAVES

LECTURE 8 DOPPLER EFFECT AND SHOCK WAVES LECTURE 8 DOPPLER EFFECT AND SHOCK WAVES 15.7 The Doppler effect Sound waves from a moving source A stationary source and a moving observer The Doppler effect for light waves Frequency shift on reflection

More information

Contents. Associated Editors and Contributors...XXIII

Contents. Associated Editors and Contributors...XXIII Contents Associated Editors and Contributors...XXIII 1 Fundamentals of Piezoelectricity...1 1.1 Introduction...1 1.2 The Piezoelectric Effect...2 1.3 Mathematical Formulation of the Piezoelectric Effect.

More information

TESTING FOR NONGAUSSIAN FLUCTIJA TIONS IN GRAIN NOISE

TESTING FOR NONGAUSSIAN FLUCTIJA TIONS IN GRAIN NOISE TESTING FOR NONGAUSSIAN FLUCTIJA TIONS IN GRAIN NOISE INTRODUCTION Steven P. Neal Department of Mechanical and Aerospace Engineering University of Missouri-Columbia Columbia, MO 65211 Kevin D. Donohue

More information

CHAPTER 2 CHARACTERIZATION OF THE REC TECHNIQUE

CHAPTER 2 CHARACTERIZATION OF THE REC TECHNIQUE CHAPTER 2 CHARACTERIZATION OF THE REC TECHNIQUE 2.1 The Effects of Nonlinear Distortion on the Compression of REC Echoes 2.1.1 Introduction In ultrasound, when the excitation waveform is low in pressure

More information

Ultrasonic Imaging of Static Objects Through a Scattering Layer Using the Harmonic Phase Conjugation Approach

Ultrasonic Imaging of Static Objects Through a Scattering Layer Using the Harmonic Phase Conjugation Approach University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations 2012 Ultrasonic Imaging of Static Objects Through a Scattering Layer Using the Harmonic Phase Conjugation Approach Raheleh

More information

MODELING OF ACOUSTIC PROCESSES IN SOLIDS BASED ON PARTICLE INTERACTION

MODELING OF ACOUSTIC PROCESSES IN SOLIDS BASED ON PARTICLE INTERACTION MATEC Web of Conferences 55, 44 (8) IME&T 7 https://doi.org/.5/matecconf/85544 MODELING OF ACOUSTIC PROCESSES IN SOLIDS BASED ON PARTICLE INTERACTION Angela Kuzovova,, Timur Muksunov Tomsk State University,

More information

Pixel-based Beamforming for Ultrasound Imaging

Pixel-based Beamforming for Ultrasound Imaging Pixel-based Beamforming for Ultrasound Imaging Richard W. Prager and Nghia Q. Nguyen Department of Engineering Outline v Introduction of Ultrasound Imaging v Image Formation and Beamforming v New Time-delay

More information

7.Piezoelectric, Accelerometer and Laser Sensors

7.Piezoelectric, Accelerometer and Laser Sensors 7.Piezoelectric, Accelerometer and Laser Sensors 7.1 Piezoelectric sensors: (Silva p.253) Piezoelectric materials such as lead-zirconate-titanate (PZT) can generate electrical charge and potential difference

More information

Figure 7.1 Ultrasonic Interferometer

Figure 7.1 Ultrasonic Interferometer Figure 7.1 Ultrasonic Interferometer Figure 7.2 Maxima and minima in the ammeter reading Department of Physical Sciences, Bannari Amman Institute of Technology, Sathyamangalam 58 Adiabatic Compressibility

More information

MICROWAVE-INDUCED THERMOACOUSTIC TOMOGRAPHY: APPLICATIONS AND CORRECTIONS FOR THE EFFECTS OF ACOUSTIC HETEROGENEITIES. A Dissertation XING JIN

MICROWAVE-INDUCED THERMOACOUSTIC TOMOGRAPHY: APPLICATIONS AND CORRECTIONS FOR THE EFFECTS OF ACOUSTIC HETEROGENEITIES. A Dissertation XING JIN MICROWAVE-INDUCED THERMOACOUSTIC TOMOGRAPHY: APPLICATIONS AND CORRECTIONS FOR THE EFFECTS OF ACOUSTIC HETEROGENEITIES A Dissertation by XING JIN Submitted to the Office of Graduate Studies of Texas A&M

More information

Stress and Energy Transmission by Inhomogeneous Plane Waves into Dissipative Media

Stress and Energy Transmission by Inhomogeneous Plane Waves into Dissipative Media Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 11-6-2015 Stress and Energy Transmission by Inhomogeneous Plane Waves into Dissipative Media

More information

Technical University of Denmark

Technical University of Denmark Technical University of Denmark Page 1 of 10 pages Written test, 12 December 2012 Course name: Introduction to medical imaging Course no. 31540 Aids allowed: None. Pocket calculator not allowed "Weighting":

More information