RANDOM MATRICES and ANDERSON LOCALIZATION

Size: px
Start display at page:

Download "RANDOM MATRICES and ANDERSON LOCALIZATION"

Transcription

1 RANDOM MATRICES and ANDERSON LOCALIZATION Luca G. Molinari Physics Department Universita' degli Studi di Milano Abstract: a particle in a lattice with random potential is subject to Anderson localization, which affects low T transport properties of disordered materials. After 50 years the Anderson model continues to be an active area of research. I present some analytic properties of block tridiagonal matrices, for the study of localization in d>1 Milan, april 2, 2009

2 Isaac Newton Institute for Mathematical Sciences Mathematics and Physics of Anderson localization: 50 Years After 14 July - 19 December 2008

3 summary The Anderson model Determinants of block tridiagonal matrices and spectral duality Jensen's theorem and the spectrum of exponents. Energy spectra of non Hermitian Anderson matrices The Argument Principle, hole & halo in complex spectra of tridiagonal matrices

4 THE ANDERSON MODEL d=1,2: p.p. spectrum, exponential localization d=3: a.c. to p.p. spectrum, metal-insulator transition

5 Phase diagram 3D Anderson model localized states extended states

6 UCF MIT dynamical localization QHE QUANTUM CHAOS: - sound - light - matter waves BEC

7 Low T conductivity of amorphous semicond. σ exp [-(c/t)^⅟4] (Mott, 1979: phononassisted hopping between localized states) Weakly disordered metal films 1/σ -log T Random alloys Ref: B.Kramer and A.MacKinnon, Localization: theory and experiment, Rep. Progr. Phys. 56 (1993) MIT in 2D heterojunctions, Si-MOS? (PRL, 2008) Charge localization & Polaron formation in Na_xWO_3 (MIT with x) (PRL, 2006) OPTICS!

8 THEORY Theorems (Spencer, Ishii, Pastur,...) Kubo formula weak disorder (Stone, Altshuler,...) Energy levels and b.c. (Thouless, Hatano & Nelson, level curvatures,... ) Transfer matrix and Lyap spectrum scaling (Kramer&MacKinnon), DMPK eq., conductance &scattering (Buttiker and Landauer),... Supersymmetry, BRM (Efetov, Fyodorov & Mirlin)

9 Some basic old ideas Adimensional conductance g(l)=h/e² L^(d-2)σ Scattering ( lead-sample-lead) g ~ tr tt* (t=transm. matrix) DMPK Periodic b.c.: Thouless conductance g ~ d²e/dφ² /Δ (Bloch phase) One parameter scaling d(log g) / d(log L) = β(g)

10

11 J. Phys. I France 4 (1994) 1469

12 THE HAMILTONIAN MATRIX Block Tridiagonal Matrix A block is Hamiltonian matrix of a section

13 THE TRANSFER MATRIX Eigenvalues of T(E) grow (decay) exponentially in the number of blocks. The rates are the exponents ξ_a(e)

14 Anderson D=1 tridiagonal random matrices Hatano and Nelson (1996) (Herbert-Jones-Thouless formula)

15 SPECTRAL DUALITY z^n is an eigenvalue of T(E) iff E is eigenvalue of H(z^n)

16 determinants of block tridiagonal matrices L.G.M, Linear Algebra and its Applications 429 (2008) 2221

17 Anderson model: duality Exponents describe decay lenghts of Anderson model. They are obtained from nonherm. energy spectrum via Jensen's identity

18 A formula for the exponents (a deterministic variant of Thouless formula) m=3 ξ no formula of Thouless type is known in D>1 (only for sum of exps, xi=0)

19 the exponents ξ m=3, n=50, w=7

20 non-hermitian energy spectra (Anderson 2D) m=5 m=10 n=100, w=7, xi=1.5

21 Anderson 2D (m=3,n=8) (xi fixed, change phase) (change xi and phase)

22

23 Non-Hermitian tridiagonal complex matrices I (with G. Lacagnina)

24 Non-Hermitian tridiagonal complex matrices II

25 BAND RANDOM MATRICES complex, no symmetry

26 conclusions Spectral duality + Jensen's identity --> exponents of single transfer matrix in terms of eigenvalues of Hamiltonan matrix with non-hermitian b.c. Spectral duality + Argument principle --> holes in spectrum of Hamiltonian matrix with non Hermitian b.c. Theory can be extended to T*T (Lyapunov exponents)? Metal insulator transition (D=3)?? Band Random Matrices?

27 determinants of tridiagonal matrices

28 A formula for the exponents (a deterministic variant of Thouless formula) m=3 ξ no formula of Thouless type is known in D>1 (only for sum of exps, xi=0)

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 3 Beforehand Weak Localization and Mesoscopic Fluctuations Today

More information

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 ORIGINS E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 P.W. Anderson, Absence of Diffusion in Certain Random Lattices ; Phys.Rev., 1958, v.109, p.1492 L.D. Landau, Fermi-Liquid

More information

Floquet theory of photo-induced topological phase transitions: Application to graphene

Floquet theory of photo-induced topological phase transitions: Application to graphene Floquet theory of photo-induced topological phase transitions: Application to graphene Takashi Oka (University of Tokyo) T. Kitagawa (Harvard) L. Fu (Harvard) E. Demler (Harvard) A. Brataas (Norweigian

More information

Metal-insulator Transition by Holographic Charge Density Waves

Metal-insulator Transition by Holographic Charge Density Waves Metal-insulator Transition by Holographic Charge Density Waves Chao Niu (IHEP, CAS) Based mainly on arxiv:1404.0777 with: Yi Ling, Jianpin Wu, Zhuoyu Xian and Hongbao Zhang (May 9, 2014) Outlines 1. Introduction

More information

Application of the Lanczos Algorithm to Anderson Localization

Application of the Lanczos Algorithm to Anderson Localization Application of the Lanczos Algorithm to Anderson Localization Adam Anderson The University of Chicago UW REU 2009 Advisor: David Thouless Effect of Impurities in Materials Naively, one might expect that

More information

Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime

Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime Zhenhua Qiao, Yanxia Xing, and Jian Wang* Department of Physics and the Center of Theoretical and Computational

More information

Numerical Analysis of the Anderson Localization

Numerical Analysis of the Anderson Localization Numerical Analysis of the Anderson Localization Peter Marko² FEI STU Bratislava FzU Praha, November 3. 23 . introduction: localized states in quantum mechanics 2. statistics and uctuations 3. metal - insulator

More information

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU A mini course on topology extrinsic curvature K vs intrinsic (Gaussian) curvature G K 0 G 0 G>0 G=0 K 0 G=0 G

More information

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization. 23 August - 3 September, 2010

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization. 23 August - 3 September, 2010 16-5 Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization 3 August - 3 September, 010 INTRODUCTORY Anderson Localization - Introduction Boris ALTSHULER Columbia

More information

Localization I: General considerations, one-parameter scaling

Localization I: General considerations, one-parameter scaling PHYS598PTD A.J.Leggett 2013 Lecture 4 Localization I: General considerations 1 Localization I: General considerations, one-parameter scaling Traditionally, two mechanisms for localization of electron states

More information

3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Recitation 3 Notes

3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Recitation 3 Notes 3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Outline 1. Schr dinger: Eigenfunction Problems & Operator Properties 2. Piecewise Function/Continuity Review -Scattering from

More information

Theory of Mesoscopic Systems

Theory of Mesoscopic Systems Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 2 08 June 2006 Brownian Motion - Diffusion Einstein-Sutherland Relation for electric

More information

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators Philippe Jacquod U of Arizona UA Phys colloquium - feb 1, 2013 Continuous symmetries and conservation laws Noether

More information

Chapter 29. Quantum Chaos

Chapter 29. Quantum Chaos Chapter 29 Quantum Chaos What happens to a Hamiltonian system that for classical mechanics is chaotic when we include a nonzero h? There is no problem in principle to answering this question: given a classical

More information

Ashvin Vishwanath UC Berkeley

Ashvin Vishwanath UC Berkeley TOPOLOGY + LOCALIZATION: QUANTUM COHERENCE IN HOT MATTER Ashvin Vishwanath UC Berkeley arxiv:1307.4092 (to appear in Nature Comm.) Thanks to David Huse for inspiring discussions Yasaman Bahri (Berkeley)

More information

Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model

Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model Antonio M. García-García Shanghai Jiao Tong University PhD Students needed! Verbaarschot Stony Brook Bermúdez Leiden Tezuka Kyoto arxiv:1801.02696

More information

Disordered Superconductors

Disordered Superconductors Cargese 2016 Disordered Superconductors Claude Chapelier, INAC-PHELIQS, CEA-Grenoble Superconductivity in pure metals Kamerlingh Onnes, H., "Further experiments with liquid helium. C. On the change of

More information

Termination of typical wavefunction multifractal spectra at the Anderson metal-insulator transition

Termination of typical wavefunction multifractal spectra at the Anderson metal-insulator transition Termination of typical wavefunction multifractal spectra at the Anderson metal-insulator transition Matthew S. Foster, 1,2 Shinsei Ryu, 3 Andreas W. W. Ludwig 4 1 Rutgers, the State University of New Jersey

More information

Weak Ergodicity Breaking WCHAOS 2011

Weak Ergodicity Breaking WCHAOS 2011 Weak Ergodicity Breaking Eli Barkai Bar-Ilan University Bel, Burov, Korabel, Margolin, Rebenshtok WCHAOS 211 Outline Single molecule experiments exhibit weak ergodicity breaking. Blinking quantum dots,

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 5 Beforehand Yesterday Today Anderson Localization, Mesoscopic

More information

Solvable model for a dynamical quantum phase transition from fast to slow scrambling

Solvable model for a dynamical quantum phase transition from fast to slow scrambling Solvable model for a dynamical quantum phase transition from fast to slow scrambling Sumilan Banerjee Weizmann Institute of Science Designer Quantum Systems Out of Equilibrium, KITP November 17, 2016 Work

More information

Resonant scattering in random-polymer chains with inversely symmetric impurities

Resonant scattering in random-polymer chains with inversely symmetric impurities Resonant scattering in random-polymer chains with inversely symmetric impurities Y. M. Liu, R. W. Peng,* X. Q. Huang, Mu Wang, A. Hu, and S. S. Jiang National Laboratory of Solid State Microstructures

More information

COLD ATOMS AND OPTICAL DISORDER : A NEW TOOL TO STUDY QUANTUM TRANSPORT P. BOUYER

COLD ATOMS AND OPTICAL DISORDER : A NEW TOOL TO STUDY QUANTUM TRANSPORT P. BOUYER COLD ATOMS AND OPTICAL DISORDER : A NEW TOOL TO STUDY QUANTUM TRANSPORT P. BOUYER Laboratoire Charles Fabry de l Institut d Optique Palaiseau, France web site : www.atomoptic.fr TITRE S. Bernon (Talk and

More information

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA. NSF Visiting Committee, April 28-29, 2014

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA. NSF Visiting Committee, April 28-29, 2014 The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA NSF Visiting Committee, April 28-29, 2014 Paola Cappellaro Mikhail Lukin Susanne Yelin Eugene Demler CUA Theory quantum control

More information

Heat conduction and phonon localization in disordered harmonic lattices

Heat conduction and phonon localization in disordered harmonic lattices Heat conduction and phonon localization in disordered harmonic lattices Anupam Kundu Abhishek Chaudhuri Dibyendu Roy Abhishek Dhar Joel Lebowitz Herbert Spohn Raman Research Institute NUS, Singapore February

More information

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005.

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005. Q 1 (Balents) Are quantum effects important for physics of hexagonal

More information

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION Subir Sachdev Center for Theoretical Physics, P.O. Box 6666 Yale University, New Haven, CT 06511 This paper reviews recent progress in understanding the

More information

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect 8.513 Lecture 14 Coherent backscattering Weak localization Aharonov-Bohm effect Light diffusion; Speckle patterns; Speckles in coherent backscattering phase-averaged Coherent backscattering Contribution

More information

Eigenvectors under a generic perturbation: non-perturbative results from the random matrix approach

Eigenvectors under a generic perturbation: non-perturbative results from the random matrix approach epl draft igenvectors under a generic perturbation: non-perturbative results from the random matrix approach K. Truong and A. Ossipov School of Mathematical Sciences, University of Nottingham, Nottingham

More information

Thouless conductance, Landauer-Büttiker currents and spectrum

Thouless conductance, Landauer-Büttiker currents and spectrum , Landauer-Büttiker currents and spectrum (Collaboration with V. Jakšić, Y. Last and C.-A. Pillet) L. Bruneau Univ. Cergy-Pontoise Marseille - June 13th, 2014 L. Bruneau, Landauer-Büttiker currents and

More information

Introductory lecture on topological insulators. Reza Asgari

Introductory lecture on topological insulators. Reza Asgari Introductory lecture on topological insulators Reza Asgari Workshop on graphene and topological insulators, IPM. 19-20 Oct. 2011 Outlines -Introduction New phases of materials, Insulators -Theory quantum

More information

Hopping transport in disordered solids

Hopping transport in disordered solids Hopping transport in disordered solids Dominique Spehner Institut Fourier, Grenoble, France Workshop on Quantum Transport, Lexington, March 17, 2006 p. 1 Outline of the talk Hopping transport Models for

More information

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany) Phase Diagram of interacting Bose gases in one-dimensional disordered optical lattices R. Citro In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L.

More information

Delocalization for Schrödinger operators with random Dirac masses

Delocalization for Schrödinger operators with random Dirac masses Delocalization for Schrödinger operators with random Dirac masses CEMPI Scientific Day Lille, 10 February 2017 Disordered Systems E.g. box containing N nuclei Motion of electron in this system High temperature

More information

ARBITRARY ROTATION INVARIANT RANDOM MATRIX ENSEMBLES HUBBARD-STRATONOVITCH TRANSFORMATION VERSUS SUPERBOSONIZATION. Mario Kieburg.

ARBITRARY ROTATION INVARIANT RANDOM MATRIX ENSEMBLES HUBBARD-STRATONOVITCH TRANSFORMATION VERSUS SUPERBOSONIZATION. Mario Kieburg. ARBITRARY ROTATION INVARIANT RANDOM MATRIX ENSEMBLES: HUBBARD-STRATONOVITCH TRANSFORMATION VERSUS SUPERBOSONIZATION Mario Kieburg Universität Duisburg-Essen Mexico, Cuernavaca, March 2009 supported by

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

arxiv:cond-mat/ v1 23 May 1995

arxiv:cond-mat/ v1 23 May 1995 Universal Spin-Induced Magnetoresistance in the Variable-Range Hopping Regime Yigal Meir Physics Department, Ben Gurion University, Beer Sheva 84105, ISRAEL arxiv:cond-mat/9505101v1 23 May 1995 Abstract

More information

Anderson Localization Looking Forward

Anderson Localization Looking Forward Anderson Localization Looking Forward Boris Altshuler Physics Department, Columbia University Collaborations: Also Igor Aleiner Denis Basko, Gora Shlyapnikov, Vincent Michal, Vladimir Kravtsov, Lecture2

More information

Purely electronic transport in dirty boson insulators

Purely electronic transport in dirty boson insulators Purely electronic transport in dirty boson insulators Markus Müller Ann. Phys. (Berlin) 18, 849 (2009). Discussions with M. Feigel man, M.P.A. Fisher, L. Ioffe, V. Kravtsov, Abdus Salam International Center

More information

arxiv: v2 [cond-mat.dis-nn] 21 Jul 2010

arxiv: v2 [cond-mat.dis-nn] 21 Jul 2010 Two-dimensional electron systems beyond the diffusive regime P. Markoš Department of Physics FEI, lovak University of Technology, 8 9 Bratislava, lovakia arxiv:5.89v [cond-mat.dis-nn] Jul Transport properties

More information

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES experiments on 3D topological insulators Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Outline Using ARPES to demonstrate that certain materials

More information

Anderson Localization in the Seventies and Beyond David Thouless University of Washington Seattle, WA APS March Meeting, Pittsburgh March 19,

Anderson Localization in the Seventies and Beyond David Thouless University of Washington Seattle, WA APS March Meeting, Pittsburgh March 19, Anderson Localization in the Seventies and Beyond David Thouless University of Washington Seattle, WA 98195 APS March Meeting, Pittsburgh March 19, 2009 1 Importance of Anderson s 1958 paper on Absence

More information

Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA

Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA 40 years of Mesoscopics Physics: Colloquium in memory of Jean-Louis

More information

Today: 5 July 2008 ٢

Today: 5 July 2008 ٢ Anderson localization M. Reza Rahimi Tabar IPM 5 July 2008 ١ Today: 5 July 2008 ٢ Short History of Anderson Localization ٣ Publication 1) F. Shahbazi, etal. Phys. Rev. Lett. 94, 165505 (2005) 2) A. Esmailpour,

More information

arxiv:cond-mat/ v1 29 Dec 1996

arxiv:cond-mat/ v1 29 Dec 1996 Chaotic enhancement of hydrogen atoms excitation in magnetic and microwave fields Giuliano Benenti, Giulio Casati Università di Milano, sede di Como, Via Lucini 3, 22100 Como, Italy arxiv:cond-mat/9612238v1

More information

Introduction to Wave Scattering, Localization and Mesoscopic Phenomena

Introduction to Wave Scattering, Localization and Mesoscopic Phenomena Springer Series in Materials Science 88 Introduction to Wave Scattering, Localization and Mesoscopic Phenomena Bearbeitet von Ping Sheng Neuausgabe 2006. Buch. xv, 329 S. Hardcover ISBN 978 3 540 29155

More information

2D electron systems beyond the diffusive regime

2D electron systems beyond the diffusive regime 2D electron systems beyond the diffusive regime Peter Markoš FEI STU Bratislava 9. June 211 Collaboration with: K. Muttalib, L. Schweitzer Typeset by FoilTEX Introduction: Spatial distribution of the electron

More information

H = ( H(x) m,n. Ω = T d T x = x + ω (d frequency shift) Ω = T 2 T x = (x 1 + x 2, x 2 + ω) (skewshift)

H = ( H(x) m,n. Ω = T d T x = x + ω (d frequency shift) Ω = T 2 T x = (x 1 + x 2, x 2 + ω) (skewshift) Chapter One Introduction We will consider infinite matrices indexed by Z (or Z b ) associated to a dynamical system in the sense that satisfies H = ( H(x) m,n )m,n Z H(x) m+1,n+1 = H(T x) m,n where x Ω,

More information

Nonlinear screening and percolation transition in 2D electron liquid. Michael Fogler

Nonlinear screening and percolation transition in 2D electron liquid. Michael Fogler Dresden 005 Nonlinear screening and percolation transition in D electron liquid Michael Fogler UC San Diego, USA Support: A.P. Sloan Foundation; C. & W. Hellman Fund Tunable D electron systems MOSFET Heterostructure

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 25 Sep 2002

arxiv:cond-mat/ v1 [cond-mat.str-el] 25 Sep 2002 arxiv:cond-mat/0209587v1 [cond-mat.str-el] 25 Sep 2002 The 2D Mott-Hubbard transition in presence of a parallel magnetic field A. Avella and F. Mancini Dipartimento di Fisica E.R. Caianiello - Unità INFM

More information

Can we find metal-insulator transitions in 2-dimensional systems?

Can we find metal-insulator transitions in 2-dimensional systems? Can we find metal-insulator transitions in 2-dimensional systems? Marcelo Kuroda Term Essay for PHYS498ESM, Spring 2004 It has been almost a quarter of a century since the belief of the non existence metallic

More information

Rigid Body Motion in a Special Lorentz Gas

Rigid Body Motion in a Special Lorentz Gas Rigid Body Motion in a Special Lorentz Gas Kai Koike 1) Graduate School of Science and Technology, Keio University 2) RIKEN Center for Advanced Intelligence Project BU-Keio Workshop 2018 @Boston University,

More information

Thermal transport in strongly correlated nanostructures J. K. Freericks

Thermal transport in strongly correlated nanostructures J. K. Freericks Thermal transport in strongly correlated nanostructures J. K. Freericks Department of Physics, Georgetown University, Washington, DC 20057 Funded by the Office of Naval Research and the National Science

More information

Ehud Altman. Weizmann Institute and Visiting Miller Prof. UC Berkeley

Ehud Altman. Weizmann Institute and Visiting Miller Prof. UC Berkeley Emergent Phenomena And Universality In Quantum Systems Far From Thermal Equilibrium Ehud Altman Weizmann Institute and Visiting Miller Prof. UC Berkeley A typical experiment in traditional Condensed Matter

More information

I. PLATEAU TRANSITION AS CRITICAL POINT. A. Scaling flow diagram

I. PLATEAU TRANSITION AS CRITICAL POINT. A. Scaling flow diagram 1 I. PLATEAU TRANSITION AS CRITICAL POINT The IQHE plateau transitions are examples of quantum critical points. What sort of theoretical description should we look for? Recall Anton Andreev s lectures,

More information

Numerical study of localization in antidot lattices

Numerical study of localization in antidot lattices PHYSICAL REVIEW B VOLUME 58, NUMBER 16 Numerical study of localization in antidot lattices 15 OCTOBER 1998-II Seiji Uryu and Tsuneya Ando Institute for Solid State Physics, University of Tokyo, 7-22-1

More information

Optical Characterization of Solids

Optical Characterization of Solids D. Dragoman M. Dragoman Optical Characterization of Solids With 184 Figures Springer 1. Elementary Excitations in Solids 1 1.1 Energy Band Structure in Crystalline Materials 2 1.2 k p Method 11 1.3 Numerical

More information

Disordered Quantum Systems

Disordered Quantum Systems Disordered Quantum Systems Boris Altshuler Physics Department, Columbia University and NEC Laboratories America Collaboration: Igor Aleiner, Columbia University Part 1: Introduction Part 2: BCS + disorder

More information

Tensor network simulations of strongly correlated quantum systems

Tensor network simulations of strongly correlated quantum systems CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE AND CLARENDON LABORATORY UNIVERSITY OF OXFORD Tensor network simulations of strongly correlated quantum systems Stephen Clark LXXT[[[GSQPEFS\EGYOEGXMZMXMIWUYERXYQGSYVWI

More information

Introduction to Mesoscopics. Boris Altshuler Princeton University, NEC Laboratories America,

Introduction to Mesoscopics. Boris Altshuler Princeton University, NEC Laboratories America, Not Yet Introduction to Mesoscopics Boris Altshuler Princeton University, NEC Laboratories America, ORIGINS E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 P.W. Anderson, Absence

More information

Coherent backscattering in Fock space. ultracold bosonic atoms

Coherent backscattering in Fock space. ultracold bosonic atoms Coherent backscattering in the Fock space of ultracold bosonic atoms Peter Schlagheck 16.2.27 Phys. Rev. Lett. 112, 1443 (24); arxiv:161.435 Coworkers Thomas Engl (Auckland) Juan Diego Urbina (Regensburg)

More information

Inequivalent bundle representations for the Noncommutative Torus

Inequivalent bundle representations for the Noncommutative Torus Inequivalent bundle representations for the Noncommutative Torus Chern numbers: from abstract to concrete Giuseppe De Nittis Mathematical Physics Sector of: SISSA International School for Advanced Studies,

More information

Symmetry, Topology and Phases of Matter

Symmetry, Topology and Phases of Matter Symmetry, Topology and Phases of Matter E E k=λ a k=λ b k=λ a k=λ b Topological Phases of Matter Many examples of topological band phenomena States adiabatically connected to independent electrons: - Quantum

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

Statistical properties of eigenvectors in non-hermitian Gaussian random matrix ensembles

Statistical properties of eigenvectors in non-hermitian Gaussian random matrix ensembles JOURNAL OF MATHEMATICAL PHYSICS VOLUME 4, NUMBER 5 MAY 2000 Statistical properties of eigenvectors in non-hermitian Gaussian random matrix ensembles B. Mehlig a) and J. T. Chalker Theoretical Physics,

More information

Superconducting fluctuations, interactions and disorder : a subtle alchemy

Superconducting fluctuations, interactions and disorder : a subtle alchemy Les défis actuels de la supraconductivité Dautreppe 2011 Superconducting fluctuations, interactions and disorder : a subtle alchemy Claude Chapelier, Benjamin Sacépé, Thomas Dubouchet INAC-SPSMS-LaTEQS,

More information

A typical medium approach to Anderson localization in correlated systems.

A typical medium approach to Anderson localization in correlated systems. A typical medium approach to Anderson localization in correlated systems. N.S.Vidhyadhiraja Theoretical Sciences Unit Jawaharlal Nehru center for Advanced Scientific Research Bangalore, India Outline Models

More information

Mesoscopic Physics. Smaller is different

Mesoscopic Physics. Smaller is different Mesoscopic Physics Smaller is different 1. Theories of Anderson localization 2. Weak localization: theory and experiment 3. Universality and Random Matrix Theory 4. Metal-Insulator Transitions 5. Mesoscopic

More information

Orthogonality Catastrophe

Orthogonality Catastrophe Filiberto Ares Departamento de Física Teórica Universidad de Zaragoza Orthogonality Catastrophe Martes Cuantico, April 17 What is Orthogonality Catastrophe (OC)? 2 / 23 2 / 23 What is Orthogonality Catastrophe

More information

Theory of Aperiodic Solids:

Theory of Aperiodic Solids: Theory of Aperiodic Solids: Sponsoring from 1980 to present Jean BELLISSARD jeanbel@math.gatech.edu Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics Content 1. Aperiodic

More information

Polariton Condensation

Polariton Condensation Polariton Condensation Marzena Szymanska University of Warwick Windsor 2010 Collaborators Theory J. Keeling P. B. Littlewood F. M. Marchetti Funding from Macroscopic Quantum Coherence Macroscopic Quantum

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli

More information

Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor

Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor Matthew S. Foster Rice University March 14 th, 2014 Collaborators: Emil Yuzbashyan (Rutgers),

More information

Topological Physics in Band Insulators IV

Topological Physics in Band Insulators IV Topological Physics in Band Insulators IV Gene Mele University of Pennsylvania Wannier representation and band projectors Modern view: Gapped electronic states are equivalent Kohn (1964): insulator is

More information

Physics 127b: Statistical Mechanics. Renormalization Group: 1d Ising Model. Perturbation expansion

Physics 127b: Statistical Mechanics. Renormalization Group: 1d Ising Model. Perturbation expansion Physics 17b: Statistical Mechanics Renormalization Group: 1d Ising Model The ReNormalization Group (RNG) gives an understanding of scaling and universality, and provides various approximation schemes to

More information

Observation of two-dimensional Anderson localization of light in disordered optical fibers with nonlocal nonlinearity

Observation of two-dimensional Anderson localization of light in disordered optical fibers with nonlocal nonlinearity Observation of two-dimensional Anderson localization of light in disordered optical fibers with nonlocal nonlinearity Claudio Conti Institute for Complex Systems National Research Council ISC-CNR Rome

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Contents Preface v 1. Fundamentals of Bose Einstein Condensation 1 1.1 Indistinguishability of Identical Particles.......... 1 1.2 Ideal Bose Gas in a Uniform System............ 3 1.3 Off-Diagonal Long-Range

More information

Spectral Universality of Random Matrices

Spectral Universality of Random Matrices Spectral Universality of Random Matrices László Erdős IST Austria (supported by ERC Advanced Grant) Szilárd Leó Colloquium Technical University of Budapest February 27, 2018 László Erdős Spectral Universality

More information

What is Quantum Transport?

What is Quantum Transport? What is Quantum Transport? Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. http://www.physics.udel.edu/~bnikolic Semiclassical Transport (is boring!) Bloch-Boltzmann

More information

Double Transition Effect in Anderson Transition

Double Transition Effect in Anderson Transition Turk J Phys 25 2001), 431 438. c TÜBİTAK Double Transition Effect in Anderson Transition Hüseyin AKTAŞ Department of Physics, Faculty of Sciences and Arts, University of Kırıkkale, Kırıkkale-TURKEY Received

More information

arxiv: v1 [cond-mat.other] 20 Apr 2010

arxiv: v1 [cond-mat.other] 20 Apr 2010 Characterization of 3d topological insulators by 2d invariants Rahul Roy Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, UK arxiv:1004.3507v1 [cond-mat.other] 20 Apr 2010

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany

in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany 1 Polaron Seminar, AG Widera AG Fleischhauer, 05/06/14 Introduction to polaron physics in BECs Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany Graduate

More information

Aditi Mitra New York University

Aditi Mitra New York University Superconductivity following a quantum quench Aditi Mitra New York University Supported by DOE-BES and NSF- DMR 1 Initially system of free electrons. Quench involves turning on attractive pairing interactions.

More information

Metal-Insulator Transitions

Metal-Insulator Transitions Metal-Insulator Transitions Second Edition N. F. MOTT Emeritus Cavendish Professor of Physics University of Cambridge Taylor & Francis London New York Philadelphia Contents Preface to Second Edition v

More information

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES College de France, May 14, 2013 SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INFM PLAN OF THE LECTURES Lecture 1. Superfluidity in ultra cold atomic gases: examples

More information

Topological Phenomena in Periodically Driven Systems: Disorder, Interactions, and Quasi-Steady States Erez Berg

Topological Phenomena in Periodically Driven Systems: Disorder, Interactions, and Quasi-Steady States Erez Berg Topological Phenomena in Periodically Driven Systems: Disorder, Interactions, and Quasi-Steady States Erez Berg In collaboration with: Mark Rudner (Copenhagen) Netanel Lindner (Technion) Paraj Titum (Caltech

More information

Disordered metals without quasiparticles, and charged black holes

Disordered metals without quasiparticles, and charged black holes HARVARD Disordered metals without quasiparticles, and charged black holes String Theory: Past and Present (SpentaFest) International Center for Theoretical Sciences, Bengaluru January 11-13, 2017 Subir

More information

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models Matthew Brooks, Introduction to Topological Insulators Seminar, Universität Konstanz Contents QWZ Model of Chern Insulators Haldane

More information

Group Theory and Its Applications in Physics

Group Theory and Its Applications in Physics T. Inui Y Tanabe Y. Onodera Group Theory and Its Applications in Physics With 72 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Contents Sections marked with

More information

Impurities and disorder in systems of ultracold atoms

Impurities and disorder in systems of ultracold atoms Impurities and disorder in systems of ultracold atoms Eugene Demler Harvard University Collaborators: D. Abanin (Perimeter), K. Agarwal (Harvard), E. Altman (Weizmann), I. Bloch (MPQ/LMU), S. Gopalakrishnan

More information

Numerical estimates of critical exponents of the Anderson transition. Keith Slevin (Osaka University) Tomi Ohtsuki (Sophia University)

Numerical estimates of critical exponents of the Anderson transition. Keith Slevin (Osaka University) Tomi Ohtsuki (Sophia University) Numerical estimates of critical exponents of the Anderson transition Keith Slevin (Osaka University) Tomi Ohtsuki (Sophia University) Anderson Model Standard model of a disordered system H W c c c V c

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

Propagation of longitudinal waves in a random binary rod

Propagation of longitudinal waves in a random binary rod Downloaded By: [University of North Carolina, Charlotte At: 7:3 2 May 28 Waves in Random and Complex Media Vol. 6, No. 4, November 26, 49 46 Propagation of longitudinal waves in a random binary rod YURI

More information

Weak Ergodicity Breaking

Weak Ergodicity Breaking Weak Ergodicity Breaking Eli Barkai Bar-Ilan University 215 Ergodicity Ergodicity: time averages = ensemble averages. x = lim t t x(τ)dτ t. x = xp eq (x)dx. Ergodicity out of equilibrium δ 2 (, t) = t

More information

Disordered topological insulators with time-reversal symmetry: Z 2 invariants

Disordered topological insulators with time-reversal symmetry: Z 2 invariants Keio Topo. Science (2016/11/18) Disordered topological insulators with time-reversal symmetry: Z 2 invariants Hosho Katsura Department of Physics, UTokyo Collaborators: Yutaka Akagi (UTokyo) Tohru Koma

More information

Floquet Topological Insulators and Majorana Modes

Floquet Topological Insulators and Majorana Modes Floquet Topological Insulators and Majorana Modes Manisha Thakurathi Journal Club Centre for High Energy Physics IISc Bangalore January 17, 2013 References Floquet Topological Insulators by J. Cayssol

More information

Topological phases of matter give rise to quantized physical quantities

Topological phases of matter give rise to quantized physical quantities Quantized electric multipole insulators Benalcazar, W. A., Bernevig, B. A., & Hughes, T. L. (2017). Quantized electric multipole insulators. Science, 357(6346), 61 66. Presented by Mark Hirsbrunner, Weizhan

More information

Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing. Alexander D. Mirlin

Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing. Alexander D. Mirlin Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing Alexander D. Mirlin Forschungszentrum Karlsruhe & Universität Karlsruhe, Germany I.V. Gornyi, D.G. Polyakov (Forschungszentrum

More information