Numerical Analysis of the Anderson Localization

Size: px
Start display at page:

Download "Numerical Analysis of the Anderson Localization"

Transcription

1 Numerical Analysis of the Anderson Localization Peter Marko² FEI STU Bratislava FzU Praha, November 3. 23

2 . introduction: localized states in quantum mechanics 2. statistics and uctuations 3. metal - insulator transition: nite size scaling method 4. analytical theory vs numerical data

3 Quantum Mechanics Textbook QM: there are two possible quantum states: Bond: Extended: Φ (x) E = E 3 E 2 V(x) E P. W. Anderson (958): The 3rd possible quantum state: localized

4 Example I Disordered sample (24 24 sites). Time evolution of the quantum state Ψ( r, t = ) = δ( r center) Time evolution of four dierent localized states: Localization center is not associated with any potential minima.

5 Example II: D disordered chain.5 W=.5 weak disorder W= W= W= W= N strong disorder Eigenstates of electron clossest to E =.5 for various disorder strength W

6 Example III: Transmission through random chain E =.448 T =. E =.486 T =.84 input T = t 2 E =.5 T =.67 E =.543 T =. E =.587 T = N Transmission R = r Fermi energy Five eigenstates and corresponding transmission T (W = ).

7 Physical model of localization 2 T T 2 2 T R 2 R T 2 2 T R 2 R R 2 R T 2 Classical particle: T2 K = T T 2 + T R 2 R T 2 + T R 2 R R 2 R T Quantum particle: t 2 = t t 2 + t r 2 r t 2 + t r 2 r r 2 r t t = T e iφ t r = Re iφ r Amplitudes t and r are complex - we have more parameters

8 Physical model of localization T K 2 = T T 2 R R 2 T Q 2 = t 2 2 = T T 2 r r 2 2 = T T 2 + R R 2 r r 2 r r 2 = T T 2 + R R 2 2 R R 2 cos φ φ = φ r + φ r 2 + φ L Transmission is determined by phases of reection amplitudes φ r, φ r2 and phase diference φ L given by distance between barriers.

9 Transmission through N barriers Classical particle: Ohm's law Quantum aprticle: Transmission Exponencial localization: lnt α N 2L λ Absence of self-avergaing: var ln T 2 ln T realization of random energies Transmission Transmission p( ln T) W = W = Length of the system N ln T

10 Physical origin of localization wave character of electron Observation of localization of classical wavers: Electromagnetic waves in disordered dielectircs [Gennack] Ultrasund in system of metallic spheres [van Tiggelen] Acoustic sound [van Tiggelen]

11 Anderson model.5 H = W ε n c c n n + t c c. n n n [nn ] P(ε) Gauss Box t =, size L d d dimension W - disorder.5 Symmetry - orthogonal spinless, time invariance - unitary with magnetic eld (Quantum Hall eect) - ε Peierls factor: t x = exp iα, t y = - symplectic spin dependent hopping: t is a matrix chiral, chiral unitary, chiral symplectic...

12 3D model: Phase diagram Disorder W/ W c (E =, W c ) metal insulator E c density of states ρ(e) delocalized states localized states Energy E c Energy E Andersonov prechod: ciritcal disorder W c mobility edge E c = E c (W ). multifractal distribution of electron at the critical point universality along the critical line

13 Critical disorder. For xed Fermi energy: disorder induced metal-insulator transition (due to the increase of the disorder W ) σ (W c -W) s λ (W-W c ) ν critical disorder W c = W c (E F ). - Critical exponent: s = (d 2)ν [Wegner]. Metal W c Insulator disorder W - σ: conductance in the metallic phase (W < W c ). - λ: localization length for insulator (W > W c ).

14 Transmission T vs conductance g A B C D ( ) ( ) C A = S B D ( ) ( ) C A = T D B ( ) t r S = r t ( t r ) t T = rt t r t r Economou - Soukoulis formula (called Landauer formula) g = T = Tr t t (e 2 /h = )

15 Fluctuations of random potential - nonlocal character of electron propagation Disordered lattice contains N = 4 random energies. Changes of sign of a single energy causes changes of the transmission in % 2D samples, disorder W = 2, 4 and 6. Corresponding transmission coecient decreases from T = 5.,.5,.8.

16 Fluctuations of random potential Very strong disorder - change of the ln g. No there is no walley in the random potential.

17 Statistics (g) is not self-averaging quantity Metal: Gaussian p(g) and insulator: almost Gaussian P(ln g),7 p(g),6,5,4,3,2, p(ln g) g ln g Critical point W = W c : size - independent distribution - p c (g) -2-3 L= <g>=.2834 L=2 <g>=.2825 L=8 <g>=.289 L=22 <g>= p c (ln g) -4 L= <ln g>=-.929 L=2 <ln g>=-.935 L=8 <ln g>=-.94 L=22 <ln g>= ,5,5 2 2,5 3 g ln g

18 Conductance g = g(l) and wavefunction Ψ( r) (L ) Metal electron is everywhere g = σl d 2 Insulator electron is localized g exp 2L/λ W = W c Ψ is multifractal g = g c = const. Distribution of electron in the metallic, localized and critical regime

19 Scaling theory of localization ln g = β(ln g). ln L Univerzal functon β(ln g): - continuous - monotonic - unknown. Conductance g is an order parameter ln g c β(ln g) - d=3 d=2 d= ln g g g σl d 2 β(ln g) = d 2 g g exp 2L/λ β(ln g) = ln g g = g c β(g c ), s = g c β (g c. g, ln g or percentiles of the distribution p(ln g) were used for the scaling analysis.

20 Finite - size scaling Various length scales: - mean free path l pre pruºný rozptyl, - localization length λ, - potential correlation length l c, In the vicinity of the critical point g becomes a fuction of only one parameter: g = F (L/ξ(W )) ξ(w )... correlation length Since L/ξ we have ξ(w ) W W c ν g g c + αl/ξ(w ) = g c + A(W W c )L /ν + BL y +... (y < ) We nd numerically g = g(w, L) and from Eq. (2) nde critical exponent ν and other parameters we need.

21 2D model with spin (symplectic symmetry).6 W = <g(w)>.4 < g(l) >.4 < g(w,l) >.4.3 L= 7 L= L=4 L= W.35 W = L L/ ξ nite-size scaling nite-size eects ν 2.85 L max =2 L max =4 L min =3 L min =5 L min =7 critical exponent ν 2.8 ± /L max /L min

22 2D model without spin 2D orthogonal system box disorder 2D orthogonal system box disorder W = 2 <g>.. W= W=2 W=3 W=4 W=5 W=6 L <g> L Finite size eects: For small W conductance g(l) increases untill L l (mean fre path) Weak localization: g = g π ln L l

23 Inverse Participation Ratio IPR Electron eigenfunction Φ n ( r) in the critical region: IPR (inverse participation ratio) I q (E n ) = r Φ n (r) 2q { L d(q ) metal I q (E n ) insulator Critical point: wave functions are multifractals: I q (E n ) L d q(q ) d q : universal multifractal dimensions

24 Universality of Anderson transition Scaling of IPR Y (E) = N stat N stat i E E n <δe ln I (E n ) Disorder (E=, W c ) Insulator Metal E c2 E c Ensemble of N stat sampels. The i-th sample has n i Eigenvalues in the energy interval Scaling: E ± δe Y q (E, L) = Y c q d q (q ) ln L+A(E E c )L /ν For Gaussian disorder: W = 2, E c = 6.58, d 5 =.96, ν =.52. <Y 5 (E,L)> Energy E = E c : Y 5 = *ln L E = 6.5 E = L

25 Critical exponent a fractal dimensions.6,4.5 GW c GE c BW c,2 ν d q.4 GW c GE c BW c q, q hould be the same for any critical point.

26 Properties of IPR IPR depends on the realization of the disorder For a given sample, I 2 possesses values from T 3 up to. k -2 Y = -a E ln L E=6.5 E=6. -4 E= L E = E = 6. E = L = 8 L = L = 32 L = ln I(L) - a E ln L. P( ln I ) E = 7.5 L=24 L=2 L=6 L= ln I For metal (E < E c ) Disorder W/ W c (E =, W c ) insulator.8 metal.6.4 E.2 c Energy and insulator (E > E c )

27 y y There are no localized states in the metallic phase. P( ln I 2 ) P( ln I 2 ) P( ln I 2 ) L = L = L = ln I 2 - d 2 ln L Finite size analysis of the distribution P(ln I 2 ) Typically, I 2 L 3. Probability to nd I 2 > L 2 or I 2 > L 3/2 : L - E = 3. E = L decreases exponentialy when L increases.

28 Green's function analysis Γ q (E, ω) = G(E+ω/2+iɛ, r, r )G(E+ω/2 iɛ, r, r) = 2πρ(E) ia(ω)ω + D(ω)q 2 Γ 5 E = 5 E = 6.58 E = π ρ ( E ) Im.4.8 B(E) L = 6 L = /ω E For q = numerical calculation of ln Im Γ = ln ω + ln B conrms that B = 2πρ(E) and so A.

29 Critical exponent: Theory vs numerical data there is no agreement. 5 d = 3 d = 4 ν Suslov: /(d-2) pfor d<4, /2 for d>4 /ε - expansion Our numerical data numerical.57. mean eld.5 Hikami ɛ-expansion d S 4 4.5

30 Dimension d = 2 + ε Critical dimension d c = 2 Numerical data for d = 3 and for three bi-fractals th d s close to d c 3 ν 2.5 numerical data 2.5 analytical theory / ε

31 Analytical theory: problems disorder is not small - perturbation theory might not work we do not know how to average over randomness: X X X... conductance, diusion coecient, IPR,... transport properties are extremely sesitive to change of the random potential. after averaging, we get another model - maybe nonlinear, but without eects of interference

32 Numerical simulations Any quantity could be calculated and entire statistical ensemble coudl be analyzed. Statistical ensembles with N samles (N in D) Accurate estiamtion of critical exponents, fractal dimensions Correct statistical analysis Consistent results: the same values of critical exponents obtained from scaling analysis of various physical quantities (level spacing, Lyapunov exponents, conductance, IPR,... ) Restricted to relatively small samples this could be avoided by nite size scaling analysis results for larger system size conrm older data for smaller systems. Developed methods applicable also to study of the localization in photonics, acoustics...

33 Weakly disordered systems: numerical data agree with the theory Weak localization and antilocalization in 2D: g = σ = σ ± π ]lnl/l 2D Ando model 2,5 6 2,5 5 W=3.36 W=4.3 W=5.32 <g>, W=3 W=4 E=-3, W=3 <g> 4 3 L 2 L Universal conductance uctiations: var g = g 2 g 2 =.85 (2D), =.34 (3D) and depends on the boundary conditions,8.25 p(g),6,4,2 var g W = W = 2 W = 3 W = g L / mean free path

34 2D models: numerical data conrm the theory Relation between multifractal dimenssions D q and critical conductance σ: 2.9 D(q) q Conductivity (in units of e 2 /h) is Fal'ko - Efetov: D q = 2 Veried for the q 4πσ 2D symplectic model Quantum Hall regime σ = ρhd (ρ is the density of states, D is the diusion coecient)

35 Optimistic Future - strongly disordered systems Numerical data could provide experimental data usefull for the theory. Strongly disordered 3D system - localized regime P(ln g),2,5,,5 3D L=26, W=6 ξ=5.4 <ln g>=-.66 Eq. (83) Γ=.63, γ=γ/2, <ln g>=-.69 3D L=, W=26 ξ=.8 <ln g>= ln g Older paradigma: P(ln g) is Gaussian Numerical data: distribution is not symmetric (symbols) New theory, based on the generalzation of the DMPK Equation

36 Conclusion Perturbation theory and DMPK describe transport in weakly disordered systems: universal conductance uctuations, weak localization, statistics of transmission parameters... There is no analytical theory for critical regime: For d > 2,nuemrical data are in variance with theory Attempt to generalize the DMPK to strongly disordered systems This work was supported by the Slovak Research and Development Agency under the contract No. APVV-8-

2D electron systems beyond the diffusive regime

2D electron systems beyond the diffusive regime 2D electron systems beyond the diffusive regime Peter Markoš FEI STU Bratislava 9. June 211 Collaboration with: K. Muttalib, L. Schweitzer Typeset by FoilTEX Introduction: Spatial distribution of the electron

More information

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 ORIGINS E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 P.W. Anderson, Absence of Diffusion in Certain Random Lattices ; Phys.Rev., 1958, v.109, p.1492 L.D. Landau, Fermi-Liquid

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 3 Beforehand Weak Localization and Mesoscopic Fluctuations Today

More information

Today: 5 July 2008 ٢

Today: 5 July 2008 ٢ Anderson localization M. Reza Rahimi Tabar IPM 5 July 2008 ١ Today: 5 July 2008 ٢ Short History of Anderson Localization ٣ Publication 1) F. Shahbazi, etal. Phys. Rev. Lett. 94, 165505 (2005) 2) A. Esmailpour,

More information

Intensity distribution of scalar waves propagating in random media

Intensity distribution of scalar waves propagating in random media PHYSICAL REVIEW B 71, 054201 2005 Intensity distribution of scalar waves propagating in random media P. Markoš 1,2, * and C. M. Soukoulis 1,3 1 Ames Laboratory and Department of Physics and Astronomy,

More information

Localization I: General considerations, one-parameter scaling

Localization I: General considerations, one-parameter scaling PHYS598PTD A.J.Leggett 2013 Lecture 4 Localization I: General considerations 1 Localization I: General considerations, one-parameter scaling Traditionally, two mechanisms for localization of electron states

More information

Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime

Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime Zhenhua Qiao, Yanxia Xing, and Jian Wang* Department of Physics and the Center of Theoretical and Computational

More information

I. PLATEAU TRANSITION AS CRITICAL POINT. A. Scaling flow diagram

I. PLATEAU TRANSITION AS CRITICAL POINT. A. Scaling flow diagram 1 I. PLATEAU TRANSITION AS CRITICAL POINT The IQHE plateau transitions are examples of quantum critical points. What sort of theoretical description should we look for? Recall Anton Andreev s lectures,

More information

Wave function multifractality at Anderson localization transitions. Alexander D. Mirlin

Wave function multifractality at Anderson localization transitions. Alexander D. Mirlin Wave function multifractality at Anderson localization transitions Alexander D. Mirlin Forschungszentrum Karlsruhe & Universität Karlsruhe http://www-tkm.physik.uni-karlsruhe.de/ mirlin/ F. Evers, A. Mildenberger

More information

Entanglement in Topological Phases

Entanglement in Topological Phases Entanglement in Topological Phases Dylan Liu August 31, 2012 Abstract In this report, the research conducted on entanglement in topological phases is detailed and summarized. This includes background developed

More information

Charge transport in oxides and metalinsulator

Charge transport in oxides and metalinsulator Charge transport in oxides and metalinsulator transitions M. Gabay School on modern topics in Condensed matter Singapore, 28/01 8/02 2013 Down the rabbit hole Scaling down impacts critical parameters of

More information

arxiv: v2 [cond-mat.dis-nn] 21 Jul 2010

arxiv: v2 [cond-mat.dis-nn] 21 Jul 2010 Two-dimensional electron systems beyond the diffusive regime P. Markoš Department of Physics FEI, lovak University of Technology, 8 9 Bratislava, lovakia arxiv:5.89v [cond-mat.dis-nn] Jul Transport properties

More information

Theory of Mesoscopic Systems

Theory of Mesoscopic Systems Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 2 08 June 2006 Brownian Motion - Diffusion Einstein-Sutherland Relation for electric

More information

Anomalously localized electronic states in three-dimensional disordered samples

Anomalously localized electronic states in three-dimensional disordered samples Anomalously localized electronic states in three-dimensional disordered samples Philipp Cain and Michael Schreiber Theory of disordered systems, Institute of Physics, TU Chemnitz CompPhys07 November 30

More information

Topological Properties of Quantum States of Condensed Matter: some recent surprises.

Topological Properties of Quantum States of Condensed Matter: some recent surprises. Topological Properties of Quantum States of Condensed Matter: some recent surprises. F. D. M. Haldane Princeton University and Instituut Lorentz 1. Berry phases, zero-field Hall effect, and one-way light

More information

arxiv: v3 [cond-mat.mes-hall] 27 Jan 2008

arxiv: v3 [cond-mat.mes-hall] 27 Jan 2008 Entanglement entropy and multifractality at localization transitions arxiv:0710.1871v3 [cond-mat.mes-hall] 27 Jan 2008 Xun Jia, 1 Arvind R. Subramaniam, 2 Ilya A. Gruzberg, 2 and Sudip Chakravarty 1 1

More information

RANDOM MATRICES and ANDERSON LOCALIZATION

RANDOM MATRICES and ANDERSON LOCALIZATION RANDOM MATRICES and ANDERSON LOCALIZATION Luca G. Molinari Physics Department Universita' degli Studi di Milano Abstract: a particle in a lattice with random potential is subject to Anderson localization,

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Why Hyperbolic Symmetry?

Why Hyperbolic Symmetry? Why Hyperbolic Symmetry? Consider the very trivial case when N = 1 and H = h is a real Gaussian variable of unit variance. To simplify notation set E ɛ = 0 iɛ and z, w C = G(E ɛ ) 2 h = [(h iɛ)(h + iɛ)]

More information

Lecture 8 Nature of ensemble: Role of symmetry, interactions and other system conditions: Part II

Lecture 8 Nature of ensemble: Role of symmetry, interactions and other system conditions: Part II Lecture 8 Nature of ensemble: Role of symmetry, interactions and other system conditions: Part II We continue our discussion of symmetries and their role in matrix representation in this lecture. An example

More information

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect 8.513 Lecture 14 Coherent backscattering Weak localization Aharonov-Bohm effect Light diffusion; Speckle patterns; Speckles in coherent backscattering phase-averaged Coherent backscattering Contribution

More information

Termination of typical wavefunction multifractal spectra at the Anderson metal-insulator transition

Termination of typical wavefunction multifractal spectra at the Anderson metal-insulator transition Termination of typical wavefunction multifractal spectra at the Anderson metal-insulator transition Matthew S. Foster, 1,2 Shinsei Ryu, 3 Andreas W. W. Ludwig 4 1 Rutgers, the State University of New Jersey

More information

arxiv: v1 [cond-mat.dis-nn] 31 Aug 2011

arxiv: v1 [cond-mat.dis-nn] 31 Aug 2011 Suppression of the virtual Anderson transition in a narrow impurity band of doped quantum well structures. N.V. Agrinskaya, V.I. Kozub, and D.S. Poloskin Ioffe Physical-Technical Institute of the Russian

More information

Quasi-Diffusion in a SUSY Hyperbolic Sigma Model

Quasi-Diffusion in a SUSY Hyperbolic Sigma Model Quasi-Diffusion in a SUSY Hyperbolic Sigma Model Joint work with: M. Disertori and M. Zirnbauer December 15, 2008 Outline of Talk A) Motivation: Study time evolution of quantum particle in a random environment

More information

Physics 127b: Statistical Mechanics. Landau Theory of Second Order Phase Transitions. Order Parameter

Physics 127b: Statistical Mechanics. Landau Theory of Second Order Phase Transitions. Order Parameter Physics 127b: Statistical Mechanics Landau Theory of Second Order Phase Transitions Order Parameter Second order phase transitions occur when a new state of reduced symmetry develops continuously from

More information

UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland. PHYSICS Ph.D. QUALIFYING EXAMINATION PART II

UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland. PHYSICS Ph.D. QUALIFYING EXAMINATION PART II UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland PHYSICS Ph.D. QUALIFYING EXAMINATION PART II August 23, 208 9:00 a.m. :00 p.m. Do any four problems. Each problem is worth 25 points.

More information

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU A mini course on topology extrinsic curvature K vs intrinsic (Gaussian) curvature G K 0 G 0 G>0 G=0 K 0 G=0 G

More information

SSH Model. Alessandro David. November 3, 2016

SSH Model. Alessandro David. November 3, 2016 SSH Model Alessandro David November 3, 2016 Adapted from Lecture Notes at: https://arxiv.org/abs/1509.02295 and from article: Nature Physics 9, 795 (2013) Motivations SSH = Su-Schrieffer-Heeger Polyacetylene

More information

Numerical estimates of critical exponents of the Anderson transition. Keith Slevin (Osaka University) Tomi Ohtsuki (Sophia University)

Numerical estimates of critical exponents of the Anderson transition. Keith Slevin (Osaka University) Tomi Ohtsuki (Sophia University) Numerical estimates of critical exponents of the Anderson transition Keith Slevin (Osaka University) Tomi Ohtsuki (Sophia University) Anderson Model Standard model of a disordered system H W c c c V c

More information

arxiv:cond-mat/ v1 23 May 1995

arxiv:cond-mat/ v1 23 May 1995 Universal Spin-Induced Magnetoresistance in the Variable-Range Hopping Regime Yigal Meir Physics Department, Ben Gurion University, Beer Sheva 84105, ISRAEL arxiv:cond-mat/9505101v1 23 May 1995 Abstract

More information

Hopping transport in disordered solids

Hopping transport in disordered solids Hopping transport in disordered solids Dominique Spehner Institut Fourier, Grenoble, France Workshop on Quantum Transport, Lexington, March 17, 2006 p. 1 Outline of the talk Hopping transport Models for

More information

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators Philippe Jacquod U of Arizona UA Phys colloquium - feb 1, 2013 Continuous symmetries and conservation laws Noether

More information

Nonlinear σ model for disordered systems: an introduction

Nonlinear σ model for disordered systems: an introduction Nonlinear σ model for disordered systems: an introduction Igor Lerner THE UNIVERSITY OF BIRMINGHAM School of Physics & Astronomy OUTLINE What is that & where to take it from? How to use it (1 or 2 simple

More information

Various Facets of Chalker- Coddington network model

Various Facets of Chalker- Coddington network model Various Facets of Chalker- Coddington network model V. Kagalovsky Sami Shamoon College of Engineering Beer-Sheva Israel Context Integer quantum Hall effect Semiclassical picture Chalker-Coddington Coddington

More information

Metal - Insulator transitions: overview, classification, descriptions

Metal - Insulator transitions: overview, classification, descriptions Metal - Insulator transitions: overview, classification, descriptions Krzysztof Byczuk Institute of Physics, Augsburg University http://www.physik.uni-augsburg.de/theo3/kbyczuk/index.html January 19th,

More information

Plasmons, polarons, polaritons

Plasmons, polarons, polaritons Plasmons, polarons, polaritons Dielectric function; EM wave in solids Plasmon oscillation -- plasmons Electrostatic screening Electron-electron interaction Mott metal-insulator transition Electron-lattice

More information

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES Tomáš Váry, Juraj Chlpík, Peter Markoš ÚJFI, FEI STU, Bratislava E-mail: tomas.vary@stuba.sk Received xx April 2012; accepted xx May 2012. 1.

More information

Numerical study of localization in antidot lattices

Numerical study of localization in antidot lattices PHYSICAL REVIEW B VOLUME 58, NUMBER 16 Numerical study of localization in antidot lattices 15 OCTOBER 1998-II Seiji Uryu and Tsuneya Ando Institute for Solid State Physics, University of Tokyo, 7-22-1

More information

Anderson localization, topology, and interaction

Anderson localization, topology, and interaction Anderson localization, topology, and interaction Pavel Ostrovsky in collaboration with I. V. Gornyi, E. J. König, A. D. Mirlin, and I. V. Protopopov PRL 105, 036803 (2010), PRB 85, 195130 (2012) Cambridge,

More information

arxiv: v1 [cond-mat.str-el] 21 Mar 2012

arxiv: v1 [cond-mat.str-el] 21 Mar 2012 Kondo-Anderson transitions arxiv:203.4684v [cond-mat.str-el] 2 Mar 202 S. Kettemann, E. R. Mucciolo, 2 I. Varga, 3 and K. Slevin 4 Jacobs University, School of Engineering and Science, Campus Ring, 28759

More information

Renormalization flow of the Anderson localization transition

Renormalization flow of the Anderson localization transition Renormalization flow of the Anderson localization transition William Morong Phys 563, Spring 2017 1 Introduction What are the transport properties of a non-interacting wave in a disordered medium? This

More information

Chapter 29. Quantum Chaos

Chapter 29. Quantum Chaos Chapter 29 Quantum Chaos What happens to a Hamiltonian system that for classical mechanics is chaotic when we include a nonzero h? There is no problem in principle to answering this question: given a classical

More information

arxiv:quant-ph/ v1 21 Nov 2003

arxiv:quant-ph/ v1 21 Nov 2003 Analytic solutions for quantum logic gates and modeling pulse errors in a quantum computer with a Heisenberg interaction G.P. Berman 1, D.I. Kamenev 1, and V.I. Tsifrinovich 2 1 Theoretical Division and

More information

Enhancement of superconducting Tc near SIT

Enhancement of superconducting Tc near SIT Enhancement of superconducting Tc near SIT Vladimir Kravtsov, ICTP (Trieste) Collaboration: Michael Feigelman (Landau Institute) Lev Ioffe (Rutgers) Emilio Cuevas (University of Murcia) KITP, Santa Barbara,

More information

Identical Particles. Bosons and Fermions

Identical Particles. Bosons and Fermions Identical Particles Bosons and Fermions In Quantum Mechanics there is no difference between particles and fields. The objects which we refer to as fields in classical physics (electromagnetic field, field

More information

Physics 211B : Problem Set #0

Physics 211B : Problem Set #0 Physics 211B : Problem Set #0 These problems provide a cross section of the sort of exercises I would have assigned had I taught 211A. Please take a look at all the problems, and turn in problems 1, 4,

More information

Anderson Localization Looking Forward

Anderson Localization Looking Forward Anderson Localization Looking Forward Boris Altshuler Physics Department, Columbia University Collaborations: Also Igor Aleiner Denis Basko, Gora Shlyapnikov, Vincent Michal, Vladimir Kravtsov, Lecture2

More information

Universal features of Lifshitz Green's functions from holography

Universal features of Lifshitz Green's functions from holography Universal features of Lifshitz Green's functions from holography Gino Knodel University of Michigan October 19, 2015 C. Keeler, G.K., J.T. Liu, and K. Sun; arxiv:1505.07830. C. Keeler, G.K., and J.T. Liu;

More information

Brazilian Journal of Physics, vol. 26, no. 1, March, D Electron Transport in Selectively Doped

Brazilian Journal of Physics, vol. 26, no. 1, March, D Electron Transport in Selectively Doped Brazilian Journal of Physics, vol. 26, no. 1, March, 1996 313 2D Electron Transport in Selectively Doped GaAs/In x Ga 1;xAs Multiple Quantum Well Structures V. A. Kulbachinskii, V. G. Kytin, T. S. Babushkina,

More information

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017 Lecture 4: Entropy Chapter I. Basic Principles of Stat Mechanics A.G. Petukhov, PHYS 743 September 7, 2017 Chapter I. Basic Principles of Stat Mechanics A.G. Petukhov, Lecture PHYS4: 743 Entropy September

More information

Newton s Method and Localization

Newton s Method and Localization Newton s Method and Localization Workshop on Analytical Aspects of Mathematical Physics John Imbrie May 30, 2013 Overview Diagonalizing the Hamiltonian is a goal in quantum theory. I would like to discuss

More information

Lecture 6 Photons, electrons and other quanta. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Lecture 6 Photons, electrons and other quanta. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Lecture 6 Photons, electrons and other quanta EECS 598-002 Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku From classical to quantum theory In the beginning of the 20 th century, experiments

More information

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Shi-Liang Zhu ( 朱诗亮 ) slzhu@scnu.edu.cn Laboratory of Quantum Information Technology and School of Physics South China Normal University, Guangzhou,

More information

Is Quantum Mechanics Chaotic? Steven Anlage

Is Quantum Mechanics Chaotic? Steven Anlage Is Quantum Mechanics Chaotic? Steven Anlage Physics 40 0.5 Simple Chaos 1-Dimensional Iterated Maps The Logistic Map: x = 4 x (1 x ) n+ 1 μ n n Parameter: μ Initial condition: 0 = 0.5 μ 0.8 x 0 = 0.100

More information

Local currents in a two-dimensional topological insulator

Local currents in a two-dimensional topological insulator Local currents in a two-dimensional topological insulator Xiaoqian Dang, J. D. Burton and Evgeny Y. Tsymbal Department of Physics and Astronomy Nebraska Center for Materials and Nanoscience University

More information

arxiv: v2 [cond-mat.mes-hall] 19 Nov 2018

arxiv: v2 [cond-mat.mes-hall] 19 Nov 2018 Entanglement entropy distribution in the strongly disordered one-dimensional Anderson model B. Friedman and R. Berkovits Department of Physics, Jack and Pearl Resnick Institute, Bar-Ilan University, Ramat-Gan

More information

CHAPTER 8 The Quantum Theory of Motion

CHAPTER 8 The Quantum Theory of Motion I. Translational motion. CHAPTER 8 The Quantum Theory of Motion A. Single particle in free space, 1-D. 1. Schrodinger eqn H ψ = Eψ! 2 2m d 2 dx 2 ψ = Eψ ; no boundary conditions 2. General solution: ψ

More information

Topological insulator part I: Phenomena

Topological insulator part I: Phenomena Phys60.nb 5 Topological insulator part I: Phenomena (Part II and Part III discusses how to understand a topological insluator based band-structure theory and gauge theory) (Part IV discusses more complicated

More information

Multifractality in simple systems. Eugene Bogomolny

Multifractality in simple systems. Eugene Bogomolny Multifractality in simple systems Eugene Bogomolny Univ. Paris-Sud, Laboratoire de Physique Théorique et Modèles Statistiques, Orsay, France In collaboration with Yasar Atas Outlook 1 Multifractality Critical

More information

Dr Victoria Martin, Spring Semester 2013

Dr Victoria Martin, Spring Semester 2013 Particle Physics Dr Victoria Martin, Spring Semester 2013 Lecture 3: Feynman Diagrams, Decays and Scattering Feynman Diagrams continued Decays, Scattering and Fermi s Golden Rule Anti-matter? 1 Notation

More information

WAVE INTERFERENCES IN RANDOM LASERS

WAVE INTERFERENCES IN RANDOM LASERS WAVE INTERFERENCES IN RANDOM LASERS Philippe Jacquod U of Arizona P. Stano and Ph. Jacquod, Nature Photonics (2013) What is a laser? Light Amplification by Stimulated Emission of Radiation Three main components

More information

Fidelity Decay in Chaotical and Random Systems

Fidelity Decay in Chaotical and Random Systems Vol. 12 (211) ACTA PHYSICA POLONICA A No. 6-A Proceedings of the 5th Workshop on Quantum Chaos and Localisation Phenomena, Warsaw, Poland, May 222, 211 Fidelity Decay in Chaotical and Random Systems H.

More information

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015)

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015) Konstantin Y. Bliokh, Daria Smirnova, Franco Nori Center for Emergent Matter Science, RIKEN, Japan Science 348, 1448 (2015) QSHE and topological insulators The quantum spin Hall effect means the presence

More information

Universality for random matrices and log-gases

Universality for random matrices and log-gases Universality for random matrices and log-gases László Erdős IST, Austria Ludwig-Maximilians-Universität, Munich, Germany Encounters Between Discrete and Continuous Mathematics Eötvös Loránd University,

More information

Geometric Dyson Brownian motion and May Wigner stability

Geometric Dyson Brownian motion and May Wigner stability Geometric Dyson Brownian motion and May Wigner stability Jesper R. Ipsen University of Melbourne Summer school: Randomness in Physics and Mathematics 2 Bielefeld 2016 joint work with Henning Schomerus

More information

Broken Symmetry and Order Parameters

Broken Symmetry and Order Parameters BYU PHYS 731 Statistical Mechanics Chapters 8 and 9: Sethna Professor Manuel Berrondo Broken Symmetry and Order Parameters Dierent phases: gases, liquids, solids superconductors superuids crystals w/dierent

More information

Topological phases of SU(N) spin chains and their realization in ultra-cold atom gases

Topological phases of SU(N) spin chains and their realization in ultra-cold atom gases Topological phases of SU(N) spin chains and their realization in ultra-cold atom gases Thomas Quella University of Cologne Workshop on Low-D Quantum Condensed Matter University of Amsterdam, 8.7.2013 Based

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics 1 Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 2, 24 March 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Anderson Localization from Classical Trajectories

Anderson Localization from Classical Trajectories Anderson Localization from Classical Trajectories Piet Brouwer Laboratory of Atomic and Solid State Physics Cornell University Support: NSF, Packard Foundation With: Alexander Altland (Cologne) Quantum

More information

Microwave transmission spectra in regular and irregular one-dimensional scattering arrangements

Microwave transmission spectra in regular and irregular one-dimensional scattering arrangements Physica E 9 (2001) 384 388 www.elsevier.nl/locate/physe Microwave transmission spectra in regular and irregular one-dimensional scattering arrangements Ulrich Kuhl, Hans-Jurgen Stockmann Fachbereich Physik,

More information

Quantum transport in nanoscale solids

Quantum transport in nanoscale solids Quantum transport in nanoscale solids The Landauer approach Dietmar Weinmann Institut de Physique et Chimie des Matériaux de Strasbourg Strasbourg, ESC 2012 p. 1 Quantum effects in electron transport R.

More information

VI.D Self Duality in the Two Dimensional Ising Model

VI.D Self Duality in the Two Dimensional Ising Model VI.D Self Duality in the Two Dimensional Ising Model Kramers and Wannier discovered a hidden symmetry that relates the properties of the Ising model on the square lattice at low and high temperatures.

More information

Disordered topological insulators with time-reversal symmetry: Z 2 invariants

Disordered topological insulators with time-reversal symmetry: Z 2 invariants Keio Topo. Science (2016/11/18) Disordered topological insulators with time-reversal symmetry: Z 2 invariants Hosho Katsura Department of Physics, UTokyo Collaborators: Yutaka Akagi (UTokyo) Tohru Koma

More information

Signatures of Phase Transition in Wave Dynamics of Complex Systems

Signatures of Phase Transition in Wave Dynamics of Complex Systems Wesleyan University Physics Department Signatures of Phase Transition in Wave Dynamics of Complex Systems by Gim Seng Ng Class of 2008 A thesis submitted to the faculty of Wesleyan University in partial

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Satoshi Fujimoto Dept. Phys., Kyoto University Collaborator: Ken Shiozaki

More information

Localization and electron-phonon interactions in disordered systems

Localization and electron-phonon interactions in disordered systems EUROPHYSICS LETTERS 20 February 1996 Europhys. Lett., 33 (6), pp. 459-464 (1996) Localization and electron-phonon interactions in disordered systems G. Kopidakis 1, C. M. Soukoulis 1 and E. N. Economou

More information

= a. a = Let us now study what is a? c ( a A a )

= a. a = Let us now study what is a? c ( a A a ) 7636S ADVANCED QUANTUM MECHANICS Solutions 1 Spring 010 1 Warm up a Show that the eigenvalues of a Hermitian operator A are real and that the eigenkets of A corresponding to dierent eigenvalues are orthogonal

More information

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme SIEW-ANN CHEONG and C. L. HENLEY, LASSP, Cornell U March 25, 2004 Support: NSF grants DMR-9981744, DMR-0079992 The Big Picture GOAL Ground

More information

Physics of Semiconductors (Problems for report)

Physics of Semiconductors (Problems for report) Physics of Semiconductors (Problems for report) Shingo Katsumoto Institute for Solid State Physics, University of Tokyo July, 0 Choose two from the following eight problems and solve them. I. Fundamentals

More information

Solution of Second Midterm Examination Thursday November 09, 2017

Solution of Second Midterm Examination Thursday November 09, 2017 Department of Physics Quantum Mechanics II, Physics 570 Temple University Instructor: Z.-E. Meziani Solution of Second Midterm Examination Thursday November 09, 017 Problem 1. (10pts Consider a system

More information

arxiv: v1 [cond-mat.mes-hall] 23 Jun 2009

arxiv: v1 [cond-mat.mes-hall] 23 Jun 2009 EPJ manuscript No. (will be inserted by the editor) Conductance distribution in two-dimensional localized systems with and without magnetic fields J. Prior 1,2, A. M. Somoza 3 and M. Ortuño 3 arxiv:0906.4188v1

More information

Modification of the Porter-Thomas distribution by rank-one interaction. Eugene Bogomolny

Modification of the Porter-Thomas distribution by rank-one interaction. Eugene Bogomolny Modification of the Porter-Thomas distribution by rank-one interaction Eugene Bogomolny University Paris-Sud, CNRS Laboratoire de Physique Théorique et Modèles Statistiques, Orsay France XII Brunel-Bielefeld

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Spreading mechanism of wave packets in one dimensional disordered Klein-Gordon chains

Spreading mechanism of wave packets in one dimensional disordered Klein-Gordon chains Spreading mechanism of wave packets in one dimensional disordered Klein-Gordon chains Haris Skokos Max Planck Institute for the Physics of Complex Systems Dresden, Germany E-mail: hskokos@pks.mpg.de URL:

More information

1 One-dimensional lattice

1 One-dimensional lattice 1 One-dimensional lattice 1.1 Gap formation in the nearly free electron model Periodic potential Bloch function x = n e iπn/ax 1 n= ψ k x = e ika u k x u k x = c nk e iπn/ax 3 n= Schrödinger equation [

More information

Quantum transport of 2D Dirac fermions: the case for a topological metal

Quantum transport of 2D Dirac fermions: the case for a topological metal Quantum transport of 2D Dirac fermions: the case for a topological metal Christopher Mudry 1 Shinsei Ryu 2 Akira Furusaki 3 Hideaki Obuse 3,4 1 Paul Scherrer Institut, Switzerland 2 University of California

More information

List of Comprehensive Exams Topics

List of Comprehensive Exams Topics List of Comprehensive Exams Topics Mechanics 1. Basic Mechanics Newton s laws and conservation laws, the virial theorem 2. The Lagrangian and Hamiltonian Formalism The Lagrange formalism and the principle

More information

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3 4D-XY Quantum Criticality in Underdoped High-T c cuprates M. Franz University of British Columbia franz@physics.ubc.ca February 22, 2005 In collaboration with: A.P. Iyengar (theory) D.P. Broun, D.A. Bonn

More information

FRACTAL DIMENSIONS FOR CERTAIN CRITICAL RANDOM MATRIX ENSEMBLES. Eugène Bogomolny

FRACTAL DIMENSIONS FOR CERTAIN CRITICAL RANDOM MATRIX ENSEMBLES. Eugène Bogomolny FRACTAL DIMENSIONS FOR CERTAIN CRITICAL RANDOM MATRIX ENSEMBLES Eugène Bogomolny Univ. Paris-Sud, CNRS, LPTMS, Orsay, France In collaboration with Olivier Giraud VI Brunel Workshop on PMT Brunel, 7-8 December

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

Lectures on the theory of Anderson localization

Lectures on the theory of Anderson localization Lectures on the theory of Anderson localization Enrico Fermi School on Nano optics and atomics: transport in light and matter waves June 3 to July 3, 009 Peter Wölfle Institut für Theorie der Kondensierten

More information

Duality, Statistical Mechanics and Random Matrices. Bielefeld Lectures

Duality, Statistical Mechanics and Random Matrices. Bielefeld Lectures Duality, Statistical Mechanics and Random Matrices Bielefeld Lectures Tom Spencer Institute for Advanced Study Princeton, NJ August 16, 2016 Overview Statistical mechanics motivated by Random Matrix theory

More information

arxiv:cond-mat/ v2 [cond-mat.dis-nn] 17 Mar 2000 Frank Milde, Rudolf A. Römer, and Michael Schreiber

arxiv:cond-mat/ v2 [cond-mat.dis-nn] 17 Mar 2000 Frank Milde, Rudolf A. Römer, and Michael Schreiber Energy-level statistics at the metal-insulator transition in anisotropic systems arxiv:cond-mat/9909210v2 [cond-mat.dis-nn] 17 Mar 2000 Frank Milde, Rudolf A. Römer, and Michael Schreiber Institut für

More information

Interpolating between Wishart and inverse-wishart distributions

Interpolating between Wishart and inverse-wishart distributions Interpolating between Wishart and inverse-wishart distributions Topological phase transitions in 1D multichannel disordered wires with a chiral symmetry Christophe Texier December 11, 2015 with Aurélien

More information

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds Introduction to String Theory ETH Zurich, HS11 Chapter 9 Prof. N. Beisert 9 String Backgrounds Have seen that string spectrum contains graviton. Graviton interacts according to laws of General Relativity.

More information

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION Subir Sachdev Center for Theoretical Physics, P.O. Box 6666 Yale University, New Haven, CT 06511 This paper reviews recent progress in understanding the

More information

a = ( a σ )( b σ ) = a b + iσ ( a b) mω 2! x + i 1 2! x i 1 2m!ω p, a = mω 2m!ω p Physics 624, Quantum II -- Final Exam

a = ( a σ )( b σ ) = a b + iσ ( a b) mω 2! x + i 1 2! x i 1 2m!ω p, a = mω 2m!ω p Physics 624, Quantum II -- Final Exam Physics 624, Quantum II -- Final Exam Please show all your work on the separate sheets provided (and be sure to include your name). You are graded on your work on those pages, with partial credit where

More information

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1 Physics-PH (PH) 1 PHYSICS-PH (PH) Courses PH 110 Physics of Everyday Phenomena (GT-SC2) Credits: 3 (3-0-0) Fundamental concepts of physics and elementary quantitative reasoning applied to phenomena in

More information