Charge transport in oxides and metalinsulator

Size: px
Start display at page:

Download "Charge transport in oxides and metalinsulator"

Transcription

1 Charge transport in oxides and metalinsulator transitions M. Gabay School on modern topics in Condensed matter Singapore, 28/01 8/

2 Down the rabbit hole Scaling down impacts critical parameters of a transistor: t=rc (switching time). Id (source drain current), Ioff (leakage current), Nc (carrier concentration), m (mobility), j=nc e m E If Tï Ileak~10A!!

3 Technological hurdles. Scaling down impacts critical parameters of a transistor: t=rc (switching time). Id (source drain current), Ioff (leakage current), Nc (carrier concentration), m (mobility), ì Good for P kv 2 but bad for m~ 1/E 1/3 Bad for t ï Multicore, 3D architecture

4 Avouris, Nanoletters, 10, 4285, 2010 Plus: 100GHz vs 28 GHZ limit for ususal semiconductors, T =10 times that of MOSFET Minus: On/Off ratio of 100 vs 104 to 107 for MOSFET Avouris, Nanoletters, 10, 715, 2010

5 Transition Metal oxide (TMO) SrTiO 3 YBa 2 Cu 3 O 7-d BiFeO 3 La 1-x Sr x MnO 3

6 Large ε r for oxides ï surface carrier doping and «built-in» insulating coating m (mobility) sensitive to the quality of the interface Darrell G. Schlom and Loren N. Pfeiffer, Nature Materials, 9, 881, 2010 C. Cen et al, Nature Materials,7, K Ueno et al, Applied physics Letters 96, , 2010

7

8

9 Doping by chemical substitution or oxygen content introduces disorder

10 Doping 2D materials H n s =e/h*k F l e doping (h or e) n s (cm -2 ) H (cm 2 low T

11 Jy=0 Vx Vy y x Bz I

12 s xy (w c )= w ct s w c t xx (w c =0) s xx (w c )= s w c t xx (w c =0) w c =eb z /m* Hall bar geometryï Jy=0 ïs(w c )=(s 2 xx+s 2 xy)/s xx = s(w c =0)!!

13 Taking into account a realistic Fermi surface leads to Kohler rule for the magneto-resistance DrååP F(w c t) Taking into account multiband structure Also leads to B dependence for the magneto-resistance s 1,2 = r R 1,2 =,

14

15 w c t>1 råå(w) Shubnikov-de Haas

16 PRL 105, (2010)

17 1.1. Classical charge transport 1. T >>h D. Phonon scattering 1/T 2. T << h D. Phonon scattering 1/T 5 3. T << T F. e e scattering + Umklapp 1/T 2 4. T << T F. Impurity scattering Const Note: There is no σ(t) dependence in the T=0 limit! (within the classical approximation, for non interacting electrons )

18 n i (impurity concentration) Matthiessen rule d ~ l=1/n i s r ; l=v F t

19 1.2.Semiclassical concept of transport (1960) l min ~ 1 k F Ioffe Regel criterion A.F. Ioffe and A.R. Regel, Prog. Semicond. 4, 237 (1960). 2 ne m ( k 2 F / 2 k F 2 ) e 2 l e h 2 (2D) Abram F. Ioffe minimum metallic conductivity 2 e 2D h kΩ Anatoly R. Regel Nevil Mott ( )

20 A non interacting electron moving in random potential extended localized localized localized E c E critical extended

21 Quantum concept of transport (1979): E.Abrahams A B Interference of electron waves causes localization T.V. Ramakrishnan P.W. Anderson D.C. Licciardello

22 e i Ioffe-Regel criterion for localization: k F l~1 In fact localization at T=0 in 2D even if k F l>>1 G e 2 /h)k F l g R 1 1 m kfl

23 In analogy with optics the amplitude of the wave that travels along path I and scatters on obstacles with transmission coefficients T j evolves according to the sequence E 0 T 1 E 0 exp i k 1 (r 1 -r 0 ) T 2 T 1 E 0 exp i( k 1 (r 1 -r 0 )+ ( k 2 (r 2 -r 1 ) ) A 1 =T 4 T 3 T 2 T 1 E 0 exp i(êj=1,4 k j (r j+1 -r j ) ) (where 5ª 0) the amplitude of the wave that travels along path II and scatters on obstacles with transmission coefficients T j evolves according to the sequence E 0 T 4 E 0 exp- i k 4 (r 4 -r 5 ) T 3 T 4 E 0 exp -i( k 4 (r 4 -r 5 )+ ( k 3 (r 3 -r 2 ) ) A 2 =T 1 T 2 T 3 T 4 E 0 exp -i(êj=1,4 k j (r j -r j+1 ) ) (where 5ª 0) ï <I> rand A 1 +A 2 2

24 L D=mE F /e 0!! m k F l <I> rand 4 T 1 T 2 T 3 T 4 2 <I> rand 2 T 1 T 2 T 3 T 4 2

25 G (L) = e 2 /h)g(l) = s A/L sl d-2 s(t) = e 2 /h)g(l) L 2-d L=Lin(T) Metalï s(t) finite ï g(l)~ L d-2 at large L Quantum ballistic regime Microscopic scale l Quantum diffusive regime Mesoscopic scale L in Classical diffusive regime Macroscopic scale System size

26 R. Landauer X R tot >R 1 +R 2 Add more random potentials ï. R(L)~ exp L/l

27 Scaling theory (gang of four, 1979) Conductance changes when system size is changed. Metal: Insulator: All the states at E F are localized at and below two dimensions! A metal insulator transition at g=g c is continuous (d>2).

28 2D OR NOT 2D D 2 e h ln( T ) ( ~ D 2 p ln(l in /l)) All electrons in 2D become localized at T 0 for ln(1/t ) In a magnetic field, L in L B ~ ï Ds>0

29 R. Scherwitzl, S. Gariglio, M. Gabay, P. Zubko, M. Gibert, and J. M. Triscone, Phys. Rev. Lett. 106, (2011) LaNiO 3 film on SrTiO 3 Delocalization due to a magnetic field

30 Antilocalization due to spin-orbit

31 3 symmetry classes (orthogonal, unitary, symplectic) symplectic class: time reversal, spin rotation spin orbit interaction anti localization Metal insulator transition in 2D critical point in 2D

32

33

34 Spin!

35

36 Electron interaction correction to conductivity in the diffusive regime H=0 It is a measure of screening (smaller values more metallic) H>k B T/g* B

37 Quantifying e e interaction in 2D ( ) F i a,s FL constants (harmonics) of the e e interaction

Quantum transport in nanoscale solids

Quantum transport in nanoscale solids Quantum transport in nanoscale solids The Landauer approach Dietmar Weinmann Institut de Physique et Chimie des Matériaux de Strasbourg Strasbourg, ESC 2012 p. 1 Quantum effects in electron transport R.

More information

Electrostatic Tuning of Superconductivity. Allen M. Goldman School of Physics and Astronomy University of Minnesota

Electrostatic Tuning of Superconductivity. Allen M. Goldman School of Physics and Astronomy University of Minnesota Electrostatic Tuning of Superconductivity Allen M. Goldman School of Physics and Astronomy University of Minnesota Paarticipating Graduate Students Yen-Hsiang Lin Kevin Parendo (US Patent Office) Sarwa

More information

Semiclassical formulation

Semiclassical formulation The story so far: Transport coefficients relate current densities and electric fields (currents and voltages). Can define differential transport coefficients + mobility. Drude picture: treat electrons

More information

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface Pramod Verma Indian Institute of Science, Bangalore 560012 July 24, 2014 Pramod Verma

More information

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES Jasprit Singh University of Michigan McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico Milan Montreal

More information

I. PLATEAU TRANSITION AS CRITICAL POINT. A. Scaling flow diagram

I. PLATEAU TRANSITION AS CRITICAL POINT. A. Scaling flow diagram 1 I. PLATEAU TRANSITION AS CRITICAL POINT The IQHE plateau transitions are examples of quantum critical points. What sort of theoretical description should we look for? Recall Anton Andreev s lectures,

More information

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. 2 The relaxation-time approximation p. 3 The failure of the Drude model

More information

Magnetotransport of Topological Insulators: Bismuth Selenide and Bismuth Telluride

Magnetotransport of Topological Insulators: Bismuth Selenide and Bismuth Telluride Magnetotransport of Topological Insulators: Bismuth Selenide and Bismuth Telluride Justin Kelly 2011 NSF/REU Program Physics Department, University of Notre Dame Advisors: Prof. Malgorzata Dobrowolska,

More information

arxiv: v1 [cond-mat.dis-nn] 31 Aug 2011

arxiv: v1 [cond-mat.dis-nn] 31 Aug 2011 Suppression of the virtual Anderson transition in a narrow impurity band of doped quantum well structures. N.V. Agrinskaya, V.I. Kozub, and D.S. Poloskin Ioffe Physical-Technical Institute of the Russian

More information

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect 8.513 Lecture 14 Coherent backscattering Weak localization Aharonov-Bohm effect Light diffusion; Speckle patterns; Speckles in coherent backscattering phase-averaged Coherent backscattering Contribution

More information

What is Quantum Transport?

What is Quantum Transport? What is Quantum Transport? Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. http://www.physics.udel.edu/~bnikolic Semiclassical Transport (is boring!) Bloch-Boltzmann

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators Philippe Jacquod U of Arizona UA Phys colloquium - feb 1, 2013 Continuous symmetries and conservation laws Noether

More information

Interplay of interactions and disorder in two dimensions

Interplay of interactions and disorder in two dimensions Interplay of interactions and disorder in two dimensions Sergey Kravchenko in collaboration with: S. Anissimova, V.T. Dolgopolov, A. M. Finkelstein, T.M. Klapwijk, A. Punnoose, A.A. Shashkin Outline Scaling

More information

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU A mini course on topology extrinsic curvature K vs intrinsic (Gaussian) curvature G K 0 G 0 G>0 G=0 K 0 G=0 G

More information

Anderson Localization in the Seventies and Beyond David Thouless University of Washington Seattle, WA APS March Meeting, Pittsburgh March 19,

Anderson Localization in the Seventies and Beyond David Thouless University of Washington Seattle, WA APS March Meeting, Pittsburgh March 19, Anderson Localization in the Seventies and Beyond David Thouless University of Washington Seattle, WA 98195 APS March Meeting, Pittsburgh March 19, 2009 1 Importance of Anderson s 1958 paper on Absence

More information

Can we find metal-insulator transitions in 2-dimensional systems?

Can we find metal-insulator transitions in 2-dimensional systems? Can we find metal-insulator transitions in 2-dimensional systems? Marcelo Kuroda Term Essay for PHYS498ESM, Spring 2004 It has been almost a quarter of a century since the belief of the non existence metallic

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 13 th 2016.7.11 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Outline today Laughlin s justification Spintronics Two current

More information

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor T (K) 1 5 Fe.8 Co.2 Si ρ xy (µω cm) J.F. DiTusa N. Manyala LSU Y. Sidis D.P. Young G. Aeppli UCL Z. Fisk FSU T C 1 Nature Materials 3, 255-262 (24)

More information

Current mechanisms Exam January 27, 2012

Current mechanisms Exam January 27, 2012 Current mechanisms Exam January 27, 2012 There are four mechanisms that typically cause currents to flow: thermionic emission, diffusion, drift, and tunneling. Explain briefly which kind of current mechanisms

More information

Brazilian Journal of Physics, vol. 26, no. 1, March, D Electron Transport in Selectively Doped

Brazilian Journal of Physics, vol. 26, no. 1, March, D Electron Transport in Selectively Doped Brazilian Journal of Physics, vol. 26, no. 1, March, 1996 313 2D Electron Transport in Selectively Doped GaAs/In x Ga 1;xAs Multiple Quantum Well Structures V. A. Kulbachinskii, V. G. Kytin, T. S. Babushkina,

More information

The Electromagnetic Properties of Materials

The Electromagnetic Properties of Materials The lectromagnetic Properties of Materials lectrical conduction Metals Semiconductors Insulators (dielectrics) Superconductors Magnetic materials Ferromagnetic materials Others Photonic Materials (optical)

More information

SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES

SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES Nicandro Bovenzi Bad Honnef, 19-22 September 2016 LAO/STO heterostructure: conducting interface between two insulators

More information

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory Chapter 4: Bonding in Solids and Electronic Properties Free electron theory Consider free electrons in a metal an electron gas. regards a metal as a box in which electrons are free to move. assumes nuclei

More information

Nanoxide electronics

Nanoxide electronics Nanoxide electronics Alexey Kalabukhov Quantum Device Physics Laboratory MC2, room D515 Alexei.kalaboukhov@chalmers.se Playing Lego with oxide materials: G. Rijnders, D.H.A. Blank, Nature 433, 369 (2005)

More information

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST Laboratoire National des Champs Magnétiques Intenses Toulouse Collaborations D. Vignolles B. Vignolle C. Jaudet J.

More information

Probing Wigner Crystals in the 2DEG using Microwaves

Probing Wigner Crystals in the 2DEG using Microwaves Probing Wigner Crystals in the 2DEG using Microwaves G. Steele CMX Journal Club Talk 9 September 2003 Based on work from the groups of: L. W. Engel (NHMFL), D. C. Tsui (Princeton), and collaborators. CMX

More information

Symetrix Corporation Background

Symetrix Corporation Background Symetrix Corporation Background Symetrix has strong history as IP provider > 25 years of development >200 U.S. and foreign patents. > $70M in research revenues, royalties and other income from development.

More information

Classification of Solids

Classification of Solids Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples

More information

Metal-Insulator Transitions

Metal-Insulator Transitions Metal-Insulator Transitions Second Edition N. F. MOTT Emeritus Cavendish Professor of Physics University of Cambridge Taylor & Francis London New York Philadelphia Contents Preface to Second Edition v

More information

Conference on Superconductor-Insulator Transitions May 2009

Conference on Superconductor-Insulator Transitions May 2009 2035-7 Conference on Superconductor-Insulator Transitions 18-23 May 2009 Tunneling studies in a disordered s-wave superconductor close to the Fermi glass regime P. Raychaudhuri Tata Institute of Fundamental

More information

Transient grating measurements of spin diffusion. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

Transient grating measurements of spin diffusion. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab Transient grating measurements of spin diffusion Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab LBNL, UC Berkeley and UCSB collaboration Chris Weber, Nuh Gedik, Joel Moore, JO UC Berkeley

More information

Semiclassical Electron Transport

Semiclassical Electron Transport Semiclassical Electron Transport Branislav K. Niolić Department of Physics and Astronomy, University of Delaware, U.S.A. PHYS 64: Introduction to Solid State Physics http://www.physics.udel.edu/~bniolic/teaching/phys64/phys64.html

More information

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72 Supplementary Figure 1 Crystal structures and joint phase diagram of Hg1201 and YBCO. (a) Hg1201 features tetragonal symmetry and one CuO 2 plane per primitive cell. In the superconducting (SC) doping

More information

Photoemission Studies of Strongly Correlated Systems

Photoemission Studies of Strongly Correlated Systems Photoemission Studies of Strongly Correlated Systems Peter D. Johnson Physics Dept., Brookhaven National Laboratory JLab March 2005 MgB2 High T c Superconductor - Phase Diagram Fermi Liquid:-Excitations

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. Crystal structure of 1T -MoTe 2. (a) HAADF-STEM image of 1T -MoTe 2, looking down the [001] zone (scale bar, 0.5 nm). The area indicated by the red rectangle

More information

Landau quantization, Localization, and Insulator-quantum. Hall Transition at Low Magnetic Fields

Landau quantization, Localization, and Insulator-quantum. Hall Transition at Low Magnetic Fields Landau quantization, Localization, and Insulator-quantum Hall Transition at Low Magnetic Fields Tsai-Yu Huang a, C.-T. Liang a, Gil-Ho Kim b, C.F. Huang c, C.P. Huang a and D.A. Ritchie d a Department

More information

V bg

V bg SUPPLEMENTARY INFORMATION a b µ (1 6 cm V -1 s -1 ) 1..8.4-3 - -1 1 3 mfp (µm) 1 8 4-3 - -1 1 3 Supplementary Figure 1: Mobility and mean-free path. a) Drude mobility calculated from four-terminal resistance

More information

Superconducting fluctuations, interactions and disorder : a subtle alchemy

Superconducting fluctuations, interactions and disorder : a subtle alchemy Les défis actuels de la supraconductivité Dautreppe 2011 Superconducting fluctuations, interactions and disorder : a subtle alchemy Claude Chapelier, Benjamin Sacépé, Thomas Dubouchet INAC-SPSMS-LaTEQS,

More information

Correlated 2D Electron Aspects of the Quantum Hall Effect

Correlated 2D Electron Aspects of the Quantum Hall Effect Correlated 2D Electron Aspects of the Quantum Hall Effect Magnetic field spectrum of the correlated 2D electron system: Electron interactions lead to a range of manifestations 10? = 4? = 2 Resistance (arb.

More information

JFETs - MESFETs - MODFETs

JFETs - MESFETs - MODFETs Technische Universität raz Institute of Solid State Physics JFETs - MESFETs - MOFETs JFET n n-channel JFET S n-channel JFET x n 2 ( Vbi V) en S p-channel JFET 2 Pinch-off at h = x en n h Vp 2 V p = pinch-off

More information

Numerical study of localization in antidot lattices

Numerical study of localization in antidot lattices PHYSICAL REVIEW B VOLUME 58, NUMBER 16 Numerical study of localization in antidot lattices 15 OCTOBER 1998-II Seiji Uryu and Tsuneya Ando Institute for Solid State Physics, University of Tokyo, 7-22-1

More information

Limit of the electrostatic doping in two-dimensional electron gases of LaXO 3 (X = Al, Ti)/SrTiO 3

Limit of the electrostatic doping in two-dimensional electron gases of LaXO 3 (X = Al, Ti)/SrTiO 3 Supplementary Material Limit of the electrostatic doping in two-dimensional electron gases of LaXO 3 (X = Al, Ti)/SrTiO 3 J. Biscaras, S. Hurand, C. Feuillet-Palma, A. Rastogi 2, R. C. Budhani 2,3, N.

More information

Quantum Phenomena & Nanotechnology (4B5)

Quantum Phenomena & Nanotechnology (4B5) Quantum Phenomena & Nanotechnology (4B5) The 2-dimensional electron gas (2DEG), Resonant Tunneling diodes, Hot electron transistors Lecture 11 In this lecture, we are going to look at 2-dimensional electron

More information

Optical Characterization of Solids

Optical Characterization of Solids D. Dragoman M. Dragoman Optical Characterization of Solids With 184 Figures Springer 1. Elementary Excitations in Solids 1 1.1 Energy Band Structure in Crystalline Materials 2 1.2 k p Method 11 1.3 Numerical

More information

OUTLINE. II - The temperature dependence:- an apparent metal-insulator transition in 2D

OUTLINE. II - The temperature dependence:- an apparent metal-insulator transition in 2D OUTLINE I - Brief History II - The temperature dependence:- an apparent metal-insulator transition in 2D Partial list of theoretical suggestions Important question: Mundane? e. g. oxide traps Profound?

More information

Numerical Analysis of the Anderson Localization

Numerical Analysis of the Anderson Localization Numerical Analysis of the Anderson Localization Peter Marko² FEI STU Bratislava FzU Praha, November 3. 23 . introduction: localized states in quantum mechanics 2. statistics and uctuations 3. metal - insulator

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Collapse of superconductivity in a hybrid tin graphene Josephson junction array by Zheng Han et al. SUPPLEMENTARY INFORMATION 1. Determination of the electronic mobility of graphene. 1.a extraction from

More information

FYS Vår 2017 (Kondenserte fasers fysikk)

FYS Vår 2017 (Kondenserte fasers fysikk) FYS3410 - Vår 2017 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v16/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9, 11, 17, 18,

More information

Nanomaterials Characterization by lowtemperature Scanning Probe Microscopy

Nanomaterials Characterization by lowtemperature Scanning Probe Microscopy Nanomaterials Characterization by lowtemperature Scanning Probe Microscopy Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore Piazza San Silvestro 12, 56127 Pisa, Italy e-mail: stefan.heun@nano.cnr.it

More information

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A.

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A. V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). 590B Makariy A. Tanatar November 12, 2008 Resistivity Typical resistivity temperature

More information

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar R measurements (resistivity, magnetoresistance, Hall). 590B Makariy A. Tanatar April 18, 2014 Resistivity Typical resistivity temperature dependence: metals, semiconductors Magnetic scattering Resistivities

More information

Localization I: General considerations, one-parameter scaling

Localization I: General considerations, one-parameter scaling PHYS598PTD A.J.Leggett 2013 Lecture 4 Localization I: General considerations 1 Localization I: General considerations, one-parameter scaling Traditionally, two mechanisms for localization of electron states

More information

Electronic Quantum Transport in Mesoscopic Semiconductor Structures

Electronic Quantum Transport in Mesoscopic Semiconductor Structures Thomas Ihn Electronic Quantum Transport in Mesoscopic Semiconductor Structures With 90 Illustrations, S in Full Color Springer Contents Part I Introduction to Electron Transport l Electrical conductance

More information

Quantum oscillations in insulators with neutral Fermi surfaces

Quantum oscillations in insulators with neutral Fermi surfaces Quantum oscillations in insulators with neutral Fermi surfaces ITF-Seminar IFW Institute - Dresden October 4, 2017 Inti Sodemann MPI-PKS Dresden Contents Theory of quantum oscillations of insulators with

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 5 Beforehand Yesterday Today Anderson Localization, Mesoscopic

More information

Chapter 2. Spinelektronik: Grundlagen und Anwendung spinabhängiger Transportphänomene. Winter 05/06

Chapter 2. Spinelektronik: Grundlagen und Anwendung spinabhängiger Transportphänomene. Winter 05/06 Winter 05/06 : Grundlagen und Anwendung spinabhängiger Transportphänomene Chapter 2 : Grundlagen und Anwendung spinabhängiger Transportphänomene 1 Winter 05/06 2.0 Scattering of charges (electrons) In

More information

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8 Electrical Transport Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8 Electrical Transport The study of the transport of electrons & holes (in semiconductors) under various conditions. A broad & somewhat specialized

More information

QUANTUM WELLS, WIRES AND DOTS

QUANTUM WELLS, WIRES AND DOTS QUANTUM WELLS, WIRES AND DOTS Theoretical and Computational Physics of Semiconductor Nanostructures Second Edition Paul Harrison The University of Leeds, UK /Cf}\WILEY~ ^INTERSCIENCE JOHN WILEY & SONS,

More information

Non-Fermi Liquids and Bad Metals in NdNiO3 Thin Films

Non-Fermi Liquids and Bad Metals in NdNiO3 Thin Films Non-Fermi Liquids and Bad Metals in NdNiO3 Thin Films Susanne Stemmer Materials Department University of California, Santa Barbara Workshop on Bad Metal Behavior in Mott Systems Schloß Waldthausen, Germany

More information

Bilayer GNR Mobility Model in Ballistic Transport Limit

Bilayer GNR Mobility Model in Ballistic Transport Limit ilayer GNR Mobility Model in allistic Transport Limit S. Mahdi Mousavi, M.Taghi Ahmadi, Hatef Sadeghi, and Razali Ismail Computational Nanoelectronics (CoNE) Research Group, Electrical Engineering Faculty,

More information

Correlatd electrons: the case of high T c cuprates

Correlatd electrons: the case of high T c cuprates Correlatd electrons: the case of high T c cuprates Introduction: Hubbard U - Mott transition, The cuprates: Band structure and phase diagram NMR as a local magnetic probe Magnetic susceptibilities NMR

More information

Metal-oxide-semiconductor field effect transistors (2 lectures)

Metal-oxide-semiconductor field effect transistors (2 lectures) Metal-ide-semiconductor field effect transistors ( lectures) MOS physics (brief in book) Current-voltage characteristics - pinch-off / channel length modulation - weak inversion - velocity saturation -

More information

Nonequilibrium dynamics in Coulomb glasses near the metal-insulator transition

Nonequilibrium dynamics in Coulomb glasses near the metal-insulator transition Nonequilibrium dynamics in Coulomb glasses near the metal-insulator transition Dragana Popović National High Magnetic Field Laboratory Florida State University, Tallahassee, FL, USA Boulder 2009 Summer

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Thermal transport in the disordered electron liquid

Thermal transport in the disordered electron liquid Thermal transport in the disordered electron liquid Georg Schwiete Johannes Gutenberg Universität Mainz Alexander Finkel stein Texas A&M University, Weizmann Institute of Science, and Landau Institute

More information

Spectroscopy of correlated electrons in nickelates and titanates

Spectroscopy of correlated electrons in nickelates and titanates Spectroscopy of correlated electrons in nickelates and titanates Metal-insulator transitions and novel 2DEGs Dept. of Physics University of CA, Santa Barbara Strong Electron Correlations Materials which

More information

The BTE with a High B-field

The BTE with a High B-field ECE 656: Electronic Transport in Semiconductors Fall 2017 The BTE with a High B-field Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette, IN USA 10/11/17 Outline 1) Introduction

More information

High-temperature superconductivity

High-temperature superconductivity Superconductivity and Low temperature physics, FMI036 High-temperature superconductivity Alexey Kalabukhov Quantum Device Physics Laboratory, MC2 Outline Lecture I (19/2): History of discovery, phenomenology

More information

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Authors: Yang Xu 1,2, Ireneusz Miotkowski 1, Chang Liu 3,4, Jifa Tian 1,2, Hyoungdo

More information

The Oxford Solid State Basics

The Oxford Solid State Basics The Oxford Solid State Basics Steven H. Simon University of Oxford OXFORD UNIVERSITY PRESS Contents 1 About Condensed Matter Physics 1 1.1 What Is Condensed Matter Physics 1 1.2 Why Do We Study Condensed

More information

Nanoxide electronics

Nanoxide electronics Nanoxide electronics Alexey Kalabukhov Quantum Device Physics Laboratory MC2, room D515 Alexei.kalaboukhov@chalmers.se Playing Lego with oxide materials: G. Rijnders, D.H.A. Blank, Nature 433, 369 (2005)

More information

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties High-T c superconductors Parent insulators Phase diagram

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor 1. Surface morphology of InP substrate and the device Figure S1(a) shows a 10-μm-square

More information

Basic Semiconductor Physics

Basic Semiconductor Physics Chihiro Hamaguchi Basic Semiconductor Physics With 177 Figures and 25 Tables Springer 1. Energy Band Structures of Semiconductors 1 1.1 Free-Electron Model 1 1.2 Bloch Theorem 3 1.3 Nearly Free Electron

More information

Semiconductor Integrated Process Design (MS 635)

Semiconductor Integrated Process Design (MS 635) Semiconductor Integrated Process Design (MS 635) Instructor: Prof. Keon Jae Lee - Office: 응용공학동 #4306, Tel: #3343 - Email: keonlee@kaist.ac.kr Lecture: (Tu, Th), 1:00-2:15 #2425 Office hour: Tues & Thur

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

Interference of magnetointersubband and phonon-induced resistance oscillations in single GaAs quantum wells with two populated subbands

Interference of magnetointersubband and phonon-induced resistance oscillations in single GaAs quantum wells with two populated subbands Interference of magnetointersubband and phonon-induced resistance oscillations in single GaAs quantum wells with two populated subbands A.A.Bykov and A.V.Goran Institute of Semiconductor Physics, Russian

More information

Beyond the Quantum Hall Effect

Beyond the Quantum Hall Effect Beyond the Quantum Hall Effect Jim Eisenstein California Institute of Technology School on Low Dimensional Nanoscopic Systems Harish-chandra Research Institute January February 2008 Outline of the Lectures

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester SOLID STATE PHYSICS Second Edition J. R. Hook H. E. Hall Department of Physics, University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Contents Flow diagram Inside front

More information

Universal transport at the edge: Disorder, interactions, and topological protection

Universal transport at the edge: Disorder, interactions, and topological protection Universal transport at the edge: Disorder, interactions, and topological protection Matthew S. Foster, Rice University March 31 st, 2016 Universal transport coefficients at the edges of 2D topological

More information

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization. 23 August - 3 September, 2010

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization. 23 August - 3 September, 2010 16-5 Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization 3 August - 3 September, 010 INTRODUCTORY Anderson Localization - Introduction Boris ALTSHULER Columbia

More information

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

Surface effects in frustrated magnetic materials: phase transition and spin resistivity Surface effects in frustrated magnetic materials: phase transition and spin resistivity H T Diep (lptm, ucp) in collaboration with Yann Magnin, V. T. Ngo, K. Akabli Plan: I. Introduction II. Surface spin-waves,

More information

Quantized Resistance. Zhifan He, Huimin Yang Fudan University (China) April 9, Physics 141A

Quantized Resistance. Zhifan He, Huimin Yang Fudan University (China) April 9, Physics 141A Quantized Resistance Zhifan He, Huimin Yang Fudan University (China) April 9, Physics 141A Outline General Resistance Hall Resistance Experiment of Quantum Hall Effect Theory of QHE Other Hall Effect General

More information

Quantum coherent transport in Meso- and Nanoscopic Systems

Quantum coherent transport in Meso- and Nanoscopic Systems Quantum coherent transport in Meso- and Nanoscopic Systems Philippe Jacquod pjacquod@physics.arizona.edu U of Arizona http://www.physics.arizona.edu/~pjacquod/ Quantum coherent transport Outline Quantum

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

Metal-insulator transitions

Metal-insulator transitions Metal-insulator transitions Bandwidth control versus fillig control Strongly correlated Fermi liquids Spectral weight transfer and mass renormalization Bandwidth control Filling control Chemical potential

More information

Electronic charge reconstruction of doped Mott insulators in multilayered nanostructures

Electronic charge reconstruction of doped Mott insulators in multilayered nanostructures Electronic charge reconstruction of doped Mott insulators in multilayered nanostructures Ling Chen and J. K. Freericks* Department of Physics, Georgetown University, Washington, District of Columbia 20057,

More information

Material Science II. d Electron systems

Material Science II. d Electron systems Material Science II. d Electron systems 1. Electronic structure of transition-metal ions (May 23) 2. Crystal structure and band structure (June 13) 3. Mott s (June 20) 4. Metal- transition (June 27) 5.

More information

Mesoscopic Fluctuations of Conductance in a Depleted Built-in Channel of a MOSFET

Mesoscopic Fluctuations of Conductance in a Depleted Built-in Channel of a MOSFET ISSN 1063-7826, Semiconductors, 2006, Vol. 40, No. 9, pp. 1055 1059. Pleiades Publishing, Inc., 2006. Original Russian Text B.A. Aronzon, A.S. Vedeneev, A.A. Panferov, V.V. Ryl kov, 2006, published in

More information

Supplementary Information for. Linear-T resistivity and change in Fermi surface at the pseudogap critical point of a high-t c superconductor

Supplementary Information for. Linear-T resistivity and change in Fermi surface at the pseudogap critical point of a high-t c superconductor NPHYS-2008-06-00736 Supplementary Information for Linear-T resistivity and change in Fermi surface at the pseudogap critical point of a high-t c superconductor R. Daou 1, Nicolas Doiron-Leyraud 1, David

More information

Conserved Spin Quantity in Strained Hole Systems with Rashba and Dresselhaus Spin-Orbit Coupling

Conserved Spin Quantity in Strained Hole Systems with Rashba and Dresselhaus Spin-Orbit Coupling Conserved Spin Quantity in Strained Hole Systems with Rashba and Dresselhaus Spin-Orbit Coupling Paul Wenk, Michael Kammermeier, John Schliemann, Klaus Richter, Roland Winkler SFB Workshop Bernried 30.09.2014

More information

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg Spin-orbit Effects in Semiconductor Spintronics Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg Collaborators Hartmut Buhmann, Charlie Becker, Volker Daumer, Yongshen Gui Matthias

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

Charge carrier density in metals and semiconductors

Charge carrier density in metals and semiconductors Charge carrier density in metals and semiconductors 1. Introduction The Hall Effect Particles must overlap for the permutation symmetry to be relevant. We saw examples of this in the exchange energy in

More information

Temperature dependence of spin diffusion length in silicon by Hanle-type spin. precession

Temperature dependence of spin diffusion length in silicon by Hanle-type spin. precession Temperature dependence of spin diffusion length in silicon by Hanle-type spin precession T. Sasaki 1,a), T. Oikawa 1, T. Suzuki 2, M. Shiraishi 3, Y. Suzuki 3, and K. Noguchi 1 SQ Research Center, TDK

More information

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT S. Krompiewski Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland OUTLINE 1. Introductory

More information

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea 3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI Heon-Jung Kim Department of Physics, Daegu University, Korea Content 3D Dirac metals Search for 3D generalization of graphene Bi 1-x

More information