Interpolating between Wishart and inverse-wishart distributions

Size: px
Start display at page:

Download "Interpolating between Wishart and inverse-wishart distributions"

Transcription

1 Interpolating between Wishart and inverse-wishart distributions Topological phase transitions in 1D multichannel disordered wires with a chiral symmetry Christophe Texier December 11, 2015 with Aurélien Grabsch, cond-mat arxiv:

2 Wishart distribution (Laguerre ensemble) real (β = 1) M : N N Hermitian matrix with complex (β = 2) quaternionic (β = 4) elements and positive eigenvalues DM P(M) Haar {}}{ DM (det M) η 1 β 2 (N 1) exp [ 12 ] Tr {M} for η > β 2 (N 1) Inverse-Wishart DM P(M) DM (det M) η 1 β 2 (N 1) exp [ 12 Tr { M 1}]

3 Wishart distribution (Laguerre ensemble) real (β = 1) M : N N Hermitian matrix with complex (β = 2) quaternionic (β = 4) elements and positive eigenvalues DM P(M) Haar {}}{ DM (det M) η 1 β 2 (N 1) exp [ 12 ] Tr {M} for η > β 2 (N 1) Inverse-Wishart DM P(M) DM (det M) η 1 β 2 (N 1) exp [ 12 Tr { M 1}]

4 Interpolation between Wishart and inverse-wishart f (Z ) (det Z ) µ β(n 1) exp [ 12 Tr { G 1 (Z + k 2 Z 1 ) }] for Z > 0, with G = G and µ

5 Interpolation between Wishart and inverse-wishart f (Z ) (det Z ) µ β(n 1) exp [ 12 Tr { G 1 (Z + k 2 Z 1 ) }] for Z > 0, with G = G and µ Consider G = 1 N : k 2 = 0 : Wishart with η = µ > β 2 (N 1)

6 Interpolation between Wishart and inverse-wishart f (Z ) (det Z ) µ β(n 1) exp [ 12 Tr { G 1 (Z + k 2 Z 1 ) }] for Z > 0, with G = G and µ Consider G = 1 N : k 2 = 0 : Wishart with η = µ > β 2 (N 1) k 2 : inverse-wishart with η = +µ > β 2 (N 1)

7 Physical context : Multichannel disordered wires with chiral symmetry 1D Dirac Hamiltonian with a random mass : H D = i σ 2 1 N x + σ 1 M(x) acting on a spinor with 2N components chiral symmetry : σ 3 H D σ 3 = H D Disorder : real (β = 1) Gaussian white noise (N N matrix) complex (β = 2) quaternion (β = 4) [ P [M(x)] exp 1 2 dx Tr { (M(x) µ G) G 1 (M(x) µ G) }] where µ R and G = G.

8 Physical context : Multichannel disordered wires with chiral symmetry 1D Dirac Hamiltonian with a random mass : H D = i σ 2 1 N x + σ 1 M(x) acting on a spinor with 2N components chiral symmetry : σ 3 H D σ 3 = H D Disorder : real (β = 1) Gaussian white noise (N N matrix) complex (β = 2) quaternion (β = 4) [ P [M(x)] exp 1 2 dx Tr { (M(x) µ G) G 1 (M(x) µ G) }] where µ R and G = G.

9 Motivations

10 The strictly 1D Dirac equation with random mass [ ] i σ 2 x + σ 1 m(x) Ψ(x) = ε Ψ(x) }{{} =H D In condensed matter and statistical physics : 1D disordered metal at half filling H D = iσ 3 x + V 0 (x) + σ 1 V π (x) Kappus-Wegner (band center) anomaly Disordered spin chains and spin ladders π V 0 V π ε k V 0 k π (Fisher 94, 95 ; Steiner, Fabrizio, Gogolin, Mélin, Steiner, 97 ;...) Classical diffusion in a random environment H 2 D H ± = 2 x + m 2 ± m FPE t P = x ( x 2m)P Sinai diffusion ( m = 0), etc. Bouchaud, Comtet, Georges & Le Doussal, 1990 ;...

11 The strictly 1D Dirac equation with random mass [ ] i σ 2 x + σ 1 m(x) Ψ(x) = ε Ψ(x) }{{} =H D In condensed matter and statistical physics : 1D disordered metal at half filling H D = iσ 3 x + V 0 (x) + σ 1 V π (x) Kappus-Wegner (band center) anomaly Disordered spin chains and spin ladders π V 0 V π ε k V 0 k π (Fisher 94, 95 ; Steiner, Fabrizio, Gogolin, Mélin, Steiner, 97 ;...) Classical diffusion in a random environment H 2 D H ± = 2 x + m 2 ± m FPE t P = x ( x 2m)P Sinai diffusion ( m = 0), etc. Bouchaud, Comtet, Georges & Le Doussal, 1990 ;...

12 The strictly 1D Dirac equation with random mass [ ] i σ 2 x + σ 1 m(x) Ψ(x) = ε Ψ(x) }{{} =H D In condensed matter and statistical physics : 1D disordered metal at half filling H D = iσ 3 x + V 0 (x) + σ 1 V π (x) Kappus-Wegner (band center) anomaly Disordered spin chains and spin ladders π V 0 V π ε k V 0 k π (Fisher 94, 95 ; Steiner, Fabrizio, Gogolin, Mélin, Steiner, 97 ;...) Classical diffusion in a random environment H 2 D H ± = 2 x + m 2 ± m FPE t P = x ( x 2m)P Sinai diffusion ( m = 0), etc. Bouchaud, Comtet, Georges & Le Doussal, 1990 ;...

13 Multichannel disordered wires Standard classes (orthogonal, unitary, symplectic) Dorokhov, 1982 ; 1988 ;... Mello, Pereyra, Kumar, 1988 : «DMPK» Beenakker, Rev. Mod. Phys. (1997) Additional discrete symmetries : chiral & BdG classes spectral properties, localisation Brouwer, Mudry, Simons, Altland, PRL (1998) Brouwer, Mudry, Furusaki, PRL (2000) ;.... Ludwig & Schulz-Baldes, J. Stat. Phys. (2013) (localisation) Topological phase transitions driven by strong disorder Potter, Lee, PRL (2010)... Rieder, Brouwer, Adagideli, PRL (2013)...

14 Multichannel disordered wires Standard classes (orthogonal, unitary, symplectic) Dorokhov, 1982 ; 1988 ;... Mello, Pereyra, Kumar, 1988 : «DMPK» Beenakker, Rev. Mod. Phys. (1997) Additional discrete symmetries : chiral & BdG classes spectral properties, localisation Brouwer, Mudry, Simons, Altland, PRL (1998) Brouwer, Mudry, Furusaki, PRL (2000) ;.... Ludwig & Schulz-Baldes, J. Stat. Phys. (2013) (localisation) Topological phase transitions driven by strong disorder Potter, Lee, PRL (2010)... Rieder, Brouwer, Adagideli, PRL (2013)...

15 Multichannel disordered wires Standard classes (orthogonal, unitary, symplectic) Dorokhov, 1982 ; 1988 ;... Mello, Pereyra, Kumar, 1988 : «DMPK» Beenakker, Rev. Mod. Phys. (1997) Additional discrete symmetries : chiral & BdG classes spectral properties, localisation Brouwer, Mudry, Simons, Altland, PRL (1998) Brouwer, Mudry, Furusaki, PRL (2000) ;.... Ludwig & Schulz-Baldes, J. Stat. Phys. (2013) (localisation) Topological phase transitions driven by strong disorder Potter, Lee, PRL (2010)... Rieder, Brouwer, Adagideli, PRL (2013)...

16 Topological insulators and quantum phase transitions Example : Integer Quantum Hall Effect (class A) boundaries: 1D chiral metal «bulk-edge correspondence» trivial insulator bulk: 2D topological insulator trivial insulator

17 Topological insulators and quantum phase transitions Example : Integer Quantum Hall Effect (class A) boundaries: 1D chiral metal trivial insulator bulk: 2D topological insulator trivial insulator «bulk-edge correspondence» Quantum phase transition σ xy = n n σ xy σ xx ν 1/B

18 Topological insulators and quantum phase transitions Example : Integer Quantum Hall Effect (class A) boundaries: 1D chiral metal trivial insulator bulk: 2D topological insulator trivial insulator «bulk-edge correspondence» Quantum phase transition without symmetry breaking 2 1 σ xy σ xx ν 1/B «topological phase transition»

19 What are the possible topological insulators? Symmetries of RMT and disordered systems : (Altland & Zirnbauer, 96 ; 97) Two discrete symmetries in condensed matter : Chiral (sublattice) & particle-hole (superconductors) Periodic table of topological insulators : topological index TRS p-h S ch. S SRS 0D 1D 2D Wigner- AI (orthogonal) +1 no no yes Z no no Dyson A (unitary) no no no indiff. Z no Z AII (symplectic) 1 no no no Z no Z 2 Chiral BDI (chiral orth.) yes yes Z 2 Z no AIII (chiral unit.) no no yes indiff. no Z no CII (chiral sympl.) 1 1 yes no no Z no BdG D no +1 no no Z 2 Z 2 Z DIII 1 +1 yes no no Z 2 Z 2 C no 1 no yes no no Z CI +1 1 yes yes no no no Kitaev (2009) ; Ryu, Schnyder, Furusaki, Ludwig, New J. Phys. (2010)

20 What are the possible topological insulators? Symmetries of RMT and disordered systems : (Altland & Zirnbauer, 96 ; 97) Two discrete symmetries in condensed matter : Chiral (sublattice) & particle-hole (superconductors) Periodic table of topological insulators : topological index TRS p-h S ch. S SRS 0D 1D 2D Wigner- AI (orthogonal) +1 no no yes Z no no Dyson A (unitary) no no no indiff. Z no Z AII (symplectic) 1 no no no Z no Z 2 Chiral BDI (chiral orth.) yes yes Z 2 Z no AIII (chiral unit.) no no yes indiff. no Z no CII (chiral sympl.) 1 1 yes no no Z no BdG D no +1 no no Z 2 Z 2 Z DIII 1 +1 yes no no Z 2 Z 2 C no 1 no yes no no Z CI +1 1 yes yes no no no Kitaev (2009) ; Ryu, Schnyder, Furusaki, Ludwig, New J. Phys. (2010)

21 Question 1D multichannel Dirac equation with random mass : Q : How does disorder drive topological phase transitions? Relation with the matrix model

22 Table of contents 1 The scattering problem and the Riccati matrix 2 Distribution of the Riccati matrix 3 Spectral density of the disordered wires 4 Topological phase transitions 5 Conclusion

23 Plan 1 The scattering problem and the Riccati matrix 2 Distribution of the Riccati matrix 3 Spectral density of the disordered wires 4 Topological phase transitions 5 Conclusion

24 The scattering problem M(x) M(x)= 0 L 1 x S matrix Weyl (chiral) representation : H D = i σ 3 1 N x + σ 1 M(x) Scattering state : 2N N «spinor» : (for ε > 0) ( ) ( ) 0 Ψ ε (x) = e iε(x L) S(ε) + e +iε(x L) 1 N 0 for x > L S(ε) : N N scattering matrix

25 The scattering problem M(x) M(x)= 0 L 1 x S matrix Weyl (chiral) representation : H D = i σ 3 1 N x + σ 1 M(x) Scattering state : 2N N «spinor» : (for ε > 0) ( ) ( ) 0 Ψ ε (x) = e iε(x L) S(ε) + e +iε(x L) 1 N 0 for x > L S(ε) : N N scattering matrix

26 Riccati matrix Z and scattering matrix S Majorana representation : H D Ψ = ε Ψ with H D = i σ 2 1 N x + σ 1 M(x) 2N N «spinor» : obeys Ψ = ( ) ϕ χ Z = def ε χ ϕ 1 Z (x) = ε 2 Z (x) 2 M(x) Z (x) Z (x) M(x) Relation to the S-matrix : S(ε) = i [ ε i Z (L) ][ ε + i Z (L) ] 1

27 Riccati matrix Z and scattering matrix S Majorana representation : H D Ψ = ε Ψ with H D = i σ 2 1 N x + σ 1 M(x) 2N N «spinor» : obeys Ψ = ( ) ϕ χ Z = def ε χ ϕ 1 Z (x) = ε 2 Z (x) 2 M(x) Z (x) Z (x) M(x) Relation to the S-matrix : S(ε) = i [ ε i Z (L) ][ ε + i Z (L) ] 1

28 Riccati matrix Z and scattering matrix S Majorana representation : H D Ψ = ε Ψ with H D = i σ 2 1 N x + σ 1 M(x) 2N N «spinor» : obeys Ψ = ( ) ϕ χ Z = def ε χ ϕ 1 Z (x) = ε 2 Z (x) 2 M(x) Z (x) Z (x) M(x) Relation to the S-matrix : S(ε) = i [ ε i Z (L) ][ ε + i Z (L) ] 1

29 Plan 1 The scattering problem and the Riccati matrix 2 Distribution of the Riccati matrix 3 Spectral density of the disordered wires 4 Topological phase transitions 5 Conclusion

30 Random matricial process M(x) a Gaussian white noise (N N matrix) Stochastic matricial differential equation Z (x) = ε 2 Z (x) 2 M(x) Z (x) Z (x) M(x) (Stratonovich) Matricial Fokker-Planck equation ε = ik ir if M(x) = 0, fixed point Z (x) = k 1 N if M(x) 0 : stationary (equil.) distribution (proven for β = 1 & 2) : f (Z ) = C 1 N,β (det Z 1 ) µ 1 2 β(n 1) exp [ 12 Tr { G 1 (Z + k 2 Z 1 ) }] for Z > 0

31 Random matricial process M(x) a Gaussian white noise (N N matrix) Stochastic matricial differential equation Z (x) = ε 2 Z (x) 2 M(x) Z (x) Z (x) M(x) (Stratonovich) Matricial Fokker-Planck equation ε = ik ir if M(x) = 0, fixed point Z (x) = k 1 N if M(x) 0 : stationary (equil.) distribution (proven for β = 1 & 2) : f (Z ) = C 1 N,β (det Z 1 ) µ 1 2 β(n 1) exp [ 12 Tr { G 1 (Z + k 2 Z 1 ) }] for Z > 0

32 Random matricial process M(x) a Gaussian white noise (N N matrix) Stochastic matricial differential equation Z (x) = ε 2 Z (x) 2 M(x) Z (x) Z (x) M(x) (Stratonovich) Matricial Fokker-Planck equation ε = ik ir if M(x) = 0, fixed point Z (x) = k 1 N if M(x) 0 : stationary (equil.) distribution (proven for β = 1 & 2) : f (Z ) = C 1 N,β (det Z 1 ) µ 1 2 β(n 1) exp [ 12 Tr { G 1 (Z + k 2 Z 1 ) }] for Z > 0

33 Plan 1 The scattering problem and the Riccati matrix 2 Distribution of the Riccati matrix 3 Spectral density of the disordered wires 4 Topological phase transitions 5 Conclusion

34 Density of states (DoS) Krein-Friedel relation : DoS Scattering S(ε) = i [ε iz (L)] [ε + iz (L)] 1 integrated DoS N (ε) Z (L) = DZ f (Z ) Z (+ analytic continuation, ε = ik ir)

35 Density of states (DoS) Krein-Friedel relation : DoS Scattering S(ε) = i [ε iz (L)] [ε + iz (L)] 1 integrated DoS N (ε) Z (L) = DZ f (Z ) Z (+ analytic continuation, ε = ik ir)

36 Normalisation constant C N,β = DZ (det Z ) µ β(n 1) exp [ 12 Tr { G 1 (Z + k 2 Z 1 ) }] Z >0 Integrated DoS N (ε) : G = diag(g 1,, g N ) Ω = Tr {Z } = N i=1 g 2 i ln C N,β g i ( G=g1 N Ω = g N µ + k ln C ) N,β k N (ε) = 1 π Im [Ω k= iε]

37 Normalisation constant C N,β = DZ (det Z ) µ β(n 1) exp [ 12 Tr { G 1 (Z + k 2 Z 1 ) }] Z >0 Integrated DoS N (ε) : G = diag(g 1,, g N ) Ω = Tr {Z } = N i=1 g 2 i ln C N,β g i ( G=g1 N Ω = g N µ + k ln C ) N,β k N (ε) = 1 π Im [Ω k= iε]

38 Determinantal representations (G = g1 N ) Chiral orthogonal (β = 1, BDI) Pfaffian [ ] C N,1 pf Chiral unitary (β = 2, AIII) Hankel determinant C N,2 = N! 2 N k Nµ det [ ] K µ+1+n i j (k/g) 1 n, m N Chiral symplectic (β = 4, CII) [ ] C N,4 = N! 2 N k Nµ pf (m n) K µ+1+2n n m (k/g) 1 n, m 2N similar result in : Titov, Brouwer, Furusaki & Mudry, PRB (2001)

39 Density of states ρ(ε) = N (ε) µ = mass disorder N (ε) ε α as ε 0 µ = 0 : parity effect (Brouwer, Furusaki, Mudry, PRL 00 ; Physica E 01)

40 Exponent of the DoS ρ(ε) = N (ε) ε α 1 µ = mass disorder : N (ε) ε β ln ε : N (ε) 1/ ln 2 ε (Dyson singularity β) superuniversality (Gruzberg, Read, Vishveshwara, PRB 2005) α = 0 topological phase transition

41 Plan 1 The scattering problem and the Riccati matrix 2 Distribution of the Riccati matrix 3 Spectral density of the disordered wires 4 Topological phase transitions 5 Conclusion

42 Topological quantum number (N = 1 channel case) m(x)= 0 m(x) L 1 x e iδ set m(x) = ±µg = m 0 Phase-shift δ ± (ε) Bulk-edge correspondence case with no disorder subgap state : IDoS N ± L (ε) = δ±(ε) 2π

43 Topological quantum number (N = 1 channel case) m(x)= 0 m(x) L 1 x e iδ set m(x) = ±µg = m 0 Phase-shift δ ± (ε) Bulk-edge correspondence case with no disorder subgap state : m(x)= m(x)=m 0<0 gap x 2 m no zero mode 0... m(x)= closure & reopening of the gap IDoS N ± L Ψ 0 (x) m(x)=m 0>0 gap 1/ m 2m x (ε) = δ±(ε) 2π

44 Topological quantum number (N = 1 channel case) m(x)= 0 m(x) L 1 x e iδ set m(x) = ±µg = m 0 Phase-shift δ ± (ε) Bulk-edge correspondence case with no disorder subgap state : m(x)= m(x)=m 0<0 gap x 2 m no zero mode 0... m(x)= closure & reopening of the gap IDoS N ± L Ψ 0 (x) m(x)=m 0>0 gap 1/ m 2m x (ε) = δ±(ε) 2π ( ) = 1 2 Witten index ( 1 2 # of zero modes) : N + L (0) N L (0) = δ +(0) δ (0) 2π = ( ) β ( β) { } = Tr σ 3 e βh 2 D

45 Witten index and Riccati matrix M(x) 1 M(x)= 0 L x S matrix S(ε) = i [ ε i Z (L) ][ ε + i Z (L) ] 1 Eigenvalues : z n = ε tan δ n (phase shift) Witten index ( 1 2 # of zero modes) δ ± (ε) = i ln det S(ε) for M(x) = ±µg 1 N 1 2 n sign(z n) n sign(z n k) δ + (ε) δ (ε) ( ) = ε 0 2π 1 2 for ε R for ε = ik ir

46 Witten index and Riccati matrix M(x) 1 M(x)= 0 L x S matrix S(ε) = i [ ε i Z (L) ][ ε + i Z (L) ] 1 Eigenvalues : z n = ε tan δ n (phase shift) Witten index ( 1 2 # of zero modes) δ ± (ε) = i ln det S(ε) for M(x) = ±µg 1 N 1 2 n sign(z n) n sign(z n k) δ + (ε) δ (ε) ( ) = ε 0 2π 1 2 for ε R for ε = ik ir

47 k = iε 0 limit of the distribution f (Z ) P(z 1,, z N ) = C 1 N,β µ β(n 1)/2 > 0 : z i z j β i<j l P(z 1,, z N ) k 0 Wishart z µ β(n 1)/2 1 l e 1 2g (z l +k 2 /z l ) µ β(n 1)/2 < 0 ( P(z 1,, z N ) Wishart ({z i }) inverse Wishart { z ) j k 0 k 2 } Condensation of n charges to z = 0

48 k = iε 0 limit of the distribution f (Z ) P(z 1,, z N ) = C 1 N,β µ β(n 1)/2 > 0 : z i z j β i<j l P(z 1,, z N ) k 0 Wishart z µ β(n 1)/2 1 l e 1 2g (z l +k 2 /z l ) µ β(n 1)/2 < 0 ( P(z 1,, z N ) Wishart ({z i }) inverse Wishart { z ) j k 0 k 2 } Condensation of n charges to z = 0

49 k = iε 0 limit of the distribution f (Z ) P(z 1,, z N ) = C 1 N,β µ β(n 1)/2 > 0 : z i z j β i<j l P(z 1,, z N ) k 0 Wishart z µ β(n 1)/2 1 l e 1 2g (z l +k 2 /z l ) µ β(n 1)/2 < 0? ( P(z 1,, z N ) Wishart ({z i }) inverse Wishart { z ) j k 0 k 2 } Condensation of n charges to z = 0

50 k = iε 0 limit of the distribution f (Z ) P(z 1,, z N ) = C 1 N,β µ β(n 1)/2 > 0 : z i z j β i<j l P(z 1,, z N ) k 0 Wishart z µ β(n 1)/2 1 l e 1 2g (z l +k 2 /z l ) µ β(n 1)/2 < 0 ( P(z 1,, z N ) Wishart ({z i }) inverse Wishart { z ) j k 0 k 2 } k 2 inverse Wishart n charges 0 k N n charges Wishart z Condensation of n charges to z = 0

51 k 0 : two uncorrelated sets of charges 1 ( ) = lim k 0 2 Case θ = µ β(n 1)/2 > 0 sign(z n k) n Case θ = µ β(n 1)/2 ] n β, (n 1)β[ Case θ = µ β(n 1)/2 = n β ( ) = N 2n+1 2

52 k 0 : two uncorrelated sets of charges 1 ( ) = lim k 0 2 Case θ = µ β(n 1)/2 > 0 sign(z n k) n Wishart k 0 ( ) = N 2 z Case θ = µ β(n 1)/2 ] n β, (n 1)β[ Case θ = µ β(n 1)/2 = n β ( ) = N 2n+1 2

53 k 0 : two uncorrelated sets of charges 1 ( ) = lim k 0 2 Case θ = µ β(n 1)/2 > 0 sign(z n k) n Wishart k 0 ( ) = N 2 z Case θ = µ β(n 1)/2 ] n β, (n 1)β[ k 2 inverse Wishart n charges N n charges 0 k Wishart z ( ) = N 2n 2 Case θ = µ β(n 1)/2 = n β ( ) = N 2n+1 2

54 k 0 : two uncorrelated sets of charges 1 ( ) = lim k 0 2 Case θ = µ β(n 1)/2 > 0 sign(z n k) n Wishart k 0 ( ) = N 2 z Case θ = µ β(n 1)/2 ] n β, (n 1)β[ k 2 inverse Wishart n charges N n charges 0 k Wishart z ( ) = N 2n 2 Case θ = µ β(n 1)/2 = n β ( ) = N 2n+1 2

55 Witten index and phase diagram Witten index Phase diagram : plane (m 0, g)

56 Witten index and phase diagram Witten index Phase diagram : plane (m 0, g) g 1/2 g +1/2 g 1/2 g +1/2 g 0 1/2 +1/ m /2 +1/2 3/2 +3/2 +1 3/2 m 0 m 0 m 0 m 0 N =1 N =2 N =3 N =4 N = /2 1/2 +1/2 3/2 +3/2 5/2 +5/2...

57 Plan 1 The scattering problem and the Riccati matrix 2 Distribution of the Riccati matrix 3 Spectral density of the disordered wires 4 Topological phase transitions 5 Conclusion

58 Conclusions H D = i σ 2 1 N x + σ 1 M(x) Relation to Random Matrix Products Π N = M N M 1 ( ) ( ) 1N cos θ 1 M n = N sin θ e W 0 1 N 1 N sin θ 1 N cos θ 0 1 N e W Sp(2N) with W = W Stationary distribution for the matricial process Z (x) : f (Z ) = C 1 N,β (det Z 1 ) µ 1 2 β(n 1) exp [ 12 Tr { G 1 (Z + k 2 Z 1 ) }] if G 1 N : no isotropy assumption DoS : Z (x) = DZ f (Z ) Z C N,β N (ε) Topological quantum number (Witten index ( )) : from f (Z ) (i.e. of the S-matrix) Topological phase transitions driven by µ = mass /disorder

59 Conclusions H D = i σ 2 1 N x + σ 1 M(x) Relation to Random Matrix Products Π N = M N M 1 ( ) ( ) 1N cos θ 1 M n = N sin θ e W 0 1 N 1 N sin θ 1 N cos θ 0 1 N e W Sp(2N) with W = W Stationary distribution for the matricial process Z (x) : f (Z ) = C 1 N,β (det Z 1 ) µ 1 2 β(n 1) exp [ 12 Tr { G 1 (Z + k 2 Z 1 ) }] if G 1 N : no isotropy assumption DoS : Z (x) = DZ f (Z ) Z C N,β N (ε) Topological quantum number (Witten index ( )) : from f (Z ) (i.e. of the S-matrix) Topological phase transitions driven by µ = mass /disorder

60 Conclusions H D = i σ 2 1 N x + σ 1 M(x) Relation to Random Matrix Products Π N = M N M 1 ( ) ( ) 1N cos θ 1 M n = N sin θ e W 0 1 N 1 N sin θ 1 N cos θ 0 1 N e W Sp(2N) with W = W Stationary distribution for the matricial process Z (x) : f (Z ) = C 1 N,β (det Z 1 ) µ 1 2 β(n 1) exp [ 12 Tr { G 1 (Z + k 2 Z 1 ) }] if G 1 N : no isotropy assumption DoS : Z (x) = DZ f (Z ) Z C N,β N (ε) Topological quantum number (Witten index ( )) : from f (Z ) (i.e. of the S-matrix) Topological phase transitions driven by µ = mass /disorder

61 Conclusions H D = i σ 2 1 N x + σ 1 M(x) Relation to Random Matrix Products Π N = M N M 1 ( ) ( ) 1N cos θ 1 M n = N sin θ e W 0 1 N 1 N sin θ 1 N cos θ 0 1 N e W Sp(2N) with W = W Stationary distribution for the matricial process Z (x) : f (Z ) = C 1 N,β (det Z 1 ) µ 1 2 β(n 1) exp [ 12 Tr { G 1 (Z + k 2 Z 1 ) }] if G 1 N : no isotropy assumption DoS : Z (x) = DZ f (Z ) Z C N,β N (ε) Topological quantum number (Witten index ( )) : from f (Z ) (i.e. of the S-matrix) Topological phase transitions driven by µ = mass /disorder

62 Conclusions H D = i σ 2 1 N x + σ 1 M(x) Relation to Random Matrix Products Π N = M N M 1 ( ) ( ) 1N cos θ 1 M n = N sin θ e W 0 1 N 1 N sin θ 1 N cos θ 0 1 N e W Sp(2N) with W = W Stationary distribution for the matricial process Z (x) : f (Z ) = C 1 N,β (det Z 1 ) µ 1 2 β(n 1) exp [ 12 Tr { G 1 (Z + k 2 Z 1 ) }] if G 1 N : no isotropy assumption DoS : Z (x) = DZ f (Z ) Z C N,β N (ε) Topological quantum number (Witten index ( )) : from f (Z ) (i.e. of the S-matrix) Topological phase transitions driven by µ = mass /disorder

63 At the transition : delocalisation in one channel Lyapunov spectrum (ε = 0) : γ n = [µ β ] 2 (N 2n + 1) g m(x) Ψ 0 (x) x with n {1,, N} 1D : two symmetry classes (D, DIII) Z 2 -insulators Morimoto, Furusaki, Mudry, PRB (june 2015) application of our method? No isotropy among channels (G 1 N ). Most general : P[M(x)] exp [ dx Tr { A 1 M(x)B 1 M(x) } ]

64 At the transition : delocalisation in one channel Lyapunov spectrum (ε = 0) : γ n = [µ β ] 2 (N 2n + 1) g m(x) Ψ 0 (x) x with n {1,, N} 1D : two symmetry classes (D, DIII) Z 2 -insulators Morimoto, Furusaki, Mudry, PRB (june 2015) application of our method? No isotropy among channels (G 1 N ). Most general : P[M(x)] exp [ dx Tr { A 1 M(x)B 1 M(x) } ]

65 Thank you. A. Grabsch & C. Texier, preprint cond-mat arxiv:

66 Appendices

67 Appendix A : Matricial Fokker-Planck equation ( ) Z = Z 2 E µgz µzg Z M MZ with E = ε 2 Case β = 1 (class BDI) M ab (x) = σ ab ζ ab (x) }{{} normalised { def ga if a = b, with σ ab = g ag b g a+g b if a b. ( ) Z mn = [ Z 2 E µgz µzg ] mn + k l B mn,kl (Z ) ζ kl, where B mn,kl (Z ) = def 2 δ kl σkl (Z mk δ nl + Z ml δ nk + Z ln δ km + Z kn δ lm ) 2

68 Forward generator G Define and ( ) def = 1 + δ mn, Z mn 2 Z mn σ ab def = 2 δ ab σ ab. 2 { [ [ G = 2 Tr Z Z σ + Tr ( ) ]]} T Z Z Z Z + { ( Z 2 + E + µgz + µzg )}, Z [A B] mn = A mnb mn : Hadamard product Stationary solution G f (Z ) = 0

Classification theory of topological insulators with Clifford algebras and its application to interacting fermions. Takahiro Morimoto.

Classification theory of topological insulators with Clifford algebras and its application to interacting fermions. Takahiro Morimoto. QMath13, 10 th October 2016 Classification theory of topological insulators with Clifford algebras and its application to interacting fermions Takahiro Morimoto UC Berkeley Collaborators Akira Furusaki

More information

disordered topological matter time line

disordered topological matter time line disordered topological matter time line disordered topological matter time line 80s quantum Hall SSH quantum Hall effect (class A) quantum Hall effect (class A) 1998 Nobel prize press release quantum Hall

More information

Single particle Green s functions and interacting topological insulators

Single particle Green s functions and interacting topological insulators 1 Single particle Green s functions and interacting topological insulators Victor Gurarie Nordita, Jan 2011 Topological insulators are free fermion systems characterized by topological invariants. 2 In

More information

Symmetric Surfaces of Topological Superconductor

Symmetric Surfaces of Topological Superconductor Symmetric Surfaces of Topological Superconductor Sharmistha Sahoo Zhao Zhang Jeffrey Teo Outline Introduction Brief description of time reversal symmetric topological superconductor. Coupled wire model

More information

Quantum transport of 2D Dirac fermions: the case for a topological metal

Quantum transport of 2D Dirac fermions: the case for a topological metal Quantum transport of 2D Dirac fermions: the case for a topological metal Christopher Mudry 1 Shinsei Ryu 2 Akira Furusaki 3 Hideaki Obuse 3,4 1 Paul Scherrer Institut, Switzerland 2 University of California

More information

Modern Topics in Solid-State Theory: Topological insulators and superconductors

Modern Topics in Solid-State Theory: Topological insulators and superconductors Modern Topics in Solid-State Theory: Topological insulators and superconductors Andreas P. Schnyder Max-Planck-Institut für Festkörperforschung, Stuttgart Universität Stuttgart January 2016 Lecture Four:

More information

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015)

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015) Konstantin Y. Bliokh, Daria Smirnova, Franco Nori Center for Emergent Matter Science, RIKEN, Japan Science 348, 1448 (2015) QSHE and topological insulators The quantum spin Hall effect means the presence

More information

Multichannel Majorana Wires

Multichannel Majorana Wires Multichannel Majorana Wires Piet Brouwer Frascati, 2014 Dahlem Center for Complex Quantum Systems Physics Department Inanc Adagideli Freie Universität Berlin Mathias Duckheim Dganit Meidan Graham Kells

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

A Short Introduction to Topological Superconductors

A Short Introduction to Topological Superconductors A Short Introduction to Topological Superconductors --- A Glimpse of Topological Phases of Matter Jyong-Hao Chen Condensed Matter Theory, PSI & Institute for Theoretical Physics, ETHZ Dec. 09, 2015 @ Superconductivity

More information

Reducing and increasing dimensionality of topological insulators

Reducing and increasing dimensionality of topological insulators Reducing and increasing dimensionality of topological insulators Anton Akhmerov with Bernard van Heck, Cosma Fulga, Fabian Hassler, and Jonathan Edge PRB 85, 165409 (2012), PRB 89, 155424 (2014). ESI,

More information

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators Philippe Jacquod U of Arizona UA Phys colloquium - feb 1, 2013 Continuous symmetries and conservation laws Noether

More information

Electron transport and quantum criticality in disordered graphene. Alexander D. Mirlin

Electron transport and quantum criticality in disordered graphene. Alexander D. Mirlin Electron transport and quantum criticality in disordered graphene Alexander D. Mirlin Research Center Karslruhe & University Karlsruhe & PNPI St. Petersburg P. Ostrovsky, Research Center Karlsruhe & Landau

More information

Topological invariants for 1-dimensional superconductors

Topological invariants for 1-dimensional superconductors Topological invariants for 1-dimensional superconductors Eddy Ardonne Jan Budich 1306.4459 1308.soon SPORE 13 2013-07-31 Intro: Transverse field Ising model H TFI = L 1 i=0 hσ z i + σ x i σ x i+1 σ s:

More information

Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor

Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor Matthew S. Foster Rice University March 14 th, 2014 Collaborators: Emil Yuzbashyan (Rutgers),

More information

Classification of topological quantum matter with reflection symmetries

Classification of topological quantum matter with reflection symmetries Classification of topological quantum matter with reflection symmetries Andreas P. Schnyder Max Planck Institute for Solid State Research, Stuttgart June 14th, 2016 SPICE Workshop on New Paradigms in Dirac-Weyl

More information

Topological Phases in Floquet Systems

Topological Phases in Floquet Systems Rahul Roy University of California, Los Angeles June 2, 2016 arxiv:1602.08089, arxiv:1603.06944 Post-doc: Fenner Harper Outline 1 Introduction 2 Free Fermionic Systems 3 Interacting Systems in Class D

More information

On the K-theory classification of topological states of matter

On the K-theory classification of topological states of matter On the K-theory classification of topological states of matter (1,2) (1) Department of Mathematics Mathematical Sciences Institute (2) Department of Theoretical Physics Research School of Physics and Engineering

More information

Topological Phases of Matter Out of Equilibrium

Topological Phases of Matter Out of Equilibrium Topological Phases of Matter Out of Equilibrium Nigel Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge Solvay Workshop on Quantum Simulation ULB, Brussels, 18 February 2019 Max McGinley

More information

Topological Phases in One Dimension

Topological Phases in One Dimension Topological Phases in One Dimension Lukasz Fidkowski and Alexei Kitaev arxiv:1008.4138 Topological phases in 2 dimensions: - Integer quantum Hall effect - quantized σ xy - robust chiral edge modes - Fractional

More information

C. Mudry (PSI) The breakdown of the topological classification Z for gapped phases of noninteracting 1 / fermio 93. quartic interactions

C. Mudry (PSI) The breakdown of the topological classification Z for gapped phases of noninteracting 1 / fermio 93. quartic interactions The breakdown of the topological classification Z for gapped phases of noninteracting fermions by quartic interactions Christopher Mudry 1 Takahiro Morimoto 2,3 Akira Furusaki 2 1 Paul Scherrer Institut,

More information

K-theory in Condensed Matter Physics

K-theory in Condensed Matter Physics (1,2) (1) Department of Mathematics Mathematical Sciences Institute (2) Department of Theoretical Physics Research School of Physics and Engineering The Australian National University Canberra, AUSTRALIA

More information

Harish-Chandra Spherical Functions, Topology & Mesoscopics

Harish-Chandra Spherical Functions, Topology & Mesoscopics Harish-Chandra Spherical Functions, Topology & Mesoscopics Dmitry Bagrets A. Altland, DB,, A. Kamenev,, L. Fritz, H. Schmiedt,, PRL 11, 0660 A. Altland, DB,, A. Kamenev, arxiv: : 1411.599, to appear in

More information

Time Reversal Invariant Ζ 2 Topological Insulator

Time Reversal Invariant Ζ 2 Topological Insulator Time Reversal Invariant Ζ Topological Insulator D Bloch Hamiltonians subject to the T constraint 1 ( ) ΘH Θ = H( ) with Θ = 1 are classified by a Ζ topological invariant (ν =,1) Understand via Bul-Boundary

More information

arxiv: v1 [cond-mat.mes-hall] 13 May 2009

arxiv: v1 [cond-mat.mes-hall] 13 May 2009 Classification of Topological Insulators and Superconductors arxiv:0905.2029v1 [cond-mat.mes-hall] 13 May 2009 Andreas P. Schnyder, Shinsei Ryu, Akira Furusaki and Andreas W. W. Ludwig Kavli Institute

More information

arxiv: v1 [math-ph] 31 Jan 2016

arxiv: v1 [math-ph] 31 Jan 2016 February 2, 2016 1:43 ws-procs961x669 WSPC Proceedings - 9.61in x 6.69in ProdanICMP2015 page 1 1 Topological Insulators at Strong Disorder Emil Prodan Physics Department, Yeshiva University, New York,

More information

arxiv: v2 [cond-mat.mes-hall] 12 Feb 2013

arxiv: v2 [cond-mat.mes-hall] 12 Feb 2013 Reentrant topological phase transitions in a disordered spinless superconducting wire Maria-Theresa Rieder, Piet W. Brouwer Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie niversität

More information

Fractional Abelian topological phases of matter for fermions in two-dimensional space

Fractional Abelian topological phases of matter for fermions in two-dimensional space Fractional Abelian topological phases of matter for fermions in two-dimensional space Christopher Mudry Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland 1 Introduction

More information

Various Facets of Chalker- Coddington network model

Various Facets of Chalker- Coddington network model Various Facets of Chalker- Coddington network model V. Kagalovsky Sami Shamoon College of Engineering Beer-Sheva Israel Context Integer quantum Hall effect Semiclassical picture Chalker-Coddington Coddington

More information

Anderson localization, topology, and interaction

Anderson localization, topology, and interaction Anderson localization, topology, and interaction Pavel Ostrovsky in collaboration with I. V. Gornyi, E. J. König, A. D. Mirlin, and I. V. Protopopov PRL 105, 036803 (2010), PRB 85, 195130 (2012) Cambridge,

More information

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato Crystalline Symmetry and Topology YITP, Kyoto University Masatoshi Sato In collaboration with Ken Shiozaki (YITP) Kiyonori Gomi (Shinshu University) Nobuyuki Okuma (YITP) Ai Yamakage (Nagoya University)

More information

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Satoshi Fujimoto Dept. Phys., Kyoto University Collaborator: Ken Shiozaki

More information

Topological nonsymmorphic crystalline superconductors

Topological nonsymmorphic crystalline superconductors UIUC, 10/26/2015 Topological nonsymmorphic crystalline superconductors Chaoxing Liu Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA Chao-Xing Liu, Rui-Xing

More information

Geometric Dyson Brownian motion and May Wigner stability

Geometric Dyson Brownian motion and May Wigner stability Geometric Dyson Brownian motion and May Wigner stability Jesper R. Ipsen University of Melbourne Summer school: Randomness in Physics and Mathematics 2 Bielefeld 2016 joint work with Henning Schomerus

More information

Floquet Topological Insulators and Majorana Modes

Floquet Topological Insulators and Majorana Modes Floquet Topological Insulators and Majorana Modes Manisha Thakurathi Journal Club Centre for High Energy Physics IISc Bangalore January 17, 2013 References Floquet Topological Insulators by J. Cayssol

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information

Quantum interference meets topology: Quantum Hall effect, topological insulators, and graphene. Alexander D. Mirlin

Quantum interference meets topology: Quantum Hall effect, topological insulators, and graphene. Alexander D. Mirlin Quantum interference meets topology: Quantum Hall effect, topological insulators, and graphene Alexander D. Mirlin Karlsruhe Institute of Technology & PNPI St. Petersburg P. Ostrovsky, Karlsruhe Institute

More information

arxiv: v2 [cond-mat.mes-hall] 29 Oct 2013

arxiv: v2 [cond-mat.mes-hall] 29 Oct 2013 Topological invariant for generic 1D time reversal symmetric superconductors in class DIII Jan Carl Budich, Eddy Ardonne Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden Dated:

More information

Wiring Topological Phases

Wiring Topological Phases 1 Wiring Topological Phases Quantum Condensed Matter Journal Club Adhip Agarwala Department of Physics Indian Institute of Science adhip@physics.iisc.ernet.in February 4, 2016 So you are interested in

More information

Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime

Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime Zhenhua Qiao, Yanxia Xing, and Jian Wang* Department of Physics and the Center of Theoretical and Computational

More information

Qualitative theory of finite-particle quantum systems. Comparison of fully quantum, semi-quantum and completely classical models.

Qualitative theory of finite-particle quantum systems. Comparison of fully quantum, semi-quantum and completely classical models. Qualitative theory of finite-particle quantum systems. Comparison of fully quantum, semi-quantum and completely classical models. B. I. Zhilinskii Université du Littoral Côte d Opale, 59 4 Dunkerque, France

More information

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium SEA 06@MIT, Workshop on Stochastic Eigen-Analysis and its Applications, MIT, Cambridge,

More information

arxiv: v1 [cond-mat.str-el] 16 May 2018

arxiv: v1 [cond-mat.str-el] 16 May 2018 Extended Creutz ladder with spin-orbit coupling: a one-dimensional analog of the Kane-Mele model S. Gholizadeh and M. Yahyavi Department of Physics, Bilkent University, TR-68 Bilkent, Ankara, Turkey arxiv:186.1111v1

More information

Disordered topological insulators with time-reversal symmetry: Z 2 invariants

Disordered topological insulators with time-reversal symmetry: Z 2 invariants Keio Topo. Science (2016/11/18) Disordered topological insulators with time-reversal symmetry: Z 2 invariants Hosho Katsura Department of Physics, UTokyo Collaborators: Yutaka Akagi (UTokyo) Tohru Koma

More information

arxiv: v1 [cond-mat.mes-hall] 5 Jan 2015

arxiv: v1 [cond-mat.mes-hall] 5 Jan 2015 Equivalence of topological mirror and chiral superconductivity in one dimension Eugene Dumitrescu 1, Girish Sharma 1, Jay D. Sau 2, and Sumanta Tewari 1 1 Department of Physics and Astronomy, Clemson University,

More information

Interactions in Topological Matter

Interactions in Topological Matter Interactions in Topological Matter Christopher Mudry 1 1 Paul Scherrer Institute, Switzerland Harish-Chandra Research Institute, Allahabad, February 9-20 2015 C. Mudry (PSI) Interactions in Topological

More information

Wave function multifractality at Anderson localization transitions. Alexander D. Mirlin

Wave function multifractality at Anderson localization transitions. Alexander D. Mirlin Wave function multifractality at Anderson localization transitions Alexander D. Mirlin Forschungszentrum Karlsruhe & Universität Karlsruhe http://www-tkm.physik.uni-karlsruhe.de/ mirlin/ F. Evers, A. Mildenberger

More information

Many-body topological invariants for topological superconductors (and insulators)

Many-body topological invariants for topological superconductors (and insulators) Many-body topological invariants for topological superconductors (and insulators) Shinsei Ryu The University of Chicago July 5, 2017 Outline Motivations: the Kitaev chain with interactions The kitaev chain

More information

Field Theory Description of Topological States of Matter

Field Theory Description of Topological States of Matter Field Theory Description of Topological States of Matter Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter Quantum Hall effect: bulk and edge Effective field

More information

Studying Topological Insulators. Roni Ilan UC Berkeley

Studying Topological Insulators. Roni Ilan UC Berkeley Studying Topological Insulators via time reversal symmetry breaking and proximity effect Roni Ilan UC Berkeley Joel Moore, Jens Bardarson, Jerome Cayssol, Heung-Sun Sim Topological phases Insulating phases

More information

Workshop on Localization Phenomena in Novel Phases of Condensed Matter May 2010

Workshop on Localization Phenomena in Novel Phases of Condensed Matter May 2010 2144-9 Workshop on Localization Phenomena in Novel Phases of Condensed Matter 17-22 May 2010 Topological Insulators: Disorder, Interaction and Quantum Criticality of Dirac Fermions Alexander D. MIRLIN

More information

arxiv: v3 [cond-mat.dis-nn] 28 Jun 2014

arxiv: v3 [cond-mat.dis-nn] 28 Jun 2014 AIII and BDI Topological Systems at Strong Disorder Juntao Song 1, and Emil Prodan 1 1 Department of Physics, Yeshiva University, New York, NY 116, USA Department of Physics, Hebei Normal University, Hebei

More information

Anderson Localization from Classical Trajectories

Anderson Localization from Classical Trajectories Anderson Localization from Classical Trajectories Piet Brouwer Laboratory of Atomic and Solid State Physics Cornell University Support: NSF, Packard Foundation With: Alexander Altland (Cologne) Quantum

More information

Local currents in a two-dimensional topological insulator

Local currents in a two-dimensional topological insulator Local currents in a two-dimensional topological insulator Xiaoqian Dang, J. D. Burton and Evgeny Y. Tsymbal Department of Physics and Astronomy Nebraska Center for Materials and Nanoscience University

More information

2D electron systems beyond the diffusive regime

2D electron systems beyond the diffusive regime 2D electron systems beyond the diffusive regime Peter Markoš FEI STU Bratislava 9. June 211 Collaboration with: K. Muttalib, L. Schweitzer Typeset by FoilTEX Introduction: Spatial distribution of the electron

More information

Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model

Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model Antonio M. García-García Shanghai Jiao Tong University PhD Students needed! Verbaarschot Stony Brook Bermúdez Leiden Tezuka Kyoto arxiv:1801.02696

More information

SUPERSYMMETRY WITHOUT SUPERSYMMETRY : DETERMINANTS AND PFAFFIANS IN RMT

SUPERSYMMETRY WITHOUT SUPERSYMMETRY : DETERMINANTS AND PFAFFIANS IN RMT SUPERSYMMETRY WITHOUT SUPERSYMMETRY : DETERMINANTS AND PFAFFIANS IN RMT Mario Kieburg Universität Duisburg-Essen SFB/TR-12 Workshop on Langeoog (Germany), February 22 th 2010 supported by OUTLINE (1) Characteristic

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces nodes protected against gapping can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces physical realization: stacked 2d topological insulators C=1 3d top

More information

Many-body topological invariants for topological superconductors (and insulators)

Many-body topological invariants for topological superconductors (and insulators) Many-body topological invariants for topological superconductors (and insulators) Shinsei Ryu The University of Chicago June 6, 2017 Outline Motivations: the Kitaev chain with interactions The kitaev chain

More information

Exploring Topological Phases With Quantum Walks

Exploring Topological Phases With Quantum Walks Exploring Topological Phases With Quantum Walks Tk Takuya Kitagawa, Erez Berg, Mark Rudner Eugene Demler Harvard University References: PRA 82:33429 and PRB 82:235114 (2010) Collaboration with A. White

More information

Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices

Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices László Erdős University of Munich Oberwolfach, 2008 Dec Joint work with H.T. Yau (Harvard), B. Schlein (Cambrigde) Goal:

More information

Classification of Crystalline Topological Phases with Point Group Symmetries

Classification of Crystalline Topological Phases with Point Group Symmetries Classification of Crystalline Topological Phases with Point Group Symmetries Eyal Cornfeld - Tel Aviv University Adam Chapman - Tel Hai Academic College Upper Galilee Bad Honnef Physics School on Gauge

More information

Lecture notes on topological insulators

Lecture notes on topological insulators Lecture notes on topological insulators Ming-Che Chang Department of Physics, National Taiwan Normal University, Taipei, Taiwan Dated: May 8, 07 I. D p-wave SUPERCONDUCTOR Here we study p-wave SC in D

More information

Topological Insulators in 3D and Bosonization

Topological Insulators in 3D and Bosonization Topological Insulators in 3D and Bosonization Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter: bulk and edge Fermions and bosons on the (1+1)-dimensional

More information

Effective Field Theories of Topological Insulators

Effective Field Theories of Topological Insulators Effective Field Theories of Topological Insulators Eduardo Fradkin University of Illinois at Urbana-Champaign Workshop on Field Theoretic Computer Simulations for Particle Physics and Condensed Matter

More information

Exotic Phenomena in Topological Insulators and Superconductors

Exotic Phenomena in Topological Insulators and Superconductors SPICE Workshop on Spin Dynamics in the Dirac System Schloss Waldthausen, Mainz, 6 June 2017 Exotic Phenomena in Topological Insulators and Superconductors Yoichi Ando Physics Institute II, University of

More information

Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction

Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction Oleg Starykh, University of Utah with Dima Pesin, Ethan Lake, Caleb

More information

SSH Model. Alessandro David. November 3, 2016

SSH Model. Alessandro David. November 3, 2016 SSH Model Alessandro David November 3, 2016 Adapted from Lecture Notes at: https://arxiv.org/abs/1509.02295 and from article: Nature Physics 9, 795 (2013) Motivations SSH = Su-Schrieffer-Heeger Polyacetylene

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 ORIGINS E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 P.W. Anderson, Absence of Diffusion in Certain Random Lattices ; Phys.Rev., 1958, v.109, p.1492 L.D. Landau, Fermi-Liquid

More information

arxiv: v3 [cond-mat.mes-hall] 17 Feb 2014

arxiv: v3 [cond-mat.mes-hall] 17 Feb 2014 Andreev reflection from a topological superconductor with chiral symmetry M. Diez, J. P. Dahlhaus, M. Wimmer, and C. W. J. Beenakker Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden,

More information

Constructing Landau Formalism for Topological Order: Spin Chains and Ladders

Constructing Landau Formalism for Topological Order: Spin Chains and Ladders Constructing Landau Formalism for Topological Order: Spin Chains and Ladders Gennady Y. Chitov Laurentian University Sudbury, Canada Talk at Washington University in St. Louis, October 20, 2016 Collaborators:

More information

Today: 5 July 2008 ٢

Today: 5 July 2008 ٢ Anderson localization M. Reza Rahimi Tabar IPM 5 July 2008 ١ Today: 5 July 2008 ٢ Short History of Anderson Localization ٣ Publication 1) F. Shahbazi, etal. Phys. Rev. Lett. 94, 165505 (2005) 2) A. Esmailpour,

More information

Bulk scaling limits, open questions

Bulk scaling limits, open questions Bulk scaling limits, open questions Based on: Continuum limits of random matrices and the Brownian carousel B. Valkó, B. Virág. Inventiones (2009). Eigenvalue statistics for CMV matrices: from Poisson

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information

arxiv: v2 [cond-mat.str-el] 22 Oct 2018

arxiv: v2 [cond-mat.str-el] 22 Oct 2018 Pseudo topological insulators C. Yuce Department of Physics, Anadolu University, Turkey Department of Physics, Eskisehir Technical University, Turkey (Dated: October 23, 2018) arxiv:1808.07862v2 [cond-mat.str-el]

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 3 Beforehand Weak Localization and Mesoscopic Fluctuations Today

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

Symmetry Protected Topological Insulators and Semimetals

Symmetry Protected Topological Insulators and Semimetals Symmetry Protected Topological Insulators and Semimetals I. Introduction : Many examples of topological band phenomena II. Recent developments : - Line node semimetal Kim, Wieder, Kane, Rappe, PRL 115,

More information

Topological phases of SU(N) spin chains and their realization in ultra-cold atom gases

Topological phases of SU(N) spin chains and their realization in ultra-cold atom gases Topological phases of SU(N) spin chains and their realization in ultra-cold atom gases Thomas Quella University of Cologne Workshop on Low-D Quantum Condensed Matter University of Amsterdam, 8.7.2013 Based

More information

arxiv: v2 [cond-mat.mes-hall] 31 Mar 2016

arxiv: v2 [cond-mat.mes-hall] 31 Mar 2016 Journal of the Physical Society of Japan LETTERS Entanglement Chern Number of the ane Mele Model with Ferromagnetism Hiromu Araki, Toshikaze ariyado,, Takahiro Fukui 3, and Yasuhiro Hatsugai, Graduate

More information

Fermion Path Integrals And Topological Phases

Fermion Path Integrals And Topological Phases Fermion Path Integrals And Topological Phases Edward Witten, IAS PiTP Lecture One thing we are learning about this week is that SPT (symmetry-protected topological) phases of matter are associated, in

More information

Topological quantum criticality of Dirac fermions: From graphene to topological insulators. Alexander D. Mirlin

Topological quantum criticality of Dirac fermions: From graphene to topological insulators. Alexander D. Mirlin Topological quantum criticality of Dirac fermions: From graphene to topological insulators Alexander D. Mirlin Karlsruhe Institute of Technology & PNPI St. Petersburg P. Ostrovsky, Karlsruhe Institute

More information

Eigenvalue PDFs. Peter Forrester, M&S, University of Melbourne

Eigenvalue PDFs. Peter Forrester, M&S, University of Melbourne Outline Eigenvalue PDFs Peter Forrester, M&S, University of Melbourne Hermitian matrices with real, complex or real quaternion elements Circular ensembles and classical groups Products of random matrices

More information

Unitary Fermi Gas: Quarky Methods

Unitary Fermi Gas: Quarky Methods Unitary Fermi Gas: Quarky Methods Matthew Wingate DAMTP, U. of Cambridge Outline Fermion Lagrangian Monte Carlo calculation of Tc Superfluid EFT Random matrix theory Fermion L Dilute Fermi gas, 2 spins

More information

Introduction to Modern Quantum Field Theory

Introduction to Modern Quantum Field Theory Department of Mathematics University of Texas at Arlington Arlington, TX USA Febuary, 2016 Recall Einstein s famous equation, E 2 = (Mc 2 ) 2 + (c p) 2, where c is the speed of light, M is the classical

More information

Quasiparticle localization in superconductors with spin-orbit scattering

Quasiparticle localization in superconductors with spin-orbit scattering PHYSICAL REVIEW B VOLUME 61, NUMBER 14 1 APRIL 2000-II Quasiparticle localization in superconductors with spin-orbit scattering T. Senthil and Matthew P. A. Fisher Institute for Theoretical Physics, University

More information

Lecture 8 Nature of ensemble: Role of symmetry, interactions and other system conditions: Part II

Lecture 8 Nature of ensemble: Role of symmetry, interactions and other system conditions: Part II Lecture 8 Nature of ensemble: Role of symmetry, interactions and other system conditions: Part II We continue our discussion of symmetries and their role in matrix representation in this lecture. An example

More information

arxiv: v6 [cond-mat.mes-hall] 5 Nov 2018

arxiv: v6 [cond-mat.mes-hall] 5 Nov 2018 Wigner time delay and related concepts Application to transport in coherent conductors Christophe Texier a a LPTMS, CRS, Univ. Paris Sud, Université Paris Saclay, Bât. 00, F-9405 Orsay, France arxiv:507.00075v6

More information

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Bela Bauer (Microsoft Station-Q, Santa

More information

Thermalization in Quantum Systems

Thermalization in Quantum Systems Thermalization in Quantum Systems Jonas Larson Stockholm University and Universität zu Köln Dresden 18/4-2014 Motivation Long time evolution of closed quantum systems not fully understood. Cold atom system

More information

Stochastic Differential Equations Related to Soft-Edge Scaling Limit

Stochastic Differential Equations Related to Soft-Edge Scaling Limit Stochastic Differential Equations Related to Soft-Edge Scaling Limit Hideki Tanemura Chiba univ. (Japan) joint work with Hirofumi Osada (Kyushu Unv.) 2012 March 29 Hideki Tanemura (Chiba univ.) () SDEs

More information

3.14. The model of Haldane on a honeycomb lattice

3.14. The model of Haldane on a honeycomb lattice 4 Phys60.n..7. Marginal case: 4 t Dirac points at k=(,). Not an insulator. No topological index...8. case IV: 4 t All the four special points has z 0. We just use u I for the whole BZ. No singularity.

More information

ARBITRARY ROTATION INVARIANT RANDOM MATRIX ENSEMBLES HUBBARD-STRATONOVITCH TRANSFORMATION VERSUS SUPERBOSONIZATION. Mario Kieburg.

ARBITRARY ROTATION INVARIANT RANDOM MATRIX ENSEMBLES HUBBARD-STRATONOVITCH TRANSFORMATION VERSUS SUPERBOSONIZATION. Mario Kieburg. ARBITRARY ROTATION INVARIANT RANDOM MATRIX ENSEMBLES: HUBBARD-STRATONOVITCH TRANSFORMATION VERSUS SUPERBOSONIZATION Mario Kieburg Universität Duisburg-Essen Mexico, Cuernavaca, March 2009 supported by

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots A. Kundu 1 1 Heinrich-Heine Universität Düsseldorf, Germany The Capri Spring School on Transport in Nanostructures

More information

Quantum Physics II (8.05) Fall 2004 Assignment 3

Quantum Physics II (8.05) Fall 2004 Assignment 3 Quantum Physics II (8.5) Fall 24 Assignment 3 Massachusetts Institute of Technology Physics Department Due September 3, 24 September 23, 24 7:pm This week we continue to study the basic principles of quantum

More information

ONLINE SUPPORTING INFORMATION: Interaction-induced criticality in Z 2 topological insulators

ONLINE SUPPORTING INFORMATION: Interaction-induced criticality in Z 2 topological insulators ONLINE SUPPORTING INFORMATION: Interaction-induced criticality in Z 2 topological insulators P. M. Ostrovsky, 1,2 I. V. Gornyi, 1,3 1, 4, 5 and A. D. Mirlin 1 Institut für Nanotechnologie, Karlsruhe Institute

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/22343 holds various files of this Leiden University dissertation Author: Fulga, Ion Cosma Title: Scattering theory of topological phase transitions Issue

More information