Topological quantum criticality of Dirac fermions: From graphene to topological insulators. Alexander D. Mirlin

Size: px
Start display at page:

Download "Topological quantum criticality of Dirac fermions: From graphene to topological insulators. Alexander D. Mirlin"

Transcription

1 Topological quantum criticality of Dirac fermions: From graphene to topological insulators Alexander D. Mirlin Karlsruhe Institute of Technology & PNPI St. Petersburg P. Ostrovsky, Karlsruhe Institute of Technology & Landau I., Chernogolovka I. Gornyi, Karlsruhe Institute of Technology & Ioffe I., St.Petersburg

2 Plan Localization theory: Symmetries and topologies Graphene and 2D Dirac fermions Conductivity and topological delocalization at the Dirac point Anomalous quantum Hall effect Topological insulators (TIs): General classification 2D and 3D Z 2 TIs in time-reversal-invariant systems with spin-orbit interaction Interaction-induced self-organized quantum criticality at the surface of 3D TI Quantum spin Hall transition between 2D TI and normal insulator

3 50 years of Anderson localization Philip W. Anderson 1958 Absence of diffusion in certain random lattices sufficiently strong disorder quantum localization eigenstates exponentially localized, no diffusion Anderson insulator The Nobel Prize in Physics 1977

4 Anderson Insulators & Metals 1 g=g/(e 2 /h) d=3 Disorder-induced localization Anderson 58 β = dln(g) / dln(l) ln(g) d=2 d=1 Scaling ideas Thouless 74 ; Wegner 76 Scaling theory of localization: Abrahams, Anderson, Licciardello, Ramakrishnan 79 Modern approach: RG for field theory (σ-model) quasi-1d, 2D : all states are localized d > 2: Anderson metal-insulator transition delocalized critical point localized disorder

5 S[Q] = πν 4 Field theory: non-linear σ-model d d r Str [ D( Q) 2 2iωΛQ], Q 2 (r) = 1 Wegner 79 (replicas); Efetov 83 (supersymmetry) σ-model manifold: unitary class: fermionic replicas: U(2n)/U(n) U(n), n 0 bosonic replicas: U(n, n)/u(n) U(n), n 0 supersymmetry: U(1, 1 2)/U(1 1) U(1 1) orthogonal class: fermionic replicas: Sp(4n)/Sp(2n) Sp(2n), n 0 bosonic replicas: O(2n, 2n)/O(2n) O(2n), n 0 supersymmetry: OSp(2, 2 4)/OSp(2 2) OSp(2 2) in general, in supersymmetry: Q { sphere hyperboloid } dressed by anticommuting variables

6 Disordered electronic systems: Symmetry classification Conventional (Wigner-Dyson) classes T spin rot. chiral p-h symbol GOE + + AI GUE +/ A GSE + AII Altland, Zirnbauer 97 Chiral classes T spin rot. chiral p-h symbol ChOE BDI ChUE +/ + AIII ChSE + + CII Bogoliubov-de Gennes classes T spin rot. chiral p-h symbol CI + + C + + DIII + D H = H = ( 0 t t 0 ) ( h h T )

7 Disordered electronic systems: Symmetry classification Ham. RMT T S compact non-compact σ-model σ-model compact class symmetric space symmetric space B F sector M F Wigner-Dyson classes A GUE ± U(N) GL(N, C)/U(N) AIII AIII U(2n)/U(n) U(n) AI GOE + + U(N)/O(N) GL(N, R)/O(N) BDI CII Sp(4n)/Sp(2n) Sp(2n) AII GSE + U(2N)/Sp(2N) U (2N)/Sp(2N) CII BDI O(2n)/O(n) O(n) chiral classes AIII chgue ± U(p + q)/u(p) U(q) U(p, q)/u(p) U(q) A A U(n) BDI chgoe + + SO(p + q)/so(p) SO(q) SO(p, q)/so(p) SO(q) AI AII U(2n)/Sp(2n) CII chgse + Sp(2p + 2q)/Sp(2p) Sp(2q) Sp(2p, 2q)/Sp(2p) Sp(2q) AII AI U(n)/O(n) Bogoliubov - de Gennes classes C + Sp(2N) Sp(2N, C)/Sp(2N) DIII CI Sp(2n)/U(n) CI + + Sp(2N)/U(N) Sp(2N, R)/U(N) D C Sp(2n) BD SO(N) SO(N, C)/SO(N) CI DIII O(2n)/U(n) DIII + SO(2N)/U(N) SO (2N)/U(N) C D O(n)

8 Escaping Anderson localization in 2D Common wisdom : all states are localized in 2D In fact, in 9 out of 10 symmetry classes the system can escape localization! Mechanisms of delocalization & criticality in 2D: broken spin-rotation invariance antilocalization, metallic phase, MIT classes AII, D, DIII topological term π 2 (M) = Z (quantum-hall-type) classes A, C, D : IQHE, SQHE, TQHE topological term π 2 (M) = Z 2 classes AII, CII chiral classes: vanishing β-function, line of fixed points classes AIII, BDI, CII Wess-Zumino term classes AIII, CI, DIII (random Dirac fermions, related to chiral anomaly)

9 Magnetotransport in 2D: Integer Quantum Hall Effect resistivity tensor: ρ xx = E x /j x ρ yx = E y /j x Hall resistivity B E x E y j x Klaus von Klitzing Nobel Prize 1985

10 IQH transition IQHE flow diagram Khmelnitskii 83, Pruisken 84 localized 11 localized critical point Field theory (Pruisken): σ-model with topological term { S = d 2 r σ xx 8 Tr( µq) 2 + σ } xy 8 Trǫ µνq µ Q ν Q

11 Graphene: monoatomic layer of carbon

12 Graphene fabrication: Micromechanical cleavage Graphite Slicing Looking

13 Graphene samples

14 Graphene: atomic resolution images

15 Experiments on transport in graphene Novoselov, Geim et al; Zhang, Tan, Stormer, and Kim; Nature 2005 linear dependence of conductivity on electron density ( V g ) minimal conductivity σ 4e 2 /h ( e 2 /h per spin per valley) T independent in the range T = 30 mk 300 K

16 T-independent minimal conductivity in graphene Tan, Zhang, Stormer, Kim 07 T = 30 mk 300 K

17 To compare: Disordered semiconductor systems: From metal to insulator with lowering T quasi-1d geometry (long wires) 2D geometry Gershenson et al 97 Hsu, Valles 95

18 Graphene in transverse magnetic field Anomalous integer quantum Hall effect: only odd plateaus observed: σ xy = (2n + 1) (2e 2 /h) QHE transition at n = 0 (Dirac point), i.e. at σ xy = 0 visible up to room temperature!

19 Graphene dispersion: 2D massless Dirac fermions 2.46 Å K K m K k 0 K (a) (b) K K Two sublattices: A and B Hamiltonian: H = t k = t [ ] 1 + 2e i( 3/2)k y a cos(k x a/2) ( ) 0 tk t k 0 Spectrum ε 2 k = t k 2 The gap vanishes at 2 points, K, K = (±k 0, 0), where k 0 = 4π/3a. In the vicinity of K, K : massless Dirac-fermion Hamiltonian: H K = v 0 (k x σ x + k y σ y ), H K = v 0 ( k x σ x + k y σ y ) v cm/s effective light velocity, sublattice space isospin

20 Graphene: Disordered Dirac-fermion Hamiltonian Hamiltonian 4 4 matrix operating in: AB space of the two sublattices (σ Pauli matrices), K K space of the valleys (τ Pauli matrices). Four-component wave function: Ψ = {φ AK, φ BK, φ BK, φ AK } T Hamiltonian: H = iv 0 τ z (σ x x + σ y y ) + V (x, y) Disorder: V (x, y) = µ,ν=0,x,y,z σ µ τ ν V µν (x, y)

21 Clean graphene: symmetries Space of valleys K K : Isospin Λ x = σ z τ x, Λ y = σ z τ y, Λ z = σ 0 τ z. Time inversion Chirality T 0 : H = σ x τ x H T σ x τ x C 0 : H = σ z τ 0 Hσ z τ 0 Combinations with Λ x,y,z T x : H = σ y τ 0 H T σ y τ 0 C x : H = σ 0 τ x Hσ 0 τ x T y : H = σ y τ z H T σ y τ z C y : H = σ 0 τ y Hσ 0 τ y T z : H = σ x τ y H T σ x τ y C z : H = σ z τ z Hσ z τ z Spatial isotropy T x,y and C x,y occur simultaneously T and C

22 Symmetries of various types of disorder in graphene Λ Λ z T 0 T T z C 0 C C z CT 0 CT CT z σ 0 τ 0 α σ {x,y} τ {x,y} β σ x,y τ 0 γ σ 0 τ x,y β z σ z τ z γ z σ z τ x,y β σ 0 τ z γ σ x,y τ z α σ z τ 0 α z Related works: S. Guruswamy, A. LeClair, and A.W.W. Ludwig, Nucl. Phys. B 583, 475 (2000) E. McCann, K. Kechedzhi, V.I. Fal ko, H. Suzuura, T. Ando, and B.L. Altshuler, PRL 97, (2006) I.L. Aleiner and K.B. Efetov, PRL 97, (2006)

23 Conductivity at µ = 0 Drude conductivity (SCBA = self-consistent Born approximation): σ = 8e2 v0 2 d 2 k (1/2τ) 2 π (2π) 2 [(1/2τ) 2 + v0k 2 2 ] = 2e2 2 π 2 = 4 e 2 π h BUT: For generic disorder, the Drude result σ = 4 e 2 /πh at µ = 0 does not make much sense: Anderson localization will drive σ 0. Experiment: σ 4 e 2 /h independent of T Quantum criticality? Can one have non-zero σ in the theory? Yes, if disorder either (i) preserves one of chiral symmetries or (ii) is of long-range character (does not mix the valleys)

24 Realizations of chiral disorder (i) or bond disorder: randomness in hopping elements t ij infinitely strong on-site impurities unitary limit: all bonds adjacent to the impurity are effectively cut (C z -symmetry) (ii) dislocations: random non-abelian gauge field (C 0 -symmetry) (iii) random magnetic field, ripples (both C 0 and C z symmetries) Realizations of long-range disorder (i) (ii) smooth random potential: correlation length lattice spacing charged impurities (iii) ripples: smooth random magnetic field Experimental dependence σ n e and odd-integer QHE = long-range disorder (ii), (iii)

25 Ripples: Chiral long-range disorder Estimated size d and height h: d = 5 nm, h = 0.5 nm (from electron diffraction pattern) Meyer, Geim, Katsnelson, Novoselov, Booth, Roth, Nature 07 d = 10 nm, h = 0.3 nm (from AFM measurements) Tikhonenko, Horsell, Gorbachev, Savchenko, PRL 08

26 Absence of localization of Dirac fermions in graphene with chiral or long-range disorder Disorder Symmetries Class Conductivity QHE Vacancies C z, T 0 BDI 4e 2 /πh normal Vacancies + RMF C z AIII 4e 2 /πh normal σ z τ x,y disorder C z, T z CII 4e 2 /πh normal Dislocations C 0, T 0 CI 4e 2 /πh chiral Dislocations + RMF C 0 AIII 4e 2 /πh chiral Ripples, RMF C 0, Λ z 2 AIII 4e 2 /πh odd-chiral Charged impurities Λ z, T 2 AII (log L) odd random Dirac mass: σ z τ 0,z Λ z, CT 2 D 4e 2 /πh odd Charged imp. + RMF/ripples Λ z 2 A 4σU odd C z -chirality Gade-Wegner phase C 0 -chirality Wess-Zumino-Witten term Λ z -symmetry decoupled valleys θ = π topological term

27 Long-range disorder Intervalley scattering suppressed neglect it reduced Hamiltonian: H = iv 0 (σ x x + σ y y ) + σ µ V µ (x, y) Disorder couplings: α 0 = V 2 0 2πv 2 0 Ludwig, Fisher, Shankar, Grinstein 94 y, α = V 2 x + V 2 2πv 2 0, α z = V 2 z 2πv 2 0 Random scalar potential vector potential mass Symmetries: α 0 disorder T-invariance H = σ y H T σ y AII (GSE) α disorder C-invariance H = σ z Hσ z AIII (ChUE) α z disorder CT-invariance H = σ x H T σ x D (BdG) generic long-range disorder A (GUE) Ultraviolet RG: α 0 ln L = 2(α 0 + α z )(α + α 0 ), α ln L = 4α 0α z, α z ln L = 2(α 0 + α z )(α α z )

28 Class D (random mass): Long-range disorder (cont d) Disorder is marginally irrelevant = diffusion never occurs DoS: ρ(ε) = ε πv 2 02α z log ε Conductivity: σ = 4e2 πh Class AIII (random vector potential): C 0 /C z chiral disorder DOS: ρ(ε) ε (1 α )/(1+α ) Conductivity: σ = 4e2 πh

29 Long-range disorder: unitary symmetry (ripples + charged imp.) Generic long-range disorder (no symmetries) = class A (GUE) Effective infrared theory is Pruisken s unitary σ-model with topological θ-term: S[Q] = 1 4 Str [ σ xx 2 ( Q)2 + ( σ xy + 1 ) ] Q x Q y Q 2 σ xx 8 Str( Q)2 +iπn[q] Compact (FF) sector of the model: Q FF M F = U(2n) U(n) U(n) Topological term takes values N[Q] π 2 (M F ) = Z Vacuum angle θ = π in the absence of magnetic field due to anomaly = Quantum Hall critical point σ = 4σ U 4 ( )e2 h d lnσ d ln L 0 Σ U Θ Π Θ 0 lnσ

30 Long-range disorder: symplectic symmetry (charged imp.) Random scalar potential α 0 preserves T-inversion symmetry = class AII (GSE) Partition function is real = Im S = 0 or π Compact sector: O(4n) Q FF M F = O(2n) O(2n) = π 2 (M F ) = { Z Z, n = 1; Z 2, n 2 At n = 1 M F = S 2 S 2 /Z 2 [Cooperons] [diffusons] = Im S = θ c N c [Q] + θ d N d [Q] T-invariance θ c = θ d = 0 or π Z 2 subgroup Explicit calculation Anomaly θ c,d = π At n 2 we use M F n=1 M F n 2 = Im S = πn[q] possibility of Z 2 topological term: Fendley 01

31 Long-range potential disorder (cont d): symplectic σ-model with Z 2 topological term Symplectic sigma-model with θ = π term: Topological delocalization : S[Q] = σ xx 16 Str( Q)2 + iπn[q] as for Pruisken σ-model of QHE at criticality, instantons suppress localization = possible scenarios: β function everywhere positive, intermediate attractive fixed point, conductivity σ σ = 4σ Sp Numerics needed!

32 Long-range potential disorder: numerics Bardarson, Tworzyd lo, Brouwer, Beenakker, PRL 07 Nomura, Koshino, Ryu, PRL 07 absence of localization confirmed logarithnic scaling towards the perfect-metal fixed point σ

33 Anomalous (odd-integer) quantum Hall effect Decoupled valleys + magnetic field = unitary sigma model with anomalous topological term: S[Q] = 1 4 Str [ σ xx 2 ( Q)2 + ( σ xy + 1 ) ] Q x Q y Q 2 = odd-integer QHE Σ 2e 2 h Ν generic (valley-mixing) disorder = conventional IQHE weakly valley-mixing disorder = even plateaus narrow, emerge at low T

34 Anomalous quantum Hall effect Experimental observation of anomalous (odd-integer) QHE long-range disorder (almost decoupled valleys) absence of localization in B = 0 (topological delocalization)

35 Quantum Hall effect: Weak valley mixing S[Q K, Q K ] = S[Q K ] + S[Q K ] + ρ τ mix Str Q K Q K 3 2 Σ xx 2e 2 h 2g U g U Σ xy 2e 2 h Ρ ħω c 0 ħω c Ε 2 0 2k 1 2k 2k 1 Σ xy 2e 2 h n Even plateau width (τ/τ mix ) 0.45, visible at T < T mix /τ mix Estimate for Coulomb scatterers: T mix 100 mk ; even plateau width δn even 0.05 Cf. splitting of delocalized states in ordinary QHE by spin-orbit / spin-flip scattering, Khmelnitskii 92; Lee, Chalker 94

36 Topological Insulators Topological Insulators = Bulk insulators with topologically protected delocalized states on their boundary Well-known example: Quantum Hall Effect QH insulators n =..., 2, 1, 0, 1, 2,... edge states Z topological insulator Novel class: Z 2 TIs: n = 0 or n = 1 First realization: 2D Quantum Spin Hall Effect insulators

37 Periodic table of Topological Insulators Symmetry classes Topological insulators p H p R p S p π 0 (R p ) d=1 d=2 d=3 d=4 0 AI BDI CII Z Z 1 BDI BD AII Z 2 Z BD DIII DIII Z 2 Z 2 Z DIII AII BD 0 Z 2 Z 2 Z 0 4 AII CII BDI Z 0 Z 2 Z 2 Z 5 CII C AI 0 Z 0 Z 2 Z 2 6 C CI CI 0 0 Z 0 Z 2 7 CI AI C Z 0 0 A AIII AIII Z 0 Z 0 Z 1 AIII A A 0 Z 0 Z 0 H p symmetry class of Hamiltonians R p sym. class of classifying space (of Hamiltonians with eigenvalues ±1) S p symmetry class of compact sector of σ-model manifold Kitaev 09; Schnyder, Ryu, Furusaki, Ludwig 08-09

38 Classification of Topological insulators Two ways to detect existence of TIs of class p in d dimensions: (i) by inspecting the topology of classifying spaces R p : { { TI of type Z Z π 0 (R p d ) = TI of type Z 2 Z 2 (ii) by analyzing homotopy groups of the σ-model manifolds: { TI of type Z π d (S p ) = Z Wess-Zumino term TI of type Z 2 π d 1 (S p ) = Z 2 θ = π topological term WZ and θ = π terms make boundary excitations non-localizable TI in d topological protection from localization in d 1 Bott periodicity: π d (R p ) = π 0 (R p+d ), periodicity 8

39 2D Z 2 TIs: Quantum Spin Hall Effect Kane, Mele 05; Sheng, Sheng, Ting, Haldane 05; Bernevig, Zhang 06 Symmetry class AII (symplectic): time-reversal invariance T 2 = 1 Simple model: two copies of QHE, magnetic field B for spin and B for spin σ xy ( ) = e 2 /h σ xy ( ) = e 2 /h spin Hall conductivity σ xy ( ) σ xy ( ) = 2e 2 /h generic spin-orbit interaction spin not conserved anymore but Kramers degeneracy holds one popagating edge mode in each direction backscattering forbidden: topological protection! Earlier results on symplectic-class wires with odd number of channels: one mode remains delocalized Zirnbauer 92; ADM, Müller-Groeling, Zirnbauer 94; Takane 04 realization: carbon nanotubes with long-range disorder Ando, Suzuura 02

40 Quantum Spin Hall Effect in graphene with SO interaction Kane, Mele 05

41 QSHE in CdTe/HgTe/CdTe quantum wells: Theory Bernevig, Hughes, Zhang 06 H eff (k) = h(k) = ( h(k) 0 0 h (k) ( m(k) Ak Ak + m(k) k ± = k x ± ik y ) m(k) = M + B(k 2 x + k2 y ) HgTe: inverted band structure M < 0 for d > d c TI )

42 QSHE in CdTe/HgTe/CdTe quantum wells: Experiment Molenkamp group 07 I normal insulator, d = 5.5 nm II, III, IV inverted quantum well structure, topological insulator d = 7.3 nm

43 3D Topological Insulators Fu, Kane, Mele 07 Tight-binding model on a diamond lattice with spin-orbit interaction

44 3D Topological Insulator: Bi 1 x Sb x Hasan group 08 Other realizations: BiTe, BiSe

45 2D Dirac surface states of a 3D TI: Phenomenology

46 2D Dirac surface states of a 3D TI (cont d) Surface of 3D Z 2 TI: single 2D massless Dirac mode (more generally: odd number) single-valley graphene! With disorder: Topological protection from localization, RG flow towards supermetal What is the effect of Coulomb interaction? Topological protection from localization persists But interaction may destroy the supermetal phase!

47

48 Interaction-induced quantum criticality in 3D TI Interaction tendency to localization at g 1 Topology protection from strong localization (no flow towards g 1) novel quantum critical point should emerge at g 1 analogous to QHE, but here induced by interaction

49 β functions for symplectic class: Interaction and Topology no interaction with interaction usual spin-orbit β(g) 0 insulator g 1.4 supermetal g β(g) 0 insulator g Dirac fermions β(g) 0 supermetal g β(g) 0 critical state g

50 2D TIs: QSHE phase diagram In the presence of disorder, TI and normal insulator phases are separated by the supermetal phase transitions TI supermetal and supermetal NI are in the coventional symplectic symmetry class Onoda, Avishai, Nagaosa 07; Obuse et al 07 Effect of Coulomb interaction on phase diagram?

51 2D TIs: QSHE phase diagram (cont d) no interaction with interaction critical supermetal 0disorder QSH insulator inverted 0 band gap normal insulator normal 0disorder QSH insulator inverted 0 band gap normal insulator normal Coulomb interaction kills the supermetal phase, thus restoring a direct transition between two insulator phases quantum critical point of Quantum Spin Hall transition

52 Interaction-induced quantum critical points of Z 2 TIs We thus have two novel 2D quantum critical point: on surface of 3D TI 2D QSH transition They share many common properties: symplectic symmetry Z 2 topological protection interaction-induced criticality conductivity of order unity (probably universal) This suggests that these two critical points may be equivalent

53 Plan Localization theory: Symmetries and topologies Graphene and 2D Dirac fermions Conductivity and topological delocalization at the Dirac point Anomalous quantum Hall effect Topological insulators (TIs): General classification 2D and 3D Z 2 TIs in time-reversal-invariant systems with spin-orbit interaction Interaction-induced self-organized quantum criticality at the surface of 3D TI Quantum spin Hall transition between 2D TI and normal insulator

Quantum interference meets topology: Quantum Hall effect, topological insulators, and graphene. Alexander D. Mirlin

Quantum interference meets topology: Quantum Hall effect, topological insulators, and graphene. Alexander D. Mirlin Quantum interference meets topology: Quantum Hall effect, topological insulators, and graphene Alexander D. Mirlin Karlsruhe Institute of Technology & PNPI St. Petersburg P. Ostrovsky, Karlsruhe Institute

More information

Workshop on Localization Phenomena in Novel Phases of Condensed Matter May 2010

Workshop on Localization Phenomena in Novel Phases of Condensed Matter May 2010 2144-9 Workshop on Localization Phenomena in Novel Phases of Condensed Matter 17-22 May 2010 Topological Insulators: Disorder, Interaction and Quantum Criticality of Dirac Fermions Alexander D. MIRLIN

More information

Electron transport and quantum criticality in disordered graphene. Alexander D. Mirlin

Electron transport and quantum criticality in disordered graphene. Alexander D. Mirlin Electron transport and quantum criticality in disordered graphene Alexander D. Mirlin Research Center Karslruhe & University Karlsruhe & PNPI St. Petersburg P. Ostrovsky, Research Center Karlsruhe & Landau

More information

Electron transport in disordered graphene. Alexander D. Mirlin

Electron transport in disordered graphene. Alexander D. Mirlin Electron transport in disordered graphene Alexander D. Mirlin Research Center Karslruhe & University Karlsruhe & PNPI St. Petersburg P. Ostrovsky, Research Center Karlsruhe & Landau Inst., Chernogolovka

More information

Anderson localization, topology, and interaction

Anderson localization, topology, and interaction Anderson localization, topology, and interaction Pavel Ostrovsky in collaboration with I. V. Gornyi, E. J. König, A. D. Mirlin, and I. V. Protopopov PRL 105, 036803 (2010), PRB 85, 195130 (2012) Cambridge,

More information

Quantum transport in disordered systems: Part III. Alexander D. Mirlin

Quantum transport in disordered systems: Part III. Alexander D. Mirlin Quantum transport in disordered systems: Part III Alexander D. Mirlin Research Center Karslruhe & University Karlsruhe & PNPI St. Petersburg http://www-tkm.physik.uni-karlsruhe.de/ mirlin/ Evers, ADM Anderson

More information

Anderson Localization: Multifractality, Symmetries, and Topologies. Alexander D. Mirlin Karlsruhe Institute of Technology

Anderson Localization: Multifractality, Symmetries, and Topologies. Alexander D. Mirlin Karlsruhe Institute of Technology Anderson Localization: Multifractality, Symmetries, and Topologies Alexander D. Mirlin Karlsruhe Institute of Technology Physics Colloquium, Heidelberg, 11 May 2012 Plan Anderson localization: basic properties,

More information

disordered topological matter time line

disordered topological matter time line disordered topological matter time line disordered topological matter time line 80s quantum Hall SSH quantum Hall effect (class A) quantum Hall effect (class A) 1998 Nobel prize press release quantum Hall

More information

Wave function multifractality at Anderson localization transitions. Alexander D. Mirlin

Wave function multifractality at Anderson localization transitions. Alexander D. Mirlin Wave function multifractality at Anderson localization transitions Alexander D. Mirlin Forschungszentrum Karlsruhe & Universität Karlsruhe http://www-tkm.physik.uni-karlsruhe.de/ mirlin/ F. Evers, A. Mildenberger

More information

Quantum transport in disordered systems: Localization, interaction, symmetries and topologies. Alexander D. Mirlin

Quantum transport in disordered systems: Localization, interaction, symmetries and topologies. Alexander D. Mirlin Quantum transport in disordered systems: Localization, interaction, symmetries and topologies Alexander D. Mirlin Karlsruhe Institute of Technology, Germany http://www.tkm.uni-karlsruhe.de/ mirlin/ I.

More information

Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor

Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor Topological protection, disorder, and interactions: Life and death at the surface of a topological superconductor Matthew S. Foster Rice University March 14 th, 2014 Collaborators: Emil Yuzbashyan (Rutgers),

More information

ONLINE SUPPORTING INFORMATION: Interaction-induced criticality in Z 2 topological insulators

ONLINE SUPPORTING INFORMATION: Interaction-induced criticality in Z 2 topological insulators ONLINE SUPPORTING INFORMATION: Interaction-induced criticality in Z 2 topological insulators P. M. Ostrovsky, 1,2 I. V. Gornyi, 1,3 1, 4, 5 and A. D. Mirlin 1 Institut für Nanotechnologie, Karlsruhe Institute

More information

Quantum transport of 2D Dirac fermions: the case for a topological metal

Quantum transport of 2D Dirac fermions: the case for a topological metal Quantum transport of 2D Dirac fermions: the case for a topological metal Christopher Mudry 1 Shinsei Ryu 2 Akira Furusaki 3 Hideaki Obuse 3,4 1 Paul Scherrer Institut, Switzerland 2 University of California

More information

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015)

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015) Konstantin Y. Bliokh, Daria Smirnova, Franco Nori Center for Emergent Matter Science, RIKEN, Japan Science 348, 1448 (2015) QSHE and topological insulators The quantum spin Hall effect means the presence

More information

arxiv: v1 [cond-mat.mes-hall] 13 May 2009

arxiv: v1 [cond-mat.mes-hall] 13 May 2009 Classification of Topological Insulators and Superconductors arxiv:0905.2029v1 [cond-mat.mes-hall] 13 May 2009 Andreas P. Schnyder, Shinsei Ryu, Akira Furusaki and Andreas W. W. Ludwig Kavli Institute

More information

Classification theory of topological insulators with Clifford algebras and its application to interacting fermions. Takahiro Morimoto.

Classification theory of topological insulators with Clifford algebras and its application to interacting fermions. Takahiro Morimoto. QMath13, 10 th October 2016 Classification theory of topological insulators with Clifford algebras and its application to interacting fermions Takahiro Morimoto UC Berkeley Collaborators Akira Furusaki

More information

Single particle Green s functions and interacting topological insulators

Single particle Green s functions and interacting topological insulators 1 Single particle Green s functions and interacting topological insulators Victor Gurarie Nordita, Jan 2011 Topological insulators are free fermion systems characterized by topological invariants. 2 In

More information

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators Philippe Jacquod U of Arizona UA Phys colloquium - feb 1, 2013 Continuous symmetries and conservation laws Noether

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

Topological insulator (TI)

Topological insulator (TI) Topological insulator (TI) Haldane model: QHE without Landau level Quantized spin Hall effect: 2D topological insulators: Kane-Mele model for graphene HgTe quantum well InAs/GaSb quantum well 3D topological

More information

Introductory lecture on topological insulators. Reza Asgari

Introductory lecture on topological insulators. Reza Asgari Introductory lecture on topological insulators Reza Asgari Workshop on graphene and topological insulators, IPM. 19-20 Oct. 2011 Outlines -Introduction New phases of materials, Insulators -Theory quantum

More information

Fractional Abelian topological phases of matter for fermions in two-dimensional space

Fractional Abelian topological phases of matter for fermions in two-dimensional space Fractional Abelian topological phases of matter for fermions in two-dimensional space Christopher Mudry Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland 1 Introduction

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information

Interpolating between Wishart and inverse-wishart distributions

Interpolating between Wishart and inverse-wishart distributions Interpolating between Wishart and inverse-wishart distributions Topological phase transitions in 1D multichannel disordered wires with a chiral symmetry Christophe Texier December 11, 2015 with Aurélien

More information

Disordered topological insulators with time-reversal symmetry: Z 2 invariants

Disordered topological insulators with time-reversal symmetry: Z 2 invariants Keio Topo. Science (2016/11/18) Disordered topological insulators with time-reversal symmetry: Z 2 invariants Hosho Katsura Department of Physics, UTokyo Collaborators: Yutaka Akagi (UTokyo) Tohru Koma

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information

Topological Physics in Band Insulators II

Topological Physics in Band Insulators II Topological Physics in Band Insulators II Gene Mele University of Pennsylvania Topological Insulators in Two and Three Dimensions The canonical list of electric forms of matter is actually incomplete Conductor

More information

C. Mudry (PSI) The breakdown of the topological classification Z for gapped phases of noninteracting 1 / fermio 93. quartic interactions

C. Mudry (PSI) The breakdown of the topological classification Z for gapped phases of noninteracting 1 / fermio 93. quartic interactions The breakdown of the topological classification Z for gapped phases of noninteracting fermions by quartic interactions Christopher Mudry 1 Takahiro Morimoto 2,3 Akira Furusaki 2 1 Paul Scherrer Institut,

More information

On the K-theory classification of topological states of matter

On the K-theory classification of topological states of matter On the K-theory classification of topological states of matter (1,2) (1) Department of Mathematics Mathematical Sciences Institute (2) Department of Theoretical Physics Research School of Physics and Engineering

More information

Introduction to topological insulators. Jennifer Cano

Introduction to topological insulators. Jennifer Cano Introduction to topological insulators Jennifer Cano Adapted from Charlie Kane s Windsor Lectures: http://www.physics.upenn.edu/~kane/ Review article: Hasan & Kane Rev. Mod. Phys. 2010 What is an insulator?

More information

Time Reversal Invariant Ζ 2 Topological Insulator

Time Reversal Invariant Ζ 2 Topological Insulator Time Reversal Invariant Ζ Topological Insulator D Bloch Hamiltonians subject to the T constraint 1 ( ) ΘH Θ = H( ) with Θ = 1 are classified by a Ζ topological invariant (ν =,1) Understand via Bul-Boundary

More information

Symmetric Surfaces of Topological Superconductor

Symmetric Surfaces of Topological Superconductor Symmetric Surfaces of Topological Superconductor Sharmistha Sahoo Zhao Zhang Jeffrey Teo Outline Introduction Brief description of time reversal symmetric topological superconductor. Coupled wire model

More information

A Short Introduction to Topological Superconductors

A Short Introduction to Topological Superconductors A Short Introduction to Topological Superconductors --- A Glimpse of Topological Phases of Matter Jyong-Hao Chen Condensed Matter Theory, PSI & Institute for Theoretical Physics, ETHZ Dec. 09, 2015 @ Superconductivity

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

The Quantum Spin Hall Effect

The Quantum Spin Hall Effect The Quantum Spin Hall Effect Shou-Cheng Zhang Stanford University with Andrei Bernevig, Taylor Hughes Science, 314,1757 2006 Molenamp et al, Science, 318, 766 2007 XL Qi, T. Hughes, SCZ preprint The quantum

More information

Field Theory Description of Topological States of Matter

Field Theory Description of Topological States of Matter Field Theory Description of Topological States of Matter Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter Quantum Hall effect: bulk and edge Effective field

More information

Topological insulators

Topological insulators http://www.physik.uni-regensburg.de/forschung/fabian Topological insulators Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 21.8.212 DFG SFB 689 what are topological

More information

Topological delocalization of two-dimensional massless fermions

Topological delocalization of two-dimensional massless fermions - CMP Meets HEP at IPMU Kashiwa /10/010 - Topoloical delocalization of two-dimensional massless fermions Kentaro Nomura (Tohoku University) collaborators Shinsei Ryu (Berkeley) Mikito Koshino (Titech)

More information

Modern Topics in Solid-State Theory: Topological insulators and superconductors

Modern Topics in Solid-State Theory: Topological insulators and superconductors Modern Topics in Solid-State Theory: Topological insulators and superconductors Andreas P. Schnyder Max-Planck-Institut für Festkörperforschung, Stuttgart Universität Stuttgart January 2016 Lecture Four:

More information

K-theory in Condensed Matter Physics

K-theory in Condensed Matter Physics (1,2) (1) Department of Mathematics Mathematical Sciences Institute (2) Department of Theoretical Physics Research School of Physics and Engineering The Australian National University Canberra, AUSTRALIA

More information

Topological invariants for 1-dimensional superconductors

Topological invariants for 1-dimensional superconductors Topological invariants for 1-dimensional superconductors Eddy Ardonne Jan Budich 1306.4459 1308.soon SPORE 13 2013-07-31 Intro: Transverse field Ising model H TFI = L 1 i=0 hσ z i + σ x i σ x i+1 σ s:

More information

From graphene to Z2 topological insulator

From graphene to Z2 topological insulator From graphene to Z2 topological insulator single Dirac topological AL mass U U valley WL ordinary mass or ripples WL U WL AL AL U AL WL Rashba Ken-Ichiro Imura Condensed-Matter Theory / Tohoku Univ. Dirac

More information

Effective Field Theories of Topological Insulators

Effective Field Theories of Topological Insulators Effective Field Theories of Topological Insulators Eduardo Fradkin University of Illinois at Urbana-Champaign Workshop on Field Theoretic Computer Simulations for Particle Physics and Condensed Matter

More information

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU A mini course on topology extrinsic curvature K vs intrinsic (Gaussian) curvature G K 0 G 0 G>0 G=0 K 0 G=0 G

More information

Topological Insulators and Superconductors. Tokyo 2010 Shoucheng Zhang, Stanford University

Topological Insulators and Superconductors. Tokyo 2010 Shoucheng Zhang, Stanford University Topological Insulators and Superconductors Tokyo 2010 Shoucheng Zhang, Stanford University Colloborators Stanford group: Xiaoliang Qi, Andrei Bernevig, Congjun Wu, Chaoxing Liu, Taylor Hughes, Sri Raghu,

More information

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato Crystalline Symmetry and Topology YITP, Kyoto University Masatoshi Sato In collaboration with Ken Shiozaki (YITP) Kiyonori Gomi (Shinshu University) Nobuyuki Okuma (YITP) Ai Yamakage (Nagoya University)

More information

Reducing and increasing dimensionality of topological insulators

Reducing and increasing dimensionality of topological insulators Reducing and increasing dimensionality of topological insulators Anton Akhmerov with Bernard van Heck, Cosma Fulga, Fabian Hassler, and Jonathan Edge PRB 85, 165409 (2012), PRB 89, 155424 (2014). ESI,

More information

Topological Phases under Strong Magnetic Fields

Topological Phases under Strong Magnetic Fields Topological Phases under Strong Magnetic Fields Mark O. Goerbig ITAP, Turunç, July 2013 Historical Introduction What is the common point between graphene, quantum Hall effects and topological insulators?...

More information

Topological insulators. Pavel Buividovich (Regensburg)

Topological insulators. Pavel Buividovich (Regensburg) Topological insulators Pavel Buividovich (Regensburg) Hall effect Classical treatment Dissipative motion for point-like particles (Drude theory) Steady motion Classical Hall effect Cyclotron frequency

More information

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators Satoshi Fujimoto Dept. Phys., Kyoto University Collaborator: Ken Shiozaki

More information

Quantum Hall Effect in Graphene p-n Junctions

Quantum Hall Effect in Graphene p-n Junctions Quantum Hall Effect in Graphene p-n Junctions Dima Abanin (MIT) Collaboration: Leonid Levitov, Patrick Lee, Harvard and Columbia groups UIUC January 14, 2008 Electron transport in graphene monolayer New

More information

Interactions in Topological Matter

Interactions in Topological Matter Interactions in Topological Matter Christopher Mudry 1 1 Paul Scherrer Institute, Switzerland Harish-Chandra Research Institute, Allahabad, February 9-20 2015 C. Mudry (PSI) Interactions in Topological

More information

Entanglement Chern numbers for random systems

Entanglement Chern numbers for random systems POSTECH, Korea, July 31 (2015) Ψ = 1 D D Entanglement Chern numbers for random systems j Ψ j Ψj Yasuhiro Hatsugai Institute of Physics, Univ. of Tsukuba Ref: T. Fukui & Y. Hatsugai, J. Phys. Soc. Jpn.

More information

where a is the lattice constant of the triangular Bravais lattice. reciprocal space is spanned by

where a is the lattice constant of the triangular Bravais lattice. reciprocal space is spanned by Contents 5 Topological States of Matter 1 5.1 Intro.......................................... 1 5.2 Integer Quantum Hall Effect..................... 1 5.3 Graphene......................................

More information

Local currents in a two-dimensional topological insulator

Local currents in a two-dimensional topological insulator Local currents in a two-dimensional topological insulator Xiaoqian Dang, J. D. Burton and Evgeny Y. Tsymbal Department of Physics and Astronomy Nebraska Center for Materials and Nanoscience University

More information

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology.

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology. Notes on Topological Insulators and Quantum Spin Hall Effect Jouko Nieminen Tampere University of Technology. Not so much discussed concept in this session: topology. In math, topology discards small details

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Topological Insulators in 3D and Bosonization

Topological Insulators in 3D and Bosonization Topological Insulators in 3D and Bosonization Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter: bulk and edge Fermions and bosons on the (1+1)-dimensional

More information

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany Hartmut Buhmann Physikalisches Institut, EP3 Universität Würzburg Germany Part I and II Insulators and Topological Insulators HgTe crystal structure Part III quantum wells Two-Dimensional TI Quantum Spin

More information

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces nodes protected against gapping can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces physical realization: stacked 2d topological insulators C=1 3d top

More information

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea 3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI Heon-Jung Kim Department of Physics, Daegu University, Korea Content 3D Dirac metals Search for 3D generalization of graphene Bi 1-x

More information

Spin orbit interaction in graphene monolayers & carbon nanotubes

Spin orbit interaction in graphene monolayers & carbon nanotubes Spin orbit interaction in graphene monolayers & carbon nanotubes Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alessandro De Martino Andreas Schulz, Artur Hütten MPI Dresden, 25.10.2011 Overview

More information

Graphite, graphene and relativistic electrons

Graphite, graphene and relativistic electrons Graphite, graphene and relativistic electrons Introduction Physics of E. graphene Y. Andrei Experiments Rutgers University Transport electric field effect Quantum Hall Effect chiral fermions STM Dirac

More information

Multichannel Majorana Wires

Multichannel Majorana Wires Multichannel Majorana Wires Piet Brouwer Frascati, 2014 Dahlem Center for Complex Quantum Systems Physics Department Inanc Adagideli Freie Universität Berlin Mathias Duckheim Dganit Meidan Graham Kells

More information

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST YKIS2007 (Kyoto) Nov.16, 2007 Spin Hall and quantum spin Hall effects Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST Introduction Spin Hall effect spin Hall effect in

More information

Topological nonsymmorphic crystalline superconductors

Topological nonsymmorphic crystalline superconductors UIUC, 10/26/2015 Topological nonsymmorphic crystalline superconductors Chaoxing Liu Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA Chao-Xing Liu, Rui-Xing

More information

Basics of topological insulator

Basics of topological insulator 011/11/18 @ NTU Basics of topological insulator Ming-Che Chang Dept of Physics, NTNU A brief history of insulators Band insulator (Wilson, Bloch) Mott insulator Anderson insulator Quantum Hall insulator

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Reference: Bernevig Topological Insulators and Topological Superconductors Tutorials:

More information

Topological insulators

Topological insulators Oddelek za fiziko Seminar 1 b 1. letnik, II. stopnja Topological insulators Author: Žiga Kos Supervisor: prof. dr. Dragan Mihailović Ljubljana, June 24, 2013 Abstract In the seminar, the basic ideas behind

More information

Studying Topological Insulators. Roni Ilan UC Berkeley

Studying Topological Insulators. Roni Ilan UC Berkeley Studying Topological Insulators via time reversal symmetry breaking and proximity effect Roni Ilan UC Berkeley Joel Moore, Jens Bardarson, Jerome Cayssol, Heung-Sun Sim Topological phases Insulating phases

More information

Topological Defects in the Topological Insulator

Topological Defects in the Topological Insulator Topological Defects in the Topological Insulator Ashvin Vishwanath UC Berkeley arxiv:0810.5121 YING RAN Frank YI ZHANG Quantum Hall States Exotic Band Topology Topological band Insulators (quantum spin

More information

Dirac fermions in condensed matters

Dirac fermions in condensed matters Dirac fermions in condensed matters Bohm Jung Yang Department of Physics and Astronomy, Seoul National University Outline 1. Dirac fermions in relativistic wave equations 2. How do Dirac fermions appear

More information

KITP miniprogram, Dec. 11, 2008

KITP miniprogram, Dec. 11, 2008 1. Magnetoelectric polarizability in 3D insulators and experiments! 2. Topological insulators with interactions (3. Critical Majorana fermion chain at the QSH edge) KITP miniprogram, Dec. 11, 2008 Joel

More information

Topological Phases of Matter Out of Equilibrium

Topological Phases of Matter Out of Equilibrium Topological Phases of Matter Out of Equilibrium Nigel Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge Solvay Workshop on Quantum Simulation ULB, Brussels, 18 February 2019 Max McGinley

More information

Cenke Xu. Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem 许岑珂

Cenke Xu. Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem 许岑珂 Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem Cenke Xu 许岑珂 University of California, Santa Barbara Quantum Phase Transitions between bosonic Symmetry

More information

Quantum Hall effect. Quantization of Hall resistance is incredibly precise: good to 1 part in I believe. WHY?? G xy = N e2 h.

Quantum Hall effect. Quantization of Hall resistance is incredibly precise: good to 1 part in I believe. WHY?? G xy = N e2 h. Quantum Hall effect V1 V2 R L I I x = N e2 h V y V x =0 G xy = N e2 h n.b. h/e 2 = 25 kohms Quantization of Hall resistance is incredibly precise: good to 1 part in 10 10 I believe. WHY?? Robustness Why

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models Matthew Brooks, Introduction to Topological Insulators Seminar, Universität Konstanz Contents QWZ Model of Chern Insulators Haldane

More information

Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing. Alexander D. Mirlin

Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing. Alexander D. Mirlin Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing Alexander D. Mirlin Forschungszentrum Karlsruhe & Universität Karlsruhe, Germany I.V. Gornyi, D.G. Polyakov (Forschungszentrum

More information

Topological thermoelectrics

Topological thermoelectrics Topological thermoelectrics JAIRO SINOVA Texas A&M University Institute of Physics ASCR Oleg Tretiakov, Artem Abanov, Suichi Murakami Great job candidate MRS Spring Meeting San Francisco April 28th 2011

More information

Building Frac-onal Topological Insulators. Collaborators: Michael Levin Maciej Kosh- Janusz Ady Stern

Building Frac-onal Topological Insulators. Collaborators: Michael Levin Maciej Kosh- Janusz Ady Stern Building Frac-onal Topological Insulators Collaborators: Michael Levin Maciej Kosh- Janusz Ady Stern The program Background: Topological insulators Frac-onaliza-on Exactly solvable Hamiltonians for frac-onal

More information

The Dirac composite fermions in fractional quantum Hall effect. Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016

The Dirac composite fermions in fractional quantum Hall effect. Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016 The Dirac composite fermions in fractional quantum Hall effect Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016 A story of a symmetry lost and recovered Dam Thanh Son (University

More information

Topological Phases in One Dimension

Topological Phases in One Dimension Topological Phases in One Dimension Lukasz Fidkowski and Alexei Kitaev arxiv:1008.4138 Topological phases in 2 dimensions: - Integer quantum Hall effect - quantized σ xy - robust chiral edge modes - Fractional

More information

Topological Photonics with Heavy-Photon Bands

Topological Photonics with Heavy-Photon Bands Topological Photonics with Heavy-Photon Bands Vassilios Yannopapas Dept. of Physics, National Technical University of Athens (NTUA) Quantum simulations and many-body physics with light, 4-11/6/2016, Hania,

More information

First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov

First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov ES'12, WFU, June 8, 212 The present work was done in collaboration with David Vanderbilt Outline:

More information

Universal transport at the edge: Disorder, interactions, and topological protection

Universal transport at the edge: Disorder, interactions, and topological protection Universal transport at the edge: Disorder, interactions, and topological protection Matthew S. Foster, Rice University March 31 st, 2016 Universal transport coefficients at the edges of 2D topological

More information

I. PLATEAU TRANSITION AS CRITICAL POINT. A. Scaling flow diagram

I. PLATEAU TRANSITION AS CRITICAL POINT. A. Scaling flow diagram 1 I. PLATEAU TRANSITION AS CRITICAL POINT The IQHE plateau transitions are examples of quantum critical points. What sort of theoretical description should we look for? Recall Anton Andreev s lectures,

More information

Topological Insulators and Superconductors

Topological Insulators and Superconductors Topological Insulators and Superconductors Lecture #1: Topology and Band Theory Lecture #: Topological Insulators in and 3 dimensions Lecture #3: Topological Superconductors, Majorana Fermions an Topological

More information

Graphene and Quantum Hall (2+1)D Physics

Graphene and Quantum Hall (2+1)D Physics The 4 th QMMRC-IPCMS Winter School 8 Feb 2011, ECC, Seoul, Korea Outline 2 Graphene and Quantum Hall (2+1)D Physics Lecture 1. Electronic structures of graphene and bilayer graphene Lecture 2. Electrons

More information

Topological Insulators

Topological Insulators Topological Insulators A new state of matter with three dimensional topological electronic order L. Andrew Wray Lawrence Berkeley National Lab Princeton University Surface States (Topological Order in

More information

Emergent topological phenomena in antiferromagnets with noncoplanar spins

Emergent topological phenomena in antiferromagnets with noncoplanar spins Emergent topological phenomena in antiferromagnets with noncoplanar spins - Surface quantum Hall effect - Dimensional crossover Bohm-Jung Yang (RIKEN, Center for Emergent Matter Science (CEMS), Japan)

More information

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 ORIGINS E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 P.W. Anderson, Absence of Diffusion in Certain Random Lattices ; Phys.Rev., 1958, v.109, p.1492 L.D. Landau, Fermi-Liquid

More information

Dirac semimetal in three dimensions

Dirac semimetal in three dimensions Dirac semimetal in three dimensions Steve M. Young, Saad Zaheer, Jeffrey C. Y. Teo, Charles L. Kane, Eugene J. Mele, and Andrew M. Rappe University of Pennsylvania 6/7/12 1 Dirac points in Graphene Without

More information

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv: Magnon Transport Both in Ferromagnetic and Antiferromagnetic Insulating Magnets Kouki Nakata University of Basel KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:1707.07427 See also review article

More information

Topological Insulator Surface States and Electrical Transport. Alexander Pearce Intro to Topological Insulators: Week 11 February 2, / 21

Topological Insulator Surface States and Electrical Transport. Alexander Pearce Intro to Topological Insulators: Week 11 February 2, / 21 Topological Insulator Surface States and Electrical Transport Alexander Pearce Intro to Topological Insulators: Week 11 February 2, 2017 1 / 21 This notes are predominately based on: J.K. Asbóth, L. Oroszlány

More information

arxiv: v2 [cond-mat.str-el] 22 Oct 2018

arxiv: v2 [cond-mat.str-el] 22 Oct 2018 Pseudo topological insulators C. Yuce Department of Physics, Anadolu University, Turkey Department of Physics, Eskisehir Technical University, Turkey (Dated: October 23, 2018) arxiv:1808.07862v2 [cond-mat.str-el]

More information

Universality of transport coefficients in the Haldane-Hubbard model

Universality of transport coefficients in the Haldane-Hubbard model Universality of transport coefficients in the Haldane-Hubbard model Alessandro Giuliani, Univ. Roma Tre Joint work with V. Mastropietro, M. Porta and I. Jauslin QMath13, Atlanta, October 8, 2016 Outline

More information

Topological Properties of Quantum States of Condensed Matter: some recent surprises.

Topological Properties of Quantum States of Condensed Matter: some recent surprises. Topological Properties of Quantum States of Condensed Matter: some recent surprises. F. D. M. Haldane Princeton University and Instituut Lorentz 1. Berry phases, zero-field Hall effect, and one-way light

More information

Quasiparticle localization in superconductors with spin-orbit scattering

Quasiparticle localization in superconductors with spin-orbit scattering PHYSICAL REVIEW B VOLUME 61, NUMBER 14 1 APRIL 2000-II Quasiparticle localization in superconductors with spin-orbit scattering T. Senthil and Matthew P. A. Fisher Institute for Theoretical Physics, University

More information