Anderson Localization from Classical Trajectories

Size: px
Start display at page:

Download "Anderson Localization from Classical Trajectories"

Transcription

1 Anderson Localization from Classical Trajectories Piet Brouwer Laboratory of Atomic and Solid State Physics Cornell University Support: NSF, Packard Foundation With: Alexander Altland (Cologne)

2 Quantum Transport Manifestations of the wave nature of electrons in electrical transport shot noise weak localization conductance fluctuations Anderson localization Originally discovered for disordered conductors. This talk: no scattering off point-like impurities cavity I antidot lattice sample 1 μm

3 Weak localization disordered metals Nonzero (negative) ensemble average δ G at zero magnetic field G = μ A μ 2 + μ ν A μ A ν G [e 2 /h] δg Hikami box B [10-4 T] Mailly and Sanquer (1991) in Hik out Hik = + + Cooperon

4 Weak localization disordered metals Nonzero (negative) ensemble average δ G at zero magnetic field G = μ μ A μ 2 + μ ν A μ A ν ν Hik δg G [e 2 /h] Hik = + B [10-4 T] + permutations Hikami box Cooperon

5 Weak localization Theory based on diffractive scattering off point-like impurities not possible; Hik = + disordered ballistic

6 Weak localization Theory based on diffractive scattering off point-like impurities not possible; Instead: Semiclassics g = A A e i(s S )/,, and have equal angles upon entrance/exit S, : classical action A, : stability amplitudes Needed: Careful summation over classical trajectories,. Jalabert, Baranger, Stone (1990) Argaman (1995) Aleiner, Larkin (1996) Richter, Sieber (2001,2002) Heusler, Müller, Braun, Haake (2006)

7 Weak localization g, A A e i(s S )/, in out Weak localization: Trajectory pairs with small-angle self encounter Sieber, Richter (2001) also: Aleiner, Larkin (1996) t enc = 1 λ ln S cl ΔS Encounter duration t enc = τ E = 1 λ ln S cl If τ E << dwell time: Recover weak localization correction of disordered metal Aleiner, Larkin (1996) Richter, Sieber (2002) Heusler et al. (2006) Brouwer (2007) ballistic Hikami box

8 Beyond weak localization g, A A e i(s S )/, One or more small-angle self encounters shot noise conductance fluctuations quantum pump full counting statistics time delay Braun et al. (2006) Whitney and Jacquod (2006) Brouwer and Rahav (2006) Rahav and Brouwer (2006) Berkolaiko et al. (2007) Kuipers and Sieber (2007) If τ E << dwell time: Recover quantum corrections of disordered metals Braun et al. (2006)

9 Beyond weak localization g, A A e i(s S )/, One or more small-angle self encounter shot noise conductance fluctuations quantum pump full counting statistics time delay Braun et al. (2006) Whitney and Jacquod (2006) Brouwer and Rahav (2006) Rahav and Brouwer (2006) Berkolaiko et al. (2007) Kuipers and Sieber (2007) Braun et al. (2006) If τ E << dwell time: Recover quantum corrections of disordered metals But all of these are perturbative effects!

10 Non-perturbative effects Level correlations: Form factor K(t) for t > τ H Heusler, Müller, Altland, Braun, Haake (2007) inspired by field theoretical formulation of RMT correlation functions Heusler et al. (2007)

11 Non-perturbative effects Level correlations: Form factor K(t) for t > τ H Heusler, Müller, Altland, Braun, Haake (2007) inspired by field theoretical formulation of RMT correlation functions Today: Anderson localization Heusler et al. (2007) inspired by theory of Anderson localization in disordered metals one-dimensional nonlinear sigma model scaling approach Efetov and Larkin (1983) Dorokhov (1982) Mello, Pereyra, Kumar (1988)

12 Anderson localization disordered metals Model system: array of quantum dots Dots are connected via ballistic contacts with conductance g c >> 1. Take limit g c while keeping ratio g c /n fixed. Disordered quantum dots: random matrix theory Localization in quantum dot array: Mirlin, Müller-Groeling, Zirnbauer (1994) Brouwer, Frahm (1996)

13 S(n) = Anderson localization ( ) S11 (n) S 12 (n) S 21 (n) S 22 (n) disordered metals T (n) =S 12 (n)s 12 (n) interdot conductance: g c T m (n) =trt (n) m g(n) =T 1 (n) random matrix theory: recursion relation for moments of the T i : δ T 1 = T 1 (n) T 1 (n 1) = 1 g c T 1 (n 1) 2 + O(g 2 c ) Replace difference equation by differential equation: L T 1 = 2 ξ T 2 1 L/ξ = n/2g c : conductance of array of n dots ξ: localization length (no time-reversal symmetry, =2)

14 S(n) = Anderson localization disordered metals ( ) S11 (n) S 12 (n) S 21 (n) S 22 (n) T (n) =S 12 (n)s 12 (n) T T m (n) =trt (n) m interdot conductance: g c general recursion relation: n δ T im ( n = 1 g c k=1 + 1 n g c k=1 i k ) i k 1 j=1 T 1 n T im i k (T j (T ik j T ik j+1)) + 2 n k 1 i k i l (T ik +i g l T ik +i l +1) c k=1 l=1 n T im m k n m k,l T im + O(gc 2 )

15 S(n) = ( ) S11 (n) S 12 (n) S 21 (n) S 22 (n) Anderson localization disordered metals T (n) =S 12 (n)s 12 (n) T T m (n) =trt (n) m n ( n ) δ T im = 1 n i k T 1 T im g c k=1 + 1 n ik 1 n i k (T j (T ik j T ik j+1)) T im g c Transform into differential equation for generating function: F 2 (θ 1,θ 3 ) = L F 2 k=1 j=1 = 2 ξ J(θ 1,θ 3 )= + 2 n k 1 i k i l (T g T ik+il ik+il+1) c k=1 l=1 det j=1,3 m k n T im + O(g 2 c ) ( 2+(cos(θ3 ) 1)T 2+(cosh(θ 1 ) 1)T ) 1 J(θ 1,θ 3 ) F 2, J(θ 1,θ 3 ) θ j θ j sin(θ 3 )sinh(θ 1 ) (cosh(θ 1 ) cos(θ 3 )) 2. interdot conductance: g c Description equivalent to existing theory of localization in quantum wires Efetov and Larkin (1983) Dorokhov (1982) Mello, Pereyra, Kumar (1988)

16 S(n) = ( ) S11 (n) S 12 (n) S 21 (n) S 22 (n) Anderson localization disordered metals T (n) =S 12 (n)s 12 (n) T T m (n) =trt (n) m n ( n ) δ T im = 1 n i k T 1 T im g c k=1 + 1 n ik 1 n i k (T j (T ik j T ik j+1)) T im g c k=1 j=1 + 2 n k 1 i k i l (T g T ik+il ik+il+1) c k=1 l=1 m k n T im + O(g 2 c ) interdot conductance: g c Can one derive the same set of recursion relations from semiclassics?

17 S(n) = Anderson localization ( S11 (n) S 12 (n) S 21 (n) S 22 (n) ) T (n) =S 12 (n)s 12 (n) interdot conductance: g c T m (n) =trt (n) m Can we show that δ T 1 = T 1 (n) T 1 (n 1) = 1 g c T 1 (n 1) 2 + O(g 2 c ) from semiclassical expression for T 1? T 1 =, A A e i(s S )/

18 Anderson localization T 1 =, A A e i(s S )/ and each have m segments in n th dot, 1,, m ; 1,, m. first n-1 dots n first n-1 dots n = = m=2 = m=3

19 Anderson localization T 1 =, A A e i(s S )/ and each have m segments in n th dot, 1,, m ; 1,, m. To leading order in g c : diagonal approximation in n th dot pair i with i, i=1,,m No restriction on number of small-angle self encounters in first n-1 dots first n-1 dots n first n-1 dots n = = = 1 = 1 1 = 1 2 = 2 2 = 2 1 = 1 2 = 2 2 = 2 1 = 1 3 = 3 1 = 3 = = 1 m=2 m=3

20 Anderson localization 1 2 T 1(n 1) first n-1 dots n first n-1 dots n = 1 = 1 1 = 1 1 4g c T 1 (n 1)R 1 (n 1) = 1 = 1 1 = 1 m=2 reflection: R 1 = g c T 1 1 8g 2 c T 1 (n 1)R 1 (n 1) 2 = 2 = 2 2 = 2 2 = 2 2 = 2 1 = 1 3 = 3 3 = 3 m=3 1 = 1

21 Anderson localization 1 2 T 1(n 1) = reflection: R 1 = g c T 1 1 4g c T 1 (n 1)R 1 (n 1) 1 T 8g 2 1 (n 1)R 1 (n 1) 2 c 1 T 1 (n) = T1 (n 1)R 2 m g m 1 1 (n 1) m 1 c gc T 1 (n 1) = 2g c R 1 (n 1) + = = m=2 m=3 = T 1 (n 1) 1 g c T 1 (n 1) 2 + O(g 2 c )

22 Anderson localization Beyond diagonal approximation in n th dot: contribution of order g c -2 first n-1 dots n m=2 1 tr S 8gc 2 12 S 22 S 22 S 12 = 1 T 8gc 2 2 (n 1) T 1 (n 1) Pairing i with j, i = j: contribution of order g c g 2 c tr S 12 (S 22S 22 ) 2 S 12 = = 1 T 8gc 2 1 (n 1) 2T 2 (n 1) + T 3 (n 1) 2 = 1 3 = 3 1 = 2 m=3

23 Summarizing Anderson localization δ T 1 = T 1 (n) T 1 (n 1) = 1 g c T 1 (n 1) 2 + O(g 2 c ) interdot conductance: g c Extension to higher moments or =1 (time-reversal symmetry): Need to consider up to one encounter in n th dot; Need to go (slightly) beyond pairing i with i, i=1,,m.

24 Anderson localization Summarizing δ T 1 = T 1 (n) T 1 (n 1) = 1 g c T 1 (n 1) 2 + O(g 2 c ) interdot conductance: g c Extension to higher moments or =1 (time-reversal symmetry): Need to consider up to one encounter in n th dot; Need to go (slightly) beyond pairing i with i, i=1,,m.

25 Summarizing Anderson localization δ T 1 = T 1 (n) T 1 (n 1) = 1 g c T 1 (n 1) 2 + O(g 2 c ) interdot conductance: g c Extension to higher moments and =1 (time-reversal symmetry): Need to consider up to one encounter in n th dot; Need to go (slightly) beyond pairing i with i, i=1,,m. full set of recursion relations n ( = 1 n n n ) δ T δ,1 i k T ik +1 T im 1 im i k g c g k=1 c k=1 m k + 1 n i k 1 n i k (T j (T ik j T ik j+1)) T im g c + 4 g c k=1 j=1 n k 1 i k i l (T ik +i l T ik +i l +1) k=1 l=1 m k n m k,l T 1 n T im T im + O(gc 2 ),

26 Summarizing Anderson localization δ T 1 = T 1 (n) T 1 (n 1) = 1 g c T 1 (n 1) 2 + O(g 2 c ) interdot conductance: g c Extension to higher moments or =1 (time-reversal symmetry): Theory of Anderson localization in array of Need to consider up to one encounter in n th dot; ballistic Need to go chaotic (slightly) beyond cavities, pairing formulated i with i, i=1,,m. in terms of classical trajectories only. full set of recursion relations from Brouwer classical and trajectories Altland, only arxiv: n ( = 1 n n n ) δ T δ,1 i k T ik +1 T im 1 im i k g c g k=1 c k=1 m k + 1 n i k 1 n i k (T j (T ik j T ik j+1)) T im g c + 4 g c k=1 j=1 n k 1 i k i l (T ik +i l T ik +i l +1) k=1 l=1 m k n m k,l T 1 n T im T im + O(gc 2 ),

27

Quantum coherent transport in Meso- and Nanoscopic Systems

Quantum coherent transport in Meso- and Nanoscopic Systems Quantum coherent transport in Meso- and Nanoscopic Systems Philippe Jacquod pjacquod@physics.arizona.edu U of Arizona http://www.physics.arizona.edu/~pjacquod/ Quantum coherent transport Outline Quantum

More information

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators Philippe Jacquod U of Arizona UA Phys colloquium - feb 1, 2013 Continuous symmetries and conservation laws Noether

More information

Spin Currents in Mesoscopic Systems

Spin Currents in Mesoscopic Systems Spin Currents in Mesoscopic Systems Philippe Jacquod - U of Arizona I Adagideli (Sabanci) J Bardarson (Berkeley) M Duckheim (Berlin) D Loss (Basel) J Meair (Arizona) K Richter (Regensburg) M Scheid (Regensburg)

More information

Constructing a sigma model from semiclassics

Constructing a sigma model from semiclassics Constructing a sigma model from semiclassics In collaboration with: Alexander Altland, Petr Braun, Fritz Haake, Stefan Heusler Sebastian Müller Approaches to spectral statistics Semiclassics Approaches

More information

Mesoscopics with Superconductivity. Philippe Jacquod. U of Arizona. R. Whitney (ILL, Grenoble)

Mesoscopics with Superconductivity. Philippe Jacquod. U of Arizona. R. Whitney (ILL, Grenoble) Mesoscopics with Superconductivity Philippe Jacquod U of Arizona R. Whitney (ILL, Grenoble) Mesoscopics without superconductivity Mesoscopic = between «microscopic» and «macroscopic»; N. van Kampen 81

More information

Universality. Why? (Bohigas, Giannoni, Schmit 84; see also Casati, Vals-Gris, Guarneri; Berry, Tabor)

Universality. Why? (Bohigas, Giannoni, Schmit 84; see also Casati, Vals-Gris, Guarneri; Berry, Tabor) Universality Many quantum properties of chaotic systems are universal and agree with predictions from random matrix theory, in particular the statistics of energy levels. (Bohigas, Giannoni, Schmit 84;

More information

Interaction Matrix Element Fluctuations

Interaction Matrix Element Fluctuations Interaction Matrix Element Fluctuations in Quantum Dots Lev Kaplan Tulane University and Yoram Alhassid Yale University Interaction Matrix Element Fluctuations p. 1/29 Outline Motivation: ballistic quantum

More information

LEVEL REPULSION IN INTEGRABLE SYSTEMS

LEVEL REPULSION IN INTEGRABLE SYSTEMS LEVEL REPULSION IN INTEGRABLE SYSTEMS Tao Ma and R. A. Serota Department of Physics University of Cincinnati Cincinnati, OH 45244-0011 serota@ucmail.uc.edu Abstract Contrary to conventional wisdom, level

More information

Semiclassical formulation

Semiclassical formulation The story so far: Transport coefficients relate current densities and electric fields (currents and voltages). Can define differential transport coefficients + mobility. Drude picture: treat electrons

More information

Interpolating between Wishart and inverse-wishart distributions

Interpolating between Wishart and inverse-wishart distributions Interpolating between Wishart and inverse-wishart distributions Topological phase transitions in 1D multichannel disordered wires with a chiral symmetry Christophe Texier December 11, 2015 with Aurélien

More information

Interaction Matrix Element Fluctuations

Interaction Matrix Element Fluctuations Interaction Matrix Element Fluctuations in Quantum Dots Lev Kaplan Tulane University and Yoram Alhassid Yale University Interaction Matrix Element Fluctuations in Quantum Dots mpipks Dresden March 5-8,

More information

Interaction Matrix Element Fluctuations

Interaction Matrix Element Fluctuations Interaction Matrix Element Fluctuations in Quantum Dots Lev Kaplan Tulane University and Yoram Alhassid Yale University Interaction Matrix Element Fluctuations p. 1/37 Outline Motivation: ballistic quantum

More information

What is Quantum Transport?

What is Quantum Transport? What is Quantum Transport? Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. http://www.physics.udel.edu/~bnikolic Semiclassical Transport (is boring!) Bloch-Boltzmann

More information

Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime

Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime Zhenhua Qiao, Yanxia Xing, and Jian Wang* Department of Physics and the Center of Theoretical and Computational

More information

Electron transport and quantum criticality in disordered graphene. Alexander D. Mirlin

Electron transport and quantum criticality in disordered graphene. Alexander D. Mirlin Electron transport and quantum criticality in disordered graphene Alexander D. Mirlin Research Center Karslruhe & University Karlsruhe & PNPI St. Petersburg P. Ostrovsky, Research Center Karlsruhe & Landau

More information

WAVE INTERFERENCES IN RANDOM LASERS

WAVE INTERFERENCES IN RANDOM LASERS WAVE INTERFERENCES IN RANDOM LASERS Philippe Jacquod U of Arizona P. Stano and Ph. Jacquod, Nature Photonics (2013) What is a laser? Light Amplification by Stimulated Emission of Radiation Three main components

More information

Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing. Alexander D. Mirlin

Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing. Alexander D. Mirlin Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing Alexander D. Mirlin Forschungszentrum Karlsruhe & Universität Karlsruhe, Germany I.V. Gornyi, D.G. Polyakov (Forschungszentrum

More information

Various Facets of Chalker- Coddington network model

Various Facets of Chalker- Coddington network model Various Facets of Chalker- Coddington network model V. Kagalovsky Sami Shamoon College of Engineering Beer-Sheva Israel Context Integer quantum Hall effect Semiclassical picture Chalker-Coddington Coddington

More information

Decreasing excitation gap in Andreev billiards by disorder scattering

Decreasing excitation gap in Andreev billiards by disorder scattering May 28 EPL, 82 (28) 476 doi: 1.129/295-575/82/476 www.epljournal.org Decreasing excitation gap in Andreev billiards by disorder scattering F. Libisch 1,J.Möller 1,S.Rotter 2,M.G.Vavilov 3 and J. Burgdörfer

More information

Quantum chaotic scattering

Quantum chaotic scattering Quantum chaotic scattering S. Nonnenmacher (Saclay) + M. Zworski, M. Rubin Toulouse, 7/4/26 A resonant state for a dielectric cavity, computed by Ch.Schmit. Outline Quantum chaotic scattering, resonances

More information

Is Quantum Mechanics Chaotic? Steven Anlage

Is Quantum Mechanics Chaotic? Steven Anlage Is Quantum Mechanics Chaotic? Steven Anlage Physics 40 0.5 Simple Chaos 1-Dimensional Iterated Maps The Logistic Map: x = 4 x (1 x ) n+ 1 μ n n Parameter: μ Initial condition: 0 = 0.5 μ 0.8 x 0 = 0.100

More information

Effect of a voltage probe on the phase-coherent conductance of a ballistic chaotic cavity

Effect of a voltage probe on the phase-coherent conductance of a ballistic chaotic cavity PHYSICAL REVIEW B VOLUME 51, NUMBER 12 15 MARCH 1995-11 Effect of a voltage probe on the phase-coherent conductance of a ballistic chaotic cavity P. W. Brouwer and C. W. J. Beenakker Instituut-Lorentz,

More information

Numerical study of localization in antidot lattices

Numerical study of localization in antidot lattices PHYSICAL REVIEW B VOLUME 58, NUMBER 16 Numerical study of localization in antidot lattices 15 OCTOBER 1998-II Seiji Uryu and Tsuneya Ando Institute for Solid State Physics, University of Tokyo, 7-22-1

More information

Random Matrix Theory and Quantum Transport

Random Matrix Theory and Quantum Transport Random Matrix Theory and Quantum Transport S.M. Kravec, E.V. Calman, A.P. Kuczala 1 1 Department of Physics, University of California at San Diego, La Jolla, CA 9093 We review the basics of random matrix

More information

Thermal transport in the disordered electron liquid

Thermal transport in the disordered electron liquid Thermal transport in the disordered electron liquid Georg Schwiete Johannes Gutenberg Universität Mainz Alexander Finkel stein Texas A&M University, Weizmann Institute of Science, and Landau Institute

More information

Anderson localization, topology, and interaction

Anderson localization, topology, and interaction Anderson localization, topology, and interaction Pavel Ostrovsky in collaboration with I. V. Gornyi, E. J. König, A. D. Mirlin, and I. V. Protopopov PRL 105, 036803 (2010), PRB 85, 195130 (2012) Cambridge,

More information

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect 8.513 Lecture 14 Coherent backscattering Weak localization Aharonov-Bohm effect Light diffusion; Speckle patterns; Speckles in coherent backscattering phase-averaged Coherent backscattering Contribution

More information

String-like theory of many-particle Quantum Chaos

String-like theory of many-particle Quantum Chaos String-like theory of many-particle Quantum Chaos Boris Gutkin University of Duisburg-ssen Joint work with V. Al. Osipov Luchon, France March 05 p. Basic Question Quantum Chaos Theory: Standard semiclassical

More information

arxiv: v1 [cond-mat.mes-hall] 4 Nov 2009

arxiv: v1 [cond-mat.mes-hall] 4 Nov 2009 Quantum Corrections to Fidelity Decay in Chaotic Systems Boris Gutkin Fachbereich Physik, Universität Duisburg-Essen, Lotharstraße 1, D-4748 Duisburg, Germany Daniel Waltner, Martha Gutiérrez, Jack Kuipers,

More information

Charges and Spins in Quantum Dots

Charges and Spins in Quantum Dots Charges and Spins in Quantum Dots L.I. Glazman Yale University Chernogolovka 2007 Outline Confined (0D) Fermi liquid: Electron-electron interaction and ground state properties of a quantum dot Confined

More information

Phys. Rev. Lett. 101, (2008) Quantum Transport in Chaotic Cavities and Painlevé Transcendents

Phys. Rev. Lett. 101, (2008) Quantum Transport in Chaotic Cavities and Painlevé Transcendents 30 Phys. Rev. Lett. 101, 176804 (2008) Quantum Transort in Chaotic Cavities and Painlevé Transcendents Eugene Kanzieer 1 and Vladimir Al. Osiov 2 1 H.I.T. Holon Institute of Technology, Israel 2 Universität

More information

Thermal conductivity of the disordered Fermi and electron liquids

Thermal conductivity of the disordered Fermi and electron liquids Thermal conductivity of the disordered Fermi and electron liquids Georg Schwiete Johannes Gutenberg Universität Mainz Alexander Finkel stein Texas A&M University, Weizmann Institute of Science, and Landau

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 3 Beforehand Weak Localization and Mesoscopic Fluctuations Today

More information

Semiklassik von Andreev-Billards

Semiklassik von Andreev-Billards Institut Physik I - Theoretische Physik Universität Regensburg Semiklassik von Andreev-Billards Diplomarbeit von Thomas Engl aus Roding unter Anleitung von Prof. Dr. Klaus Richter abgegeben am 12.05.2010

More information

Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA

Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA 40 years of Mesoscopics Physics: Colloquium in memory of Jean-Louis

More information

PART 2 : BALANCED HOMODYNE DETECTION

PART 2 : BALANCED HOMODYNE DETECTION PART 2 : BALANCED HOMODYNE DETECTION Michael G. Raymer Oregon Center for Optics, University of Oregon raymer@uoregon.edu 1 of 31 OUTLINE PART 1 1. Noise Properties of Photodetectors 2. Quantization of

More information

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors Douglas Natelson Department of Physics and Astronomy Department of Electrical and Computer Engineering Rice Quantum Institute

More information

arxiv:cond-mat/ v1 7 Jun 1994

arxiv:cond-mat/ v1 7 Jun 1994 Reflectionless tunneling through a double-barrier NS junction J. A. Melsen and C. W. J. Beenakker Instituut-Lorentz, University of Leiden P.O. Box 9506, 2300 RA Leiden, The Netherlands arxiv:cond-mat/9406034v1

More information

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 ORIGINS E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 P.W. Anderson, Absence of Diffusion in Certain Random Lattices ; Phys.Rev., 1958, v.109, p.1492 L.D. Landau, Fermi-Liquid

More information

arxiv: v2 [nlin.cd] 30 May 2013

arxiv: v2 [nlin.cd] 30 May 2013 A sub-determinant approach for pseudo-orbit expansions of spectral determinants in quantum maps and quantum graphs Daniel Waltner Weizmann Institute of Science, Physics Department, Rehovot, Israel, Institut

More information

Why Hyperbolic Symmetry?

Why Hyperbolic Symmetry? Why Hyperbolic Symmetry? Consider the very trivial case when N = 1 and H = h is a real Gaussian variable of unit variance. To simplify notation set E ɛ = 0 iɛ and z, w C = G(E ɛ ) 2 h = [(h iɛ)(h + iɛ)]

More information

DISTRIBUTION OF SCATTERING MATRIX ELEMENTS IN QUANTUM CHAOTIC SCATTERING

DISTRIBUTION OF SCATTERING MATRIX ELEMENTS IN QUANTUM CHAOTIC SCATTERING DISTRIBUTION OF SCATTERING MATRIX ELEMENTS IN QUANTUM CHAOTIC SCATTERING Santosh Kumar Shiv Nadar University Dadri, India Joint work with A. Nock*, H.-J. Sommers, T. Guhr Universität Duisburg-Essen, Duisburg.

More information

Numerical Analysis of the Anderson Localization

Numerical Analysis of the Anderson Localization Numerical Analysis of the Anderson Localization Peter Marko² FEI STU Bratislava FzU Praha, November 3. 23 . introduction: localized states in quantum mechanics 2. statistics and uctuations 3. metal - insulator

More information

Ballistic quantum transport through nanostructures

Ballistic quantum transport through nanostructures Ballistic quantum transport through nanostructures S. Rotter, F. Libisch, F. Aigner, B. Weingartner, J. Feist, I. Březinová, and J. Burgdörfer Inst. for Theoretical Physics/E136 A major aim in ballistic

More information

disordered topological matter time line

disordered topological matter time line disordered topological matter time line disordered topological matter time line 80s quantum Hall SSH quantum Hall effect (class A) quantum Hall effect (class A) 1998 Nobel prize press release quantum Hall

More information

Failure of the Wiedemann-Franz law in mesoscopic conductors

Failure of the Wiedemann-Franz law in mesoscopic conductors PHYSICAL REVIEW B 7, 05107 005 Failure of the Wiedemann-Franz law in mesoscopic conductors Maxim G. Vavilov and A. Douglas Stone Department of Applied Physics, Yale University, New Haven, Connecticut 0650,

More information

Eigenvectors under a generic perturbation: non-perturbative results from the random matrix approach

Eigenvectors under a generic perturbation: non-perturbative results from the random matrix approach epl draft igenvectors under a generic perturbation: non-perturbative results from the random matrix approach K. Truong and A. Ossipov School of Mathematical Sciences, University of Nottingham, Nottingham

More information

Non-traditional methods of material properties and defect parameters measurement

Non-traditional methods of material properties and defect parameters measurement Non-traditional methods of material properties and defect parameters measurement Juozas Vaitkus on behalf of a few Vilnius groups Vilnius University, Lithuania Outline: Definition of aims Photoconductivity

More information

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Scattering theory of current-induced forces Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Overview Current-induced forces in mesoscopic systems: In molecule/dot with slow mechanical

More information

The Role of Spin in Ballistic-Mesoscopic Transport

The Role of Spin in Ballistic-Mesoscopic Transport The Role of Spin in Ballistic-Mesoscopic Transport INT Program Chaos and Interactions: From Nuclei to Quantum Dots Seattle, WA 8/12/2 CM Marcus, Harvard University Supported by ARO-MURI, DARPA, NSF Spin-Orbit

More information

8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization

8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization 8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization This problem set is partly intended to introduce the transfer matrix method, which is used

More information

Quantum transport of 2D Dirac fermions: the case for a topological metal

Quantum transport of 2D Dirac fermions: the case for a topological metal Quantum transport of 2D Dirac fermions: the case for a topological metal Christopher Mudry 1 Shinsei Ryu 2 Akira Furusaki 3 Hideaki Obuse 3,4 1 Paul Scherrer Institut, Switzerland 2 University of California

More information

Random-matrix theory of quantum transport

Random-matrix theory of quantum transport Random-matrix theory of quantum transport C. W. J. Beenakker Instituut-Lorentz, University of Leiden, 23 RA Leiden, The Netherlands This is a review of the statistical properties of the scattering matrix

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 23 Jun 2003

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 23 Jun 2003 Fluctuations of g-factors in metal nanoparticles: Effects of electron-electron interaction and spin-orbit scattering Denis A. Gorokhov and Piet W. Brouwer Laboratory of Atomic and Solid State Physics,

More information

Nonlinear σ model for disordered systems: an introduction

Nonlinear σ model for disordered systems: an introduction Nonlinear σ model for disordered systems: an introduction Igor Lerner THE UNIVERSITY OF BIRMINGHAM School of Physics & Astronomy OUTLINE What is that & where to take it from? How to use it (1 or 2 simple

More information

Handout 7 Reciprocal Space

Handout 7 Reciprocal Space Handout 7 Reciprocal Space Useful concepts for the analysis of diffraction data http://homepages.utoledo.edu/clind/ Concepts versus reality Reflection from lattice planes is just a concept that helps us

More information

I. PLATEAU TRANSITION AS CRITICAL POINT. A. Scaling flow diagram

I. PLATEAU TRANSITION AS CRITICAL POINT. A. Scaling flow diagram 1 I. PLATEAU TRANSITION AS CRITICAL POINT The IQHE plateau transitions are examples of quantum critical points. What sort of theoretical description should we look for? Recall Anton Andreev s lectures,

More information

Probing a Metallic Spin Glass Nanowire via Coherent Electronic Waves Diffusion

Probing a Metallic Spin Glass Nanowire via Coherent Electronic Waves Diffusion Probing a Metallic Spin Glass Nanowire via Coherent Electronic Waves Diffusion D. Carpentier, (Ecole Normale Supérieure de Lyon) Theory : A. Fedorenko, E. Orignac, G. Paulin (PhD) (Ecole Normale Supérieure

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 5 Beforehand Yesterday Today Anderson Localization, Mesoscopic

More information

Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics

Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics Nagoya Winter Workshop on Quantum Information, Measurement, and Quantum Foundations (Nagoya, February 18-23, 2010) Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics

More information

Collaborations: Tsampikos Kottos (Gottingen) Antonio Mendez Bermudez (Gottingen) Holger Schanz (Gottingen)

Collaborations: Tsampikos Kottos (Gottingen) Antonio Mendez Bermudez (Gottingen) Holger Schanz (Gottingen) Quantum chaos and perturbation theory: from the analysis of wavefunctions to the implications on pumping, dissipation and decoherence Doron Cohen, Ben-Gurion University Collaborations: Tsampikos Kottos

More information

Wave function multifractality at Anderson localization transitions. Alexander D. Mirlin

Wave function multifractality at Anderson localization transitions. Alexander D. Mirlin Wave function multifractality at Anderson localization transitions Alexander D. Mirlin Forschungszentrum Karlsruhe & Universität Karlsruhe http://www-tkm.physik.uni-karlsruhe.de/ mirlin/ F. Evers, A. Mildenberger

More information

arxiv:cond-mat/ Dec 1996

arxiv:cond-mat/ Dec 1996 Scaling and Crossover Functions for the Conductance in the Directed Network Model of Edge States Ilya A. Gruzberg, N. Read and Subir Sachdev Department of Physics, Yale University P.O. Box 208120, New

More information

Quantum Transport in Disordered Topological Insulators

Quantum Transport in Disordered Topological Insulators Quantum Transport in Disordered Topological Insulators Vincent Sacksteder IV, Royal Holloway, University of London Quansheng Wu, ETH Zurich Liang Du, University of Texas Austin Tomi Ohtsuki and Koji Kobayashi,

More information

Andreev conductance of chaotic and integrable quantum dots

Andreev conductance of chaotic and integrable quantum dots PHYSICAL REVIEW B VOLUME 6, NUMBER 15 15 OCTOBER 000-I Andreev conductance of chaotic and integrable quantum dots A. A. Clerk, P. W. Brouwer, and V. Ambegaokar Laboratory of Atomic and Solid State Physics,

More information

Universal spectral statistics of Andreev billiards: semiclassical approach

Universal spectral statistics of Andreev billiards: semiclassical approach Universal spectral statistics of Andreev billiards: semiclassical approach Sven Gnutzmann, 1, Burkhard Seif, 2, Felix von Oppen, 1, and Martin R. Zirnbauer 2, 1 Institut für Theoretische Physik, Freie

More information

Title. examples of interplay of interactions and interference. Coulomb Blockade as a Probe of Interactions in Nanostructures

Title. examples of interplay of interactions and interference. Coulomb Blockade as a Probe of Interactions in Nanostructures Coulomb Blockade as a Probe of Interactions in Nanostructures Title Harold U. Baranger, Duke University Introduction: examples of interplay of interactions and interference We need a tool the Coulomb blockade

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

Hyperbolic Hubbard-Stratonovich transformations

Hyperbolic Hubbard-Stratonovich transformations Hyperbolic Hubbard-Stratonovich transformations J. Müller-Hill 1 and M.R. Zirnbauer 1 1 Department of Physics, University of Cologne August 21, 2008 1 / 20 Outline Motivation Hubbard-Stratonovich transformation

More information

arxiv: v1 [quant-ph] 31 Jul 2009

arxiv: v1 [quant-ph] 31 Jul 2009 Average transmission probability of a random stack arxiv:0907.5557v1 [quant-ph] 31 Jul 2009 1. Introduction Yin Lu, 1,2 Christian Miniatura 1,3,4 and Berthold-Georg Englert 1,4 1 Centre for Quantum Technologies,

More information

Tunable excitons in ordered arrays! of ultracold polar molecules!

Tunable excitons in ordered arrays! of ultracold polar molecules! Tunable excitons in ordered arrays! of ultracold polar molecules! Sergey Alyabyshev Chris Hemming Felipe Herrera Jie Cui Marina Litinskaya Jesus Perez Rios Ping Xiang Roman Krems! University of British

More information

Aditi Mitra New York University

Aditi Mitra New York University Superconductivity following a quantum quench Aditi Mitra New York University Supported by DOE-BES and NSF- DMR 1 Initially system of free electrons. Quench involves turning on attractive pairing interactions.

More information

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces nodes protected against gapping can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces physical realization: stacked 2d topological insulators C=1 3d top

More information

arxiv: v1 [cond-mat.mes-hall] 19 Jun 2015

arxiv: v1 [cond-mat.mes-hall] 19 Jun 2015 Effect of a tunnel barrier on the scattering from a Majorana bound state in an Andreev billiard arxiv:1506.05995v1 [cond-mat.mes-hall] 19 Jun 2015 M. Marciani, 1 H. Schomerus, 2 and C. W. J. Beenakker

More information

Negative Magneto-Resistance Beyond Weak Localization in Three-Dimensional Billiards: Effect of Arnold Diffusion

Negative Magneto-Resistance Beyond Weak Localization in Three-Dimensional Billiards: Effect of Arnold Diffusion Commun. Theor. Phys. (Beijing, China 39 (003 pp. 79 84 c International Academic Publishers Vol. 39, No. 3, March 15, 003 Negative Magneto-Resistance Beyond Weak Localization in Three-Dimensional Billiards:

More information

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU A mini course on topology extrinsic curvature K vs intrinsic (Gaussian) curvature G K 0 G 0 G>0 G=0 K 0 G=0 G

More information

Lecture 4. Diffusing photons and superradiance in cold gases

Lecture 4. Diffusing photons and superradiance in cold gases Lecture 4 Diffusing photons and superradiance in cold gases Model of disorder-elastic mean free path and group velocity. Dicke states- Super- and sub-radiance. Scattering properties of Dicke states. Multiple

More information

Ergodicity of quantum eigenfunctions in classically chaotic systems

Ergodicity of quantum eigenfunctions in classically chaotic systems Ergodicity of quantum eigenfunctions in classically chaotic systems Mar 1, 24 Alex Barnett barnett@cims.nyu.edu Courant Institute work in collaboration with Peter Sarnak, Courant/Princeton p.1 Classical

More information

Ginzburg-Landau Theory of Type II Superconductors

Ginzburg-Landau Theory of Type II Superconductors Ginzburg-Landau Theory of Type II Superconductors This interesting application of quantum field theory is reviewed by B. Rosenstein and D. Li, Ginzburg-Landau theory of type II superconductors in magnetic

More information

Quantum scattering in the strip: From ballistic to localized regimes

Quantum scattering in the strip: From ballistic to localized regimes Eur. Phys. J. B 6, 399 49 (998) THE EUROPEAN PHYSICAL JOURNAL B c EDP Sciences Springer-Verlag 998 Quantum scattering in the strip: From ballistic to localized regimes R. Gȩbarowski,a,P.Šeba2,3,K.Życzkowski4,b,

More information

Ashvin Vishwanath UC Berkeley

Ashvin Vishwanath UC Berkeley TOPOLOGY + LOCALIZATION: QUANTUM COHERENCE IN HOT MATTER Ashvin Vishwanath UC Berkeley arxiv:1307.4092 (to appear in Nature Comm.) Thanks to David Huse for inspiring discussions Yasaman Bahri (Berkeley)

More information

arxiv: v2 [cond-mat.mes-hall] 12 Feb 2013

arxiv: v2 [cond-mat.mes-hall] 12 Feb 2013 Reentrant topological phase transitions in a disordered spinless superconducting wire Maria-Theresa Rieder, Piet W. Brouwer Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie niversität

More information

Density of States in Superconductor -Normal. Metal-Superconductor Junctions arxiv:cond-mat/ v2 [cond-mat.mes-hall] 7 Nov 1998.

Density of States in Superconductor -Normal. Metal-Superconductor Junctions arxiv:cond-mat/ v2 [cond-mat.mes-hall] 7 Nov 1998. Density of States in Superconductor -Normal Metal-Superconductor Junctions arxiv:cond-mat/97756v [cond-mat.mes-hall] 7 Nov 1998 F. Zhou 1,, P. Charlat, B. Spivak 1, B.Pannetier 1 Physics Department, University

More information

Anomalous wave transport in one-dimensional systems with. Lévy disorder

Anomalous wave transport in one-dimensional systems with. Lévy disorder Anomalous wave transport in one-dimensional systems with Lévy disorder Xujun Ma,2 and Azriel Z. Genack,2 Department of Physics, Queens College of the City University of New York, Flushing, NY, 367 USA

More information

Basics of topological insulator

Basics of topological insulator 011/11/18 @ NTU Basics of topological insulator Ming-Che Chang Dept of Physics, NTNU A brief history of insulators Band insulator (Wilson, Bloch) Mott insulator Anderson insulator Quantum Hall insulator

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 17 May 2000

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 17 May 2000 Medium/high field magnetoconductance in chaotic quantum dots E. Louis Departamento de Física Aplicada, Universidad de Alicante, Apartado 99, E-38 Alicante, Spain. arxiv:cond-mat/578v1 [cond-mat.mes-hall]

More information

Aditi Mitra New York University

Aditi Mitra New York University Entanglement dynamics following quantum quenches: pplications to d Floquet chern Insulator and 3d critical system diti Mitra New York University Supported by DOE-BES and NSF- DMR Daniel Yates, PhD student

More information

Tunable crystals of ultracold polar molecules!

Tunable crystals of ultracold polar molecules! Tunable crystals of ultracold polar molecules! Sergey Alyabyshev Chris Hemming Felipe Herrera Jie Cui Marina Li9nskaya Jesus Perez Rios Ping Xiang Roman Krems! University of British Columbia! Zhiying Li,

More information

Conductance fluctuations at the integer quantum Hall plateau transition

Conductance fluctuations at the integer quantum Hall plateau transition PHYSICAL REVIEW B VOLUME 55, NUMBER 3 15 JANUARY 1997-I Conductance fluctuations at the integer quantum Hall plateau transition Sora Cho Department of Physics, University of California, Santa Barbara,

More information

Anderson Localization Looking Forward

Anderson Localization Looking Forward Anderson Localization Looking Forward Boris Altshuler Physics Department, Columbia University Collaborations: Also Igor Aleiner Denis Basko, Gora Shlyapnikov, Vincent Michal, Vladimir Kravtsov, Lecture2

More information

Theory of Quantum Transport in Mesoscopic Systems Antidot Lattices

Theory of Quantum Transport in Mesoscopic Systems Antidot Lattices Theory of Quantum Transport in Mesoscopic Systems Antidot Lattices Tsuneya ANDO Institute for Solid State Physics, University of Tokyo 7 1 Roppongi, Minato-ku, Tokyo 106-8666, Japan A review of magnetotransport

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 13 Mar 2003

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 13 Mar 2003 arxiv:cond-mat/0303262v1 [cond-mat.stat-mech] 13 Mar 2003 Quantum fluctuations and random matrix theory Maciej M. Duras Institute of Physics, Cracow University of Technology, ulica Podchor ażych 1, PL-30084

More information

Structure of quantum disordered wave functions: weak localization, far tails, and mesoscopic transport

Structure of quantum disordered wave functions: weak localization, far tails, and mesoscopic transport Eur. Phys. J. B 30, 227 238 (2002) DOI: 10.1140/epjb/e2002-00351-2 THE EUROPEAN PHYSICAL JOURNAL B Structure of quantum disordered wave functions: weak localization, far tails, and mesoscopic transport

More information

arxiv: v2 [cond-mat.mes-hall] 12 Feb 2018

arxiv: v2 [cond-mat.mes-hall] 12 Feb 2018 Journal of the Physical Society of Japan FULL PAPERS Conductance Fluctuations in Disordered 2D Topological Insulator Wires: From Quantum Spin-Hall to Ordinary Phases Hsiu-Chuan Hsu 1, Ioannis Kleftogiannis

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

Non-Fixed Point Renormalization Group Flow

Non-Fixed Point Renormalization Group Flow Non-Fixed Point Renormalization Group Flow Gilberto de la Peña May 9, 2013 Abstract: The renormalization group flow of most systems is characterized by attractive or repelling fixed points. Nevertheless,

More information

Mesoscopic quantum measurements

Mesoscopic quantum measurements Mesoscopic quantum measurements D.V. Averin Department of Physics and Astronomy SUNY Stony Brook A. Di Lorentzo K. Rabenstein V.K. Semenov D. Shepelyanskii E.V. Sukhorukov Summary α β Example of the trivial

More information

Roman Krems University of British Columbia

Roman Krems University of British Columbia Rotational Frenkel excitons in optical lattices with polar molecules Roman Krems University of British Columbia felipe-manuscript-comments-nov9.pdf felipe-manuscript-comments-dec9.pdf Ultracold molecules

More information

Donoghue, Golowich, Holstein Chapter 4, 6

Donoghue, Golowich, Holstein Chapter 4, 6 1 Week 7: Non linear sigma models and pion lagrangians Reading material from the books Burgess-Moore, Chapter 9.3 Donoghue, Golowich, Holstein Chapter 4, 6 Weinberg, Chap. 19 1 Goldstone boson lagrangians

More information

Electronic and Level Statistics Properties of Si/SiO 2 Quantum Dots

Electronic and Level Statistics Properties of Si/SiO 2 Quantum Dots 1 Electronic and Level Statistics Properties of Si/SiO 2 Quantum Dots I. Filikhin, S.G. Matinyan, B.K. Schmid and B. Vlahovic Department of Physics, North Carolina Central University, 1801 Fayetteville

More information