Mesoscopics with Superconductivity. Philippe Jacquod. U of Arizona. R. Whitney (ILL, Grenoble)

Size: px
Start display at page:

Download "Mesoscopics with Superconductivity. Philippe Jacquod. U of Arizona. R. Whitney (ILL, Grenoble)"

Transcription

1 Mesoscopics with Superconductivity Philippe Jacquod U of Arizona R. Whitney (ILL, Grenoble)

2 Mesoscopics without superconductivity Mesoscopic = between «microscopic» and «macroscopic»; N. van Kampen 81

3 I. Weak localization Interference correction to conductance G Reduces G for TRS, SRS Enhances G for TRS, but broken SRS Not there for broken TRS -> signature in magnetoresistance Amplitude ~ e 2 /h! Th. : Gor kov, Larkin, Khmel nitskii 79 Abrahams, Anderson, Ramakrishnan 79 Hikami, Larkin, Nagaoka 80

4 II. Aharonov-Bohm oscillations Interference correction to conductance Same sign as weak localization Amplitude ~ e 2 /h! Th. : Altshuler, Aronov, Spivak 81 ; Aronov and Sharvin 87

5 III. Universal Conductance Fluctuations Parameter-dependent interference correction to conductance Reproducible noise Magnitude of fluctuations does not scale with conductance Upon application of B-field, changes in chemical potential, sample shape Magnitude ~ e 2 /h! Th. : Altshuler 85; Lee and Stone 85

6 Two-terminal (Onsager) G(H)=G(-H) Four-terminal G ij;kl (H)= G kl;ij (-H) Th. : Buttiker 86 IV. Reciprocity relations in multiterminal transport Quantum nonlocality effects Apparent violation of macroscopic Onsager symmetry in multiterminal transport measurement Magnitude ~ e 2 /h!

7 Two-terminal (Onsager) G(H)=G(-H) Four-terminal G ij;kl (H)= G kl;ij (-H) Th. : Buttiker 86 IV. Reciprocity relations in multiterminal transport Quantum nonlocality effects Apparent violation of macroscopic Onsager symmetry in multiterminal transport measurement Magnitude ~ e 2 /h!

8 V. Coherent thermal transport Thermopower and Wiedemann-Franz law Mesoscopic fluctuations of TP No average TP Symmetric in B-field Magnitude halved when breaking TRS Mesoscopic fluctuations violate Wiedemann-Franz with var(δ) ~ 1/G 2 Th.: thermopower: Esposito et al. 87; van Langen et al. 97 W-Franz: Vavilov and Stone 05.

9 Mesoscopics with superconductivity The rules of the new game: (i) Experimental findings

10 I. Aharonov-Bohm oscillations Adding superconductivity to the mesoscopic AB effect Giant enhancement of amplitude of oscillations!

11 II. Reciprocity relations in multiterminal transport 2-term G ~ 10 e 2 /h δg<e 2 /h R 3010 R 1030

12 II. Reciprocity relations in multiterminal transport and magnetoresistance 4-terminal resistance, yet even in phase Same sign as weak-loc/ab with SOI

13 III. Coherent thermal transport Thermopower Large average TP Symmetric or antisymmetric in B-field, depending on geometry parallelogram house

14 III. Coherent thermal transport Thermopower Large average TP Symmetric or antisymmetric in B-field, depending on geometry - BUT NOT ON T-GRADIENT! Nonlocal effects? Crossed Andreev reflection? Elastic cotunneling?

15 III. Coherent thermal transport : oscillations of the Wiedemann-Franz ratio Large AB oscillations of Ξ/GT Ξ and G are out of phase

16 The rules of the new game: (ii) Analytical derivation The rule of the game is simple, it s kill the quarterback. -Joe Namath

17 I. Ray optics for the 21st century Scattering approach Entrance / exit points Transport modes in leads Classical trajectories, stability and action R. Whitney and PJ, PRL/PRB 05/06; precursor theory: Richter and Sieber, PRL 02.

18 I. Ray optics for the 21st century Semiclassical expression x Semiclassical approximation (i) because N=W/λ F >> 1 (ii) Stationary phase approximation diagonal approx weaklocalization

19 II. New ingredients in presence of SC Andreev reflection (e,e F +ε) (h, E F -ε) Reflection phase : (fig taken from Wikipedia) Angle mismatch (neglect it) S phase + : h->e - : e->h

20 II. New ingredients in presence of SC Lambert 93 formula for a SC island Charging of SC Average conductance for N L =N R >>1 With even/odd # of Andreev reflections both terms give large interference contributions

21 III. Ray optics for the 21st century in presence of superconductivity 1. Contribution to T ee and T he have even and odd # of Andreev reflections resp. For T 21 ee For T 11 he Diagonal contribution to T without SC Good news : all has already been calculated! (shot-noise:pj and Whitney - FCS: Brouwer and Rahav; Berkolaiko et al.)

22 III. Ray optics for the 21st century in presence of superconductivity 1. Contribution to T ee and T he have even and odd # of Andreev reflections resp. For T 21 ee For T 11 he Diagonal contribution to T without SC BAD NEWS!!! Generate new contributions by adding crossings with new legs touching SC terminal?! infinite number of terms to resum!?

23 III. Ray optics for the 21st century in presence of superconductivity 2. Consider N s << N n -> consider only minimal # of Andreev reflections For T 21 ee Diagonal contribution to T without SC For T 11 he Note : unitarity is preserved at order (N s /N n ) 2

24 III. Ray optics for the 21st century in presence of superconductivity Large oscillations of transmissions probs. if N T 1/2 <<N S (Compatible with N S <<N T ) φ : phase-difference between the two SC contacts Note: RMT for any N S : Beenakker, Melsen and Brouwer 95; but backscattering??

25 We have the tools, let s construct the rules!

26 Charge and thermal conductance single-dot model Charge and Heat currents Vs. 2-term V and T differences Negative magnetoconductance Positive magnetothermoconductance Note: T 11 he = N 2 N s /N T 2 i.e. not giant backscattering!

27 Charge and thermal conductance single-dot model with SOI Spin rotation along path γ unchanged =1/4 =1/4 =-1/2

28 Charge and thermal conductance single-dot model with SOI Spin rotation along path γ No change in sign of magnetoconductance Amplitude of oscillations reduced by factor of 4

29 Charge and thermal conductance single-dot model Wiedemann-Franz ratio Signs of magnetoconductance and of magneto-thermoconductance agree with exps. by Chandrasekhar Note : circuit theory results show that this remains valid at N s ~ N n for amplitude; with more harmonics

30 Conductance fluctuations To calculate var(g), take any two contributions we considered for G and pair them in a non-connected way. This requires to add at least two encounters - the first one so that the diagram is connected, the second one to bring back together trajectories splitted by the first one. Conductance fluctuations remain universal, O(e 2 /h)

31 Thermopower T L,V L,I L T R,V R,I R Heat up one reservoir Set V L and V R such that I L =I R =0 Thermopower S= (V L -V R )/(T L -T R ) S=- Semiclassical contributions to ~ δt: difference in duration of two e-h path-pair segments No contribution to S, unless L-R symmetry is broken

32 Thermopower - breaking LR symmetry Double-cavity model ~ parallelogram or Asymmetric single dot Paths hitting R sc from L take more time ~δt correlated with φ Contributions to proportional to φ-antisymmetric contributions to S Vanish as T->0 on the scale of E T =1/δt

33 Thermopower - breaking LR symmetry Triple-cavity model Paths hitting R sc from L take more time ~δt correlated with φ Contributions to proportional to φ-antisymmetric contributions to S Vanish as T->0 on the scale of E T =1/t

34 CONCLUSIONS - new rules 1)large, positive magnetoresistance only magnitude depends on SOI 2) large, negative magneto-thermoresistance hence large oscillations of Wiedemann-Franz ratio 3) UCF remain O(1) 4) same symmetry for multiterminal transport as without SC - but apparent symmetry at large G 5) large average thermopower (broken LR symmetry) antisymmetric in φ no need to invoke T-gradients across sample (see: Volkov; Heikkila and Virtanen; Titov) Open question: even TP in house interferometers? vs. mesoscopic fluctuations?? vs. charge imbalance (Titov)??

35 III. Ray optics for the 21st century in presence of superconductivity Feynman rules for calculating contributions : (i) Factors of N i and N T : N T -1 for each path-pair -N T -1 for each in-cavity encounter N i for each on-lead encounter on lead i N i for each leg terminating on lead i (ii) Phase factors : exp[-i arccos(ε/δ)] for each e->h or h->e exp[-i φ Sa ] for each e->h at sc contact a exp[2iεt] for each eh path pair

36 Our apologies for the upcoming slide

37 Symmetry of multiterminal transport 1) Define conductance matrix including SC leads 2) Define generalized transmission coefficient (SC island) 3) Define Onsager coefficients

38 Symmetry of multiterminal transport then the 4-terminal conductance reads and has the same symmetry as without SC (Buttiker 86) BUT : take e.g. leads 1 and 2 close, 3 and 4 close and treat G 14 ~G 13 +dg 14 aso 1 3 Then, large, φ-symmetric contributions that exist for G ii, but not G ij render the 4-terminal conductance symmetric 2 4 when N n >>1 Agreement with numerics

Quantum coherent transport in Meso- and Nanoscopic Systems

Quantum coherent transport in Meso- and Nanoscopic Systems Quantum coherent transport in Meso- and Nanoscopic Systems Philippe Jacquod pjacquod@physics.arizona.edu U of Arizona http://www.physics.arizona.edu/~pjacquod/ Quantum coherent transport Outline Quantum

More information

Spin Currents in Mesoscopic Systems

Spin Currents in Mesoscopic Systems Spin Currents in Mesoscopic Systems Philippe Jacquod - U of Arizona I Adagideli (Sabanci) J Bardarson (Berkeley) M Duckheim (Berlin) D Loss (Basel) J Meair (Arizona) K Richter (Regensburg) M Scheid (Regensburg)

More information

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators Philippe Jacquod U of Arizona UA Phys colloquium - feb 1, 2013 Continuous symmetries and conservation laws Noether

More information

Anderson Localization from Classical Trajectories

Anderson Localization from Classical Trajectories Anderson Localization from Classical Trajectories Piet Brouwer Laboratory of Atomic and Solid State Physics Cornell University Support: NSF, Packard Foundation With: Alexander Altland (Cologne) Quantum

More information

Failure of the Wiedemann-Franz law in mesoscopic conductors

Failure of the Wiedemann-Franz law in mesoscopic conductors PHYSICAL REVIEW B 7, 05107 005 Failure of the Wiedemann-Franz law in mesoscopic conductors Maxim G. Vavilov and A. Douglas Stone Department of Applied Physics, Yale University, New Haven, Connecticut 0650,

More information

The Physics of Nanoelectronics

The Physics of Nanoelectronics The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures Tero T. Heikkilä Low Temperature Laboratory, Aalto University, Finland OXFORD UNIVERSITY PRESS Contents List of symbols

More information

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect 8.513 Lecture 14 Coherent backscattering Weak localization Aharonov-Bohm effect Light diffusion; Speckle patterns; Speckles in coherent backscattering phase-averaged Coherent backscattering Contribution

More information

Scattering theory of thermoelectric transport. Markus Büttiker University of Geneva

Scattering theory of thermoelectric transport. Markus Büttiker University of Geneva Scattering theory of thermoelectric transport Markus Büttiker University of Geneva Summer School "Energy harvesting at micro and nanoscales, Workshop "Energy harvesting: models and applications, Erice,

More information

WAVE INTERFERENCES IN RANDOM LASERS

WAVE INTERFERENCES IN RANDOM LASERS WAVE INTERFERENCES IN RANDOM LASERS Philippe Jacquod U of Arizona P. Stano and Ph. Jacquod, Nature Photonics (2013) What is a laser? Light Amplification by Stimulated Emission of Radiation Three main components

More information

Splitting Kramers degeneracy with superconducting phase difference

Splitting Kramers degeneracy with superconducting phase difference Splitting Kramers degeneracy with superconducting phase difference Bernard van Heck, Shuo Mi (Leiden), Anton Akhmerov (Delft) arxiv:1408.1563 ESI, Vienna, 11 September 2014 Plan Using phase difference

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 5 Beforehand Yesterday Today Anderson Localization, Mesoscopic

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

Semiklassik von Andreev-Billards

Semiklassik von Andreev-Billards Institut Physik I - Theoretische Physik Universität Regensburg Semiklassik von Andreev-Billards Diplomarbeit von Thomas Engl aus Roding unter Anleitung von Prof. Dr. Klaus Richter abgegeben am 12.05.2010

More information

What is Quantum Transport?

What is Quantum Transport? What is Quantum Transport? Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. http://www.physics.udel.edu/~bnikolic Semiclassical Transport (is boring!) Bloch-Boltzmann

More information

Semiclassical formulation

Semiclassical formulation The story so far: Transport coefficients relate current densities and electric fields (currents and voltages). Can define differential transport coefficients + mobility. Drude picture: treat electrons

More information

Introduction to a few basic concepts in thermoelectricity

Introduction to a few basic concepts in thermoelectricity Introduction to a few basic concepts in thermoelectricity Giuliano Benenti Center for Nonlinear and Complex Systems Univ. Insubria, Como, Italy 1 Irreversible thermodynamic Irreversible thermodynamics

More information

Quantum Coherent Transport in Meso- and Nanoscopic Systems

Quantum Coherent Transport in Meso- and Nanoscopic Systems Quantum Coherent Transport in Meso- and Nanoscopic Systems Philippe Jacquod 1, 1 Department of Physics, University of Arizona, 1118 E. Fourth Street, Tucson, AZ 85721 Département de Physique Théorique,

More information

Weakly-coupled quasi-1d helical modes in disordered 3D topological insulator quantum wires

Weakly-coupled quasi-1d helical modes in disordered 3D topological insulator quantum wires Weakly-coupled quasi-1d helical modes in disordered 3D topological insulator quantum wires J. Dufouleur, 1 L. Veyrat, 1 B. Dassonneville, 1 E. Xypakis, 2 J. H. Bardarson, 2 C. Nowka, 1 S. Hampel, 1 J.

More information

Asymmetry in the Magnetoconductance of Metal Wires and Loops

Asymmetry in the Magnetoconductance of Metal Wires and Loops University of South Carolina Scholar Commons Faculty Publications Physics and Astronomy, Department of 10-6-1986 Asymmetry in the Magnetoconductance of Metal Wires and Loops A. D. Benoit S. Washburn C.

More information

Quantum Transport in Disordered Topological Insulators

Quantum Transport in Disordered Topological Insulators Quantum Transport in Disordered Topological Insulators Vincent Sacksteder IV, Royal Holloway, University of London Quansheng Wu, ETH Zurich Liang Du, University of Texas Austin Tomi Ohtsuki and Koji Kobayashi,

More information

QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS

QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS PhD theses Orsolya Kálmán Supervisors: Dr. Mihály Benedict Dr. Péter Földi University of Szeged Faculty of Science and Informatics Doctoral School in Physics

More information

2007 American Physical Society. Reprinted with permission.

2007 American Physical Society. Reprinted with permission. P. Virtanen, J. Zou, I. Sosnin, V. T. Petrashov, and T. T. Heikkilä. 2007. Phase states of multiterminal mesoscopic normal metal superconductor structures. Physical Review Letters, volume 99, number 21,

More information

2004 American Physical Society. Reprinted with permission.

2004 American Physical Society. Reprinted with permission. Pauli Virtanen and Tero T. Heikkilä.. Thermopower induced by a supercurrent in superconductor normal metal structures. Physical Review Letters, volume 9, number 7, 77. American Physical Society Reprinted

More information

The Role of Spin in Ballistic-Mesoscopic Transport

The Role of Spin in Ballistic-Mesoscopic Transport The Role of Spin in Ballistic-Mesoscopic Transport INT Program Chaos and Interactions: From Nuclei to Quantum Dots Seattle, WA 8/12/2 CM Marcus, Harvard University Supported by ARO-MURI, DARPA, NSF Spin-Orbit

More information

What is it all about?

What is it all about? Dephasing, decoherence,... What is it all about? Consider a spinor (total phase is irrelevant) Ê Y = y eij ˆ Á Ë y Ø e -ij Average components of the spin can be expressed through the absolute values of

More information

Splitting of a Cooper pair by a pair of Majorana bound states

Splitting of a Cooper pair by a pair of Majorana bound states Chapter 7 Splitting of a Cooper pair by a pair of Majorana bound states 7.1 Introduction Majorana bound states are coherent superpositions of electron and hole excitations of zero energy, trapped in the

More information

Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures

Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 14 (2002) R501 R596 PII: S0953-8984(02)16903-7 TOPICAL REVIEW Recent experimental studies of electron dephasing

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

Thermal conductivity of the disordered Fermi and electron liquids

Thermal conductivity of the disordered Fermi and electron liquids Thermal conductivity of the disordered Fermi and electron liquids Georg Schwiete Johannes Gutenberg Universität Mainz Alexander Finkel stein Texas A&M University, Weizmann Institute of Science, and Landau

More information

Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime

Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime Zhenhua Qiao, Yanxia Xing, and Jian Wang* Department of Physics and the Center of Theoretical and Computational

More information

Electronic Quantum Transport in Mesoscopic Semiconductor Structures

Electronic Quantum Transport in Mesoscopic Semiconductor Structures Thomas Ihn Electronic Quantum Transport in Mesoscopic Semiconductor Structures With 90 Illustrations, S in Full Color Springer Contents Part I Introduction to Electron Transport l Electrical conductance

More information

QUANTUM- CLASSICAL ANALOGIES

QUANTUM- CLASSICAL ANALOGIES D. Dragoman M. Dragoman QUANTUM- CLASSICAL ANALOGIES With 78 Figures ^Ü Springer 1 Introduction 1 2 Analogies Between Ballistic Electrons and Electromagnetic Waves 9 2.1 Analog Parameters for Ballistic

More information

Adiabatic quantum motors

Adiabatic quantum motors Felix von Oppen Freie Universität Berlin with Raul Bustos Marun and Gil Refael Motion at the nanoscale Brownian motion Directed motion at the nanoscale?? 2 Directed motion at the nanoscale Nanocars 3 Nanoscale

More information

Probing a Metallic Spin Glass Nanowire via Coherent Electronic Waves Diffusion

Probing a Metallic Spin Glass Nanowire via Coherent Electronic Waves Diffusion Probing a Metallic Spin Glass Nanowire via Coherent Electronic Waves Diffusion D. Carpentier, (Ecole Normale Supérieure de Lyon) Theory : A. Fedorenko, E. Orignac, G. Paulin (PhD) (Ecole Normale Supérieure

More information

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization. 23 August - 3 September, 2010

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization. 23 August - 3 September, 2010 16-5 Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization 3 August - 3 September, 010 INTRODUCTORY Anderson Localization - Introduction Boris ALTSHULER Columbia

More information

Charge transport in oxides and metalinsulator

Charge transport in oxides and metalinsulator Charge transport in oxides and metalinsulator transitions M. Gabay School on modern topics in Condensed matter Singapore, 28/01 8/02 2013 Down the rabbit hole Scaling down impacts critical parameters of

More information

Thermal transport in the disordered electron liquid

Thermal transport in the disordered electron liquid Thermal transport in the disordered electron liquid Georg Schwiete Johannes Gutenberg Universität Mainz Alexander Finkel stein Texas A&M University, Weizmann Institute of Science, and Landau Institute

More information

Quantum Transport and Dissipation

Quantum Transport and Dissipation Thomas Dittrich, Peter Hänggi, Gert-Ludwig Ingold, Bernhard Kramer, Gerd Schön and Wilhelm Zwerger Quantum Transport and Dissipation WILEY-VCH Weinheim Berlin New York Chichester Brisbane Singapore Toronto

More information

Mesoscopic conductance fluctuations and spin glasses

Mesoscopic conductance fluctuations and spin glasses GdR Meso 2010 G Thibaut CAPRON Track of a potential energy landscape evolving on geological time scales B Mesoscopic conductance fluctuations and spin glasses www.neel.cnrs.fr Team project Quantum coherence

More information

Theory of Mesoscopic Systems

Theory of Mesoscopic Systems Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 1 01 June 2006 Meso: : intermediate between micro and macro Main Topics: Disordered

More information

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors Douglas Natelson Department of Physics and Astronomy Department of Electrical and Computer Engineering Rice Quantum Institute

More information

Lecture 2: Open quantum systems

Lecture 2: Open quantum systems Phys 769 Selected Topics in Condensed Matter Physics Summer 21 Lecture 2: Open quantum systems Lecturer: Anthony J. Leggett TA: Bill Coish 1. No (micro- or macro-) system is ever truly isolated U = S +

More information

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg Onsager Coefficients I electric current density J particle current density J Q heat flux, heat current density µ chemical potential

More information

Numerical study of localization in antidot lattices

Numerical study of localization in antidot lattices PHYSICAL REVIEW B VOLUME 58, NUMBER 16 Numerical study of localization in antidot lattices 15 OCTOBER 1998-II Seiji Uryu and Tsuneya Ando Institute for Solid State Physics, University of Tokyo, 7-22-1

More information

Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing. Alexander D. Mirlin

Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing. Alexander D. Mirlin Interacting Electrons in Disordered Quantum Wires: Localization and Dephasing Alexander D. Mirlin Forschungszentrum Karlsruhe & Universität Karlsruhe, Germany I.V. Gornyi, D.G. Polyakov (Forschungszentrum

More information

Coherent nonlinear transport in quantum rings

Coherent nonlinear transport in quantum rings Physica E 35 (26) 327 331 www.elsevier.com/locate/physe Coherent nonlinear transport in quantum rings R. Leturcq a,, R. Bianchetti a, G. Go tz a, T. Ihn a, K. Ensslin a, D.C. Driscoll b, A.C. Gossard b

More information

Suppression and revival of weak localization by manipulation of time reversal symmetry

Suppression and revival of weak localization by manipulation of time reversal symmetry Suppression and revival of weak localization by manipulation of time reversal symmetry Varenna school on Quantum matter at ultralow temperature JULY 11, 2014 Alain Aspect Institut d Optique Palaiseau http://www.lcf.institutoptique.fr/alain-aspect-homepage

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Persistent spin current in a spin ring

Persistent spin current in a spin ring Persistent spin current in a spin ring Ming-Che Chang Dept of Physics Taiwan Normal Univ Jing-Nuo Wu (NCTU) Min-Fong Yang (Tunghai U.) A brief history precursor: Hund, Ann. Phys. 1934 spin charge persistent

More information

Thermoelectricity with cold atoms?

Thermoelectricity with cold atoms? Thermoelectricity with cold atoms? Ch. Grenier, C. Kollath & A. Georges Centre de physique Théorique - Université de Genève - Collège de France Université de Lorraine Séminaire du groupe de physique statistique

More information

Universality. Why? (Bohigas, Giannoni, Schmit 84; see also Casati, Vals-Gris, Guarneri; Berry, Tabor)

Universality. Why? (Bohigas, Giannoni, Schmit 84; see also Casati, Vals-Gris, Guarneri; Berry, Tabor) Universality Many quantum properties of chaotic systems are universal and agree with predictions from random matrix theory, in particular the statistics of energy levels. (Bohigas, Giannoni, Schmit 84;

More information

Thermoelectric transport of ultracold fermions : theory

Thermoelectric transport of ultracold fermions : theory Thermoelectric transport of ultracold fermions : theory Collège de France, December 2013 Theory : Ch. Grenier C. Kollath A. Georges Experiments : J.-P. Brantut J. Meineke D. Stadler S. Krinner T. Esslinger

More information

Mechanically Assisted Single-Electronics

Mechanically Assisted Single-Electronics * Mechanically Assisted Single-Electronics Robert Shekhter Göteborg University, Sweden Nanoelectromechanics of CB structures--classical approach: Coulomb blockade of single-electron tunneling (SET) Nanoelectromechanical

More information

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 5 Hartree-Fock Theory WS2010/11: Introduction to Nuclear and Particle Physics Particle-number representation: General formalism The simplest starting point for a many-body state is a system of

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

Noise and measurement efficiency of a partially coherent mesoscopic detector

Noise and measurement efficiency of a partially coherent mesoscopic detector PHYSICAL REVIEW B 69, 4533 4 Noise and measurement efficiency of a partially coherent mesoscopic detector A. A. Clerk and A. D. Stone Departments of Applied Physics and Physics, Yale University, New Haven,

More information

1. For d=3,2 from ε<< ε F it follows that ετ >> e-e h, i.e.,

1. For d=3,2 from ε<< ε F it follows that ετ >> e-e h, i.e., Quasiparticle decay rate at T = 0 in a clean Fermi Liquid. ω +ω Fermi Sea τ e e ( ) F ( ) log( ) Conclusions:. For d=3, from > e-e, i.e., tat te qusiparticles are well determined

More information

Superconductivity at nanoscale

Superconductivity at nanoscale Superconductivity at nanoscale Superconductivity is the result of the formation of a quantum condensate of paired electrons (Cooper pairs). In small particles, the allowed energy levels are quantized and

More information

Onsager Relations in Coupled Electric, Thermoelectric and Spin Transport: The Ten-Fold Way

Onsager Relations in Coupled Electric, Thermoelectric and Spin Transport: The Ten-Fold Way Onsager Relations in Coupled Electric, Thermoelectric and Spin Transport: The Ten-Fold Way tric currents 6, it is natural to ask whether the Onsager reciprocity relation between, say, the Seebeck and Peltier

More information

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab Nanoscience, MCC026 2nd quarter, fall 2012 Quantum Transport, Lecture 1/2 Tomas Löfwander Applied Quantum Physics Lab Quantum Transport Nanoscience: Quantum transport: control and making of useful things

More information

QUANTUM ELECTRONICS ON THE TRAY* *Sur le plateau (de Saclay)

QUANTUM ELECTRONICS ON THE TRAY* *Sur le plateau (de Saclay) QUANTUM ELECTRONIC ON THE TRAY* *ur le plateau (de aclay) Goal: Reveal the quantum behavior of electrons everal ways of revealing the quantum behavior of electrons 1 Interference experiments of coherent

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

MACROREALISM and WEAK MEASUREMENT

MACROREALISM and WEAK MEASUREMENT CIFAR 1 MACROREALISM and WEAK MEASUREMENT Original CHSH inequality: A A AB A B AB A B 2 ~ S ~ B B (A, B, A, B 1) Satisfied by all objective local theories, df. by conjunction of 1) Induction 2) Einstein

More information

Detecting and using Majorana fermions in superconductors

Detecting and using Majorana fermions in superconductors Detecting and using Majorana fermions in superconductors Anton Akhmerov with Carlo Beenakker, Jan Dahlhaus, Fabian Hassler, and Michael Wimmer New J. Phys. 13, 053016 (2011) and arxiv:1105.0315 Superconductor

More information

Nonlocal transport properties due to Andreev scattering

Nonlocal transport properties due to Andreev scattering Charles Univ. in Prague, 5 X 2015 Nonlocal transport properties due to Andreev scattering Tadeusz Domański Marie Curie-Skłodowska University, Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Outline

More information

Novel topologies in superconducting junctions

Novel topologies in superconducting junctions Novel topologies in superconducting junctions Yuli V. Nazarov Delft University of Technology The Capri Spring School on Transport in Nanostructures 2018, Anacapri IT, April 15-22 2018 Overview of 3 lectures

More information

Coulomb blockade and single electron tunnelling

Coulomb blockade and single electron tunnelling Coulomb blockade and single electron tunnelling Andrea Donarini Institute of theoretical physics, University of Regensburg Three terminal device Source System Drain Gate Variation of the electrostatic

More information

Physics of Low-Dimensional Semiconductor Structures

Physics of Low-Dimensional Semiconductor Structures Physics of Low-Dimensional Semiconductor Structures Edited by Paul Butcher University of Warwick Coventry, England Norman H. March University of Oxford Oxford, England and Mario P. Tosi Scuola Normale

More information

Charges and Spins in Quantum Dots

Charges and Spins in Quantum Dots Charges and Spins in Quantum Dots L.I. Glazman Yale University Chernogolovka 2007 Outline Confined (0D) Fermi liquid: Electron-electron interaction and ground state properties of a quantum dot Confined

More information

Quantum Physics II (8.05) Fall 2002 Outline

Quantum Physics II (8.05) Fall 2002 Outline Quantum Physics II (8.05) Fall 2002 Outline 1. General structure of quantum mechanics. 8.04 was based primarily on wave mechanics. We review that foundation with the intent to build a more formal basis

More information

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS Chaire de Physique Mésoscopique Michel Devoret Année 2007, Cours des 7 et 14 juin INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

More information

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems * Mesoscopic Nano-Electro-Mechanics of Shuttle Systems Robert Shekhter University of Gothenburg, Sweden Lecture1: Mechanically assisted single-electronics Lecture2: Quantum coherent nano-electro-mechanics

More information

Low-Dimensional Disordered Electronic Systems (Experimental Aspects)

Low-Dimensional Disordered Electronic Systems (Experimental Aspects) Low-Dimensional Disordered Electronic Systems (Experimental Aspects) or ГалопомпоРазупорядоченнымСистемам Michael Gershenson Dept. of Physics and Astronomy Rutgers, the State University of New Jersey Low-Temperature

More information

Andreev Reflection. Fabrizio Dolcini Scuola Normale Superiore di Pisa, NEST (Italy) Dipartimento di Fisica del Politecnico di Torino (Italy)

Andreev Reflection. Fabrizio Dolcini Scuola Normale Superiore di Pisa, NEST (Italy) Dipartimento di Fisica del Politecnico di Torino (Italy) Andreev Reflection Fabrizio Dolcini Scuola Normale Superiore di Pisa, NEST (Italy) Dipartimento di Fisica del Politecnico di Torino (Italy) Lecture Notes for XXIII Physics GradDays, Heidelberg, 5-9 October

More information

Final examination. 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS PLEASE RETURN THIS BOOKLET

Final examination. 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS PLEASE RETURN THIS BOOKLET 2.710 Final examination 3 hours (9am 12 noon) Total pages: 7 (seven) PLEASE DO NOT TURN OVER UNTIL EXAM STARTS Name: PLEASE RETURN THIS BOOKLET WITH YOUR SOLUTION SHEET(S) MASSACHUSETTS INSTITUTE OF TECHNOLOGY

More information

Single Electron Tunneling Examples

Single Electron Tunneling Examples Single Electron Tunneling Examples Danny Porath 2002 (Schönenberger et. al.) It has long been an axiom of mine that the little things are infinitely the most important Sir Arthur Conan Doyle Books and

More information

Quantum Hall Effect in Graphene p-n Junctions

Quantum Hall Effect in Graphene p-n Junctions Quantum Hall Effect in Graphene p-n Junctions Dima Abanin (MIT) Collaboration: Leonid Levitov, Patrick Lee, Harvard and Columbia groups UIUC January 14, 2008 Electron transport in graphene monolayer New

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES 1 SUPPLEMENTARY FIGURES Supplementary Figure 1: Schematic representation of the experimental set up. The PC of the hot line being biased, the temperature raises. The temperature is extracted from noise

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Beyond the Parity and Bloch Theorem: Local Symmetry as a Systematic Pathway to the Breaking of Discrete Symmetries

Beyond the Parity and Bloch Theorem: Local Symmetry as a Systematic Pathway to the Breaking of Discrete Symmetries Quantum Chaos: Fundamentals and Applications, Luchon, March 14-21 2015 Beyond the Parity and Bloch Theorem: Local Symmetry as a Systematic Pathway to the Breaking of Discrete Symmetries P. Schmelcher Center

More information

Bose-Einstein condensates (Fock states): classical or quantum?

Bose-Einstein condensates (Fock states): classical or quantum? Bose-Einstein condensates (Fock states): classical or quantum? Does the phase of Bose-Einstein condensates exist before measurement? Quantum non-locality, macroscopic superpositions (QIMDS experiments))

More information

Electron decoherence at zero temperature The phenomenology and associated difficulties

Electron decoherence at zero temperature The phenomenology and associated difficulties Proceedings of the NATO Advanced Workshop on Size dependent magnetic scattering Kluwer Academic Publishers (2000) Electron decoherence at zero temperature The phenomenology and associated difficulties

More information

Electron counting with quantum dots

Electron counting with quantum dots Electron counting with quantum dots Klaus Ensslin Solid State Physics Zürich with S. Gustavsson I. Shorubalko R. Leturcq T. Ihn A. C. Gossard Time-resolved charge detection Single photon detection Time-resolved

More information

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT S. Krompiewski Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland OUTLINE 1. Introductory

More information

Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik

Transport through interacting Majorana devices. Reinhold Egger Institut für Theoretische Physik Transport through interacting Maorana devices Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Maorana nanowires: Two-terminal device: Maorana

More information

Unconventional electron quantum optics in condensed matter systems

Unconventional electron quantum optics in condensed matter systems Unconventional electron quantum optics in condensed matter systems Dario Ferraro Centre de Physique Théorique, Marseille nanoqt-2016, Kyiv, October 10, 2016 In collaboration with: J. Rech, T. Jonckheere,

More information

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Laboratoire Charles Fabry, Palaiseau, France Atom Optics Group (Prof. A. Aspect) Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Julien Armijo* * Now at Facultad de ciencias,

More information

Presented by: Göteborg University, Sweden

Presented by: Göteborg University, Sweden SMR 1760-3 COLLEGE ON PHYSICS OF NANO-DEVICES 10-21 July 2006 Nanoelectromechanics of Magnetic and Superconducting Tunneling Devices Presented by: Robert Shekhter Göteborg University, Sweden * Mechanically

More information

Density of States in Superconductor -Normal. Metal-Superconductor Junctions arxiv:cond-mat/ v2 [cond-mat.mes-hall] 7 Nov 1998.

Density of States in Superconductor -Normal. Metal-Superconductor Junctions arxiv:cond-mat/ v2 [cond-mat.mes-hall] 7 Nov 1998. Density of States in Superconductor -Normal Metal-Superconductor Junctions arxiv:cond-mat/97756v [cond-mat.mes-hall] 7 Nov 1998 F. Zhou 1,, P. Charlat, B. Spivak 1, B.Pannetier 1 Physics Department, University

More information

Scattering Parameters

Scattering Parameters Berkeley Scattering Parameters Prof. Ali M. Niknejad U.C. Berkeley Copyright c 2016 by Ali M. Niknejad September 7, 2017 1 / 57 Scattering Parameters 2 / 57 Scattering Matrix Voltages and currents are

More information

Quantum Transport in Ballistic Cavities Subject to a Strictly Parallel Magnetic Field

Quantum Transport in Ballistic Cavities Subject to a Strictly Parallel Magnetic Field Quantum Transport in Ballistic Cavities Subject to a Strictly Parallel Magnetic Field Cédric Gustin and Vincent Bayot Cermin, Université Catholique de Louvain, Belgium Collaborators Cermin,, Univ. Catholique

More information

Aditi Mitra New York University

Aditi Mitra New York University Superconductivity following a quantum quench Aditi Mitra New York University Supported by DOE-BES and NSF- DMR 1 Initially system of free electrons. Quench involves turning on attractive pairing interactions.

More information

Flying qubits in semiconductors

Flying qubits in semiconductors FIRST 2011.8.13 Flying qubits in semiconductors Yasuhiro Tokura (NTT Basic Research Laboratories) Introduction -flying qubit- Topics Effect of statistics Entanglement generation and detection Single electron

More information

Decreasing excitation gap in Andreev billiards by disorder scattering

Decreasing excitation gap in Andreev billiards by disorder scattering May 28 EPL, 82 (28) 476 doi: 1.129/295-575/82/476 www.epljournal.org Decreasing excitation gap in Andreev billiards by disorder scattering F. Libisch 1,J.Möller 1,S.Rotter 2,M.G.Vavilov 3 and J. Burgdörfer

More information

Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA

Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA 40 years of Mesoscopics Physics: Colloquium in memory of Jean-Louis

More information

Interaction Matrix Element Fluctuations

Interaction Matrix Element Fluctuations Interaction Matrix Element Fluctuations in Quantum Dots Lev Kaplan Tulane University and Yoram Alhassid Yale University Interaction Matrix Element Fluctuations p. 1/29 Outline Motivation: ballistic quantum

More information

Quantum ratchets and quantum heat pumps

Quantum ratchets and quantum heat pumps Appl. Phys. A 75, 237 246 (2002) DOI: 10.1007/s003390201335 Applied Physics A Materials Science & Processing h. linke 1, t.e. humphrey 2 p.e. lindelof 3 a. löfgren 4 r. newbury 2 p. omling 4 a.o. sushkov

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 29 Apr 2004

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 29 Apr 2004 Phase Effects on the Conductance Through Parallel Double Dots arxiv:cond-mat/0404685v2 [cond-mat.mes-hall] 29 Apr 2004 V.M. Apel 1, Maria A. Davidovich 1, G. Chiappe 2 and E.V. Anda 1 1 Departamento de

More information

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact Stefan Heun NEST, CNR-INFM and Scuola Normale Superiore, Pisa, Italy Coworkers NEST, Pisa, Italy:

More information