Delocalization for Schrödinger operators with random Dirac masses

Size: px
Start display at page:

Download "Delocalization for Schrödinger operators with random Dirac masses"

Transcription

1 Delocalization for Schrödinger operators with random Dirac masses CEMPI Scientific Day Lille, 10 February 2017

2 Disordered Systems E.g. box containing N nuclei Motion of electron in this system High temperature : classical Drude model (1900) Low temperature : quantum effects, interference : Anderson model (1958)

3 Random Schrödinger Operators Simplification : ignore interactions, one body Hamiltonian, Dirac masses We consider the random Schrödinger operator H Ω = + ω Ω δ(x ω), x R d, d = 2, 3 where Ω is a stochastic process on R d Rigorous realization of H Ω : theory of self-adjoint extensions

4 Random displacement model Consider H Ω = + ξ Z d δ(x ξ ω ξ ) where ω ξ are i. i. d. r. v. Probability density P(x) = P( x ), where P C c (R +), P(0) > 0, decreasing. Disorder parameter : δ = E P ( X )

5 Anderson localization Anderson 1958 : strong disorder localized eigenfunctions Definition Let E 2 > E 1 > 0. We say that H Ω is exponentially localized on I = [E 1, E 2 ], if H Ω has a.s. pure point spectrum on I and the eigenfunctions ψ λ satisfy the bound : ψλ (x)ψ λ (y) C ωe x y /L loc where the localization length L loc depends on the choice of I and ω Ω is a sample of the stochastic process. Mathematical results : Goldsheid-Molchanov-Pastur, Fröhlich-Spencer, Simon, Bourgain-Kenig, Klopp, A. Boutet de Monvel, Germinet,...

6 Anderson transition : physical motivation Localization for strong disorder Delocalization for weak disorder? Scaling Theory (Abrahams, Anderson, Licciardello et Ramakrishnan, 1979) : intensity ψ λ 2 dx d = 1 : localization d = 2 : critical case d 3 : transition expected localized Delocalized regime : absolutely continuous spectrum extended eigenstates delocalized Pictures : D. Wiersma et al.

7 Geometry of eigenfunctions Multifractal structure of eigenfunctions near transition point Delocalization : L loc as E E c Want to prove lower bound for L loc test on compact spaces Picture : A. Mirlin (Karlsruhe Institute of Technology)

8 Seba s billiard D rectangular billiard In 1990 Petr Seba studied the singular Hamiltonian H α = +αδ(x x 0 ), α R, x 0 int(d) with Dirichlet boundary conditions on D Consider the restricted Laplacian H 0 = C c (R x 0 ) which admits family of self-adjoint extensions ϕ, ϕ ( π, π)

9 The perturbed spectrum New eigenvalues are solutions to the equation (square torus R 2 /2πZ 2 ) { } 1 ξ 2 λ ξ 2 = C ξ 4 0 tan( ϕ ) ξ Z 2 A plot of the LHS of the spectral equation as a function of λ Eigenfunction G λ (x, x 0 ) = ( λ) 1 δ(x x 0 ) has convenient L 2 -representation G λ (x, x 0 ) = 1 4π 2 i x x e 0,ξ ξ 2 λ ξ Z 2 Singularities at the old eigenvalues

10 Random impurities on the torus Consider the torus T d L = R d /LZ d, d = 2, 3, L 1, and the operator H Ω,L = + N δ(x x j ) where x 1 is fixed and x 2,, x N are i. i. d. uniformly distributed random variables on T d L. Can realize the formal operator above as self-adjoint extensions of the restricted Laplacian j=1 H 0 = C c (T d L O), O = {x 1,, x N } Operator H 0 is positive symmetric with deficiency indices (N, N), extensions parametrized by U(N)

11 Spectrum and eigenfunctions Fix U = e iϕ Id N, ϕ ( π, π), denote corresponding extension by ϕ Green s function : G λ (x, y) = 1 δ(x y), λ λ / σ( ) We have the spectral equation det A ϕ λ = 0 where (A ϕ λ ) kl = G λ (x k, x l ) RG i (x k, x l ) tan( ϕ 2 )IG i(x k, x l )

12 Two types of eigenfunctions : old and new At most N new eigenvalues per Laplacian eigenspace which interlace with distinct Laplacian eigenvalues New eigenfunctions are given by superpositions of Green s functions : N ψ λ (x) = v k G λ (x, x j ), k=1 v ker A ϕ λ Note : the v k are functions of the random variables x 2,, x N T d L

13 Random displacement models Let B L = [ L, L] d and L 1. Consider H Ω,L = + δ(x ξ ω ξ ) ξ Z d B L with Dirichlet BCs on B L Fix small ɛ > 0. Let χ C (B 1 ), χ 0, with supp χ B(0, ɛ) and χ 1 = 1. Denote χ L = L d χ( /L). Let H Ω,L ψ L λ = λψ L λ, ψ L λ 2 = 1. We define the smoothed L 2 -density for any x B (1 ɛ)l. Ψ L λ(x) := ( B L χ L (x x) ψ L λ(x ) 2 dx ) 1/2

14 Definition Let F C 0 (R +) be strictly decreasing and L 1. We say that H Ω,L is F -localized on an interval I = [E 1, E 2 ] if we have for any a I and λ = min(σ(h Ω,L ) [a, E 2 ]) ( ) x, y B (1 ɛ)l, x y L : E Ψ L λ(x)ψ L λ(y) F( x y ). Set F(τ) = e τ/l loc for exponential localization, where L loc depends on the choice of interval I For a given spectral window I consider boxes of size L L loc (I)

15 Delocalization for random displacement models If δ 1, we can show that for E, L large enough H Ω,L fails to be exponentially localized In fact we can rule out any decay but a certain polynomial one Theorem (H.U. 2016) Let d = 2, 3 and F(τ) = τ α d +ɛ. There exist α d > 0, E 0 > 0 and L 0 = L 0 (E 0 ) such that for any interval I = [E 1, E 2 ], E 1 > E 0 and any L L 0, H Ω,L fails to be F -localized.

16 Outlook Delocalization for random Schrödinger operators with generic potentials Explicit construction of extended states Level statistics near transition point Multifractal wave function near Anderson transition. A. Mirlin (Karlsruhe)

17 Thank you for your attention!

Spectral decimation & its applications to spectral analysis on infinite fractal lattices

Spectral decimation & its applications to spectral analysis on infinite fractal lattices Spectral decimation & its applications to spectral analysis on infinite fractal lattices Joe P. Chen Department of Mathematics Colgate University QMath13: Mathematical Results in Quantum Physics Special

More information

Quantitative unique continuation for linear combinations of eigenfunctions

Quantitative unique continuation for linear combinations of eigenfunctions Quantitative unique continuation for linear combinations of eigenfunctions and application to random Schrödinger operators Martin Tautenhahn (joint work with I. Nakić, M. Täufer and I. Veselić) Technische

More information

Two Classical models of Quantum Dynamics

Two Classical models of Quantum Dynamics Two Classical models of Quantum Dynamics Tom Spencer Institute for Advanced Study Princeton, NJ May 1, 2018 Outline: Review of dynamics and localization for Random Schrödinger H on l 2 (Z d ) H = + λv

More information

H = ( H(x) m,n. Ω = T d T x = x + ω (d frequency shift) Ω = T 2 T x = (x 1 + x 2, x 2 + ω) (skewshift)

H = ( H(x) m,n. Ω = T d T x = x + ω (d frequency shift) Ω = T 2 T x = (x 1 + x 2, x 2 + ω) (skewshift) Chapter One Introduction We will consider infinite matrices indexed by Z (or Z b ) associated to a dynamical system in the sense that satisfies H = ( H(x) m,n )m,n Z H(x) m+1,n+1 = H(T x) m,n where x Ω,

More information

Anderson localization for 2D discrete Schrödinger operator with random vector potential

Anderson localization for 2D discrete Schrödinger operator with random vector potential Anderson localization for D discrete Schrödinger operator with random vector potential Frédéric Klopp Shu Nakamura May 17, 00 Abstract We prove the Anderson localization near the bottom of the spectrum

More information

Thermodynamic limit for a system of interacting fermions in a random medium. Pieces one-dimensional model

Thermodynamic limit for a system of interacting fermions in a random medium. Pieces one-dimensional model Thermodynamic limit for a system of interacting fermions in a random medium. Pieces one-dimensional model Nikolaj Veniaminov (in collaboration with Frédéric Klopp) CEREMADE, University of Paris IX Dauphine

More information

ANDERSON BERNOULLI MODELS

ANDERSON BERNOULLI MODELS MOSCOW MATHEMATICAL JOURNAL Volume 5, Number 3, July September 2005, Pages 523 536 ANDERSON BERNOULLI MODELS J. BOURGAIN Dedicated to Ya. Sinai Abstract. We prove the exponential localization of the eigenfunctions

More information

Theory of Aperiodic Solids:

Theory of Aperiodic Solids: Theory of Aperiodic Solids: Sponsoring from 1980 to present Jean BELLISSARD jeanbel@math.gatech.edu Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics Content 1. Aperiodic

More information

Anderson Localization on the Sierpinski Gasket

Anderson Localization on the Sierpinski Gasket Anderson Localization on the Sierpinski Gasket G. Mograby 1 M. Zhang 2 1 Department of Physics Technical University of Berlin, Germany 2 Department of Mathematics Jacobs University, Germany 5th Cornell

More information

Lectures on Random Schrödinger Operators

Lectures on Random Schrödinger Operators Contemporary Mathematics Lectures on Random Schrödinger Operators Peter D. Hislop This paper is dedicated to Jean-Michel Combes on the occasion of his sixty-fifth birthday. Abstract. These notes are based

More information

Uncertainty Relations and Applications for the Schrödinger and Heat conduction equation

Uncertainty Relations and Applications for the Schrödinger and Heat conduction equation 1 Uncertainty Relations and Applications for the Schrödinger and Heat conduction equation Ivan Veselić TU Chemnitz on the move TU Dortmund Mainz, 2016 based on joint works/projects with Denis Borisov,

More information

Global theory of one-frequency Schrödinger operators

Global theory of one-frequency Schrödinger operators of one-frequency Schrödinger operators CNRS and IMPA August 21, 2012 Regularity and chaos In the study of classical dynamical systems, the main goal is the understanding of the long time behavior of observable

More information

Feshbach-Schur RG for the Anderson Model

Feshbach-Schur RG for the Anderson Model Feshbach-Schur RG for the Anderson Model John Z. Imbrie University of Virginia Isaac Newton Institute October 26, 2018 Overview Consider the localization problem for the Anderson model of a quantum particle

More information

Schrödinger operators exhibiting a sudden change of the spectral character

Schrödinger operators exhibiting a sudden change of the spectral character Schrödinger operators exhibiting a sudden change of the spectral character Pavel Exner Doppler Institute for Mathematical Physics and Applied Mathematics Prague in collaboration with Diana Barseghyan,

More information

arxiv: v1 [math-ph] 21 Apr 2008

arxiv: v1 [math-ph] 21 Apr 2008 GENERALIZED EIGENVALUE-COUNTING ESTIMATES FOR THE ANDERSON MODEL arxiv:0804.3202v1 [math-ph] 21 Apr 2008 JEAN-MICHEL COMBES, FRANÇOIS GERMINET, AND ABEL KLEIN Abstract. We show how spectral averaging for

More information

Today: 5 July 2008 ٢

Today: 5 July 2008 ٢ Anderson localization M. Reza Rahimi Tabar IPM 5 July 2008 ١ Today: 5 July 2008 ٢ Short History of Anderson Localization ٣ Publication 1) F. Shahbazi, etal. Phys. Rev. Lett. 94, 165505 (2005) 2) A. Esmailpour,

More information

Automorphic Equivalence Within Gapped Phases

Automorphic Equivalence Within Gapped Phases 1 Harvard University May 18, 2011 Automorphic Equivalence Within Gapped Phases Robert Sims University of Arizona based on joint work with Sven Bachmann, Spyridon Michalakis, and Bruno Nachtergaele 2 Outline:

More information

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell Eigenvalues and eigenfunctions of the Laplacian Andrew Hassell 1 2 The setting In this talk I will consider the Laplace operator,, on various geometric spaces M. Here, M will be either a bounded Euclidean

More information

Non Adiabatic Transitions in a Simple Born Oppenheimer Scattering System

Non Adiabatic Transitions in a Simple Born Oppenheimer Scattering System 1 Non Adiabatic Transitions in a Simple Born Oppenheimer Scattering System George A. Hagedorn Department of Mathematics and Center for Statistical Mechanics, Mathematical Physics, and Theoretical Chemistry

More information

Quantum ergodicity. Nalini Anantharaman. 22 août Université de Strasbourg

Quantum ergodicity. Nalini Anantharaman. 22 août Université de Strasbourg Quantum ergodicity Nalini Anantharaman Université de Strasbourg 22 août 2016 I. Quantum ergodicity on manifolds. II. QE on (discrete) graphs : regular graphs. III. QE on graphs : other models, perspectives.

More information

Asymptotic behaviour of the heat equation in twisted waveguides

Asymptotic behaviour of the heat equation in twisted waveguides Asymptotic behaviour of the heat equation in twisted waveguides Gabriela Malenová Faculty of Nuclear Sciences and Physical Engineering, CTU, Prague Nuclear Physics Institute, AS ČR, Řež Graphs and Spectra,

More information

Lecture Notes 2: Review of Quantum Mechanics

Lecture Notes 2: Review of Quantum Mechanics Quantum Field Theory for Leg Spinners 18/10/10 Lecture Notes 2: Review of Quantum Mechanics Lecturer: Prakash Panangaden Scribe: Jakub Závodný This lecture will briefly review some of the basic concepts

More information

2.1 Calculation of the ground state energy via path integral

2.1 Calculation of the ground state energy via path integral Chapter 2 Instantons in Quantum Mechanics Before describing the instantons and their effects in non-abelian gauge theories, it is instructive to become familiar with the relevant ideas in the context of

More information

A converse to the Ambrosetti-Prodi theorem

A converse to the Ambrosetti-Prodi theorem A converse to the Ambrosetti-Prodi theorem Marta Calanchi, Università di Milano with Carlos Tomei and André Zaccur (PUC-Rio, Brazil) Varese, RISM, September 2015 The Ambrosetti-Prodi Theorem 1/14 The Ambrosetti-Prodi

More information

Introduction to Spectral Theory

Introduction to Spectral Theory P.D. Hislop I.M. Sigal Introduction to Spectral Theory With Applications to Schrodinger Operators Springer Introduction and Overview 1 1 The Spectrum of Linear Operators and Hilbert Spaces 9 1.1 TheSpectrum

More information

MP463 QUANTUM MECHANICS

MP463 QUANTUM MECHANICS MP463 QUANTUM MECHANICS Introduction Quantum theory of angular momentum Quantum theory of a particle in a central potential - Hydrogen atom - Three-dimensional isotropic harmonic oscillator (a model of

More information

Quantum Mechanics Exercises and solutions

Quantum Mechanics Exercises and solutions Quantum Mechanics Exercises and solutions P.J. Mulders Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam De Boelelaan 181, 181 HV Amsterdam, the Netherlands email:

More information

Open Quantum Systems and Markov Processes II

Open Quantum Systems and Markov Processes II Open Quantum Systems and Markov Processes II Theory of Quantum Optics (QIC 895) Sascha Agne sascha.agne@uwaterloo.ca July 20, 2015 Outline 1 1. Introduction to open quantum systems and master equations

More information

Self-adjoint extensions of symmetric operators

Self-adjoint extensions of symmetric operators Self-adjoint extensions of symmetric operators Simon Wozny Proseminar on Linear Algebra WS216/217 Universität Konstanz Abstract In this handout we will first look at some basics about unbounded operators.

More information

On semilinear elliptic equations with measure data

On semilinear elliptic equations with measure data On semilinear elliptic equations with measure data Andrzej Rozkosz (joint work with T. Klimsiak) Nicolaus Copernicus University (Toruń, Poland) Controlled Deterministic and Stochastic Systems Iasi, July

More information

Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box

Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box 561 Fall 017 Lecture #5 page 1 Last time: Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box 1-D Wave equation u x = 1 u v t * u(x,t): displacements as function of x,t * nd -order:

More information

Lecture #8: Quantum Mechanical Harmonic Oscillator

Lecture #8: Quantum Mechanical Harmonic Oscillator 5.61 Fall, 013 Lecture #8 Page 1 Last time Lecture #8: Quantum Mechanical Harmonic Oscillator Classical Mechanical Harmonic Oscillator * V(x) = 1 kx (leading term in power series expansion of most V(x)

More information

Schrödinger operators exhibiting parameter-dependent spectral transitions

Schrödinger operators exhibiting parameter-dependent spectral transitions Schrödinger operators exhibiting parameter-dependent spectral transitions Pavel Exner Doppler Institute for Mathematical Physics and Applied Mathematics Prague in collaboration with Diana Barseghyan, Andrii

More information

Wegner estimate for sparse and other generalized alloy type potentials

Wegner estimate for sparse and other generalized alloy type potentials Wegner estimate for sparse and other generalized alloy type potentials Werner Kirsch and Ivan Veselić Fakultät für Mathematik, Ruhr-Universität Bochum, Germany and SFB 237 Unordnung und große Fluktuationen

More information

Eigenvalues of Robin Laplacians on infinite sectors and application to polygons

Eigenvalues of Robin Laplacians on infinite sectors and application to polygons Eigenvalues of Robin Laplacians on infinite sectors and application to polygons Magda Khalile (joint work with Konstantin Pankrashkin) Université Paris Sud /25 Robin Laplacians on infinite sectors 1 /

More information

Lecture 4.6: Some special orthogonal functions

Lecture 4.6: Some special orthogonal functions Lecture 4.6: Some special orthogonal functions Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4340, Advanced Engineering Mathematics

More information

Chaos, Quantum Mechanics and Number Theory

Chaos, Quantum Mechanics and Number Theory Chaos, Quantum Mechanics and Number Theory Peter Sarnak Mahler Lectures 2011 Hamiltonian Mechanics (x, ξ) generalized coordinates: x space coordinate, ξ phase coordinate. H(x, ξ), Hamiltonian Hamilton

More information

Creation and Destruction Operators and Coherent States

Creation and Destruction Operators and Coherent States Creation and Destruction Operators and Coherent States WKB Method for Ground State Wave Function state harmonic oscillator wave function, We first rewrite the ground < x 0 >= ( π h )1/4 exp( x2 a 2 h )

More information

Application of the Lanczos Algorithm to Anderson Localization

Application of the Lanczos Algorithm to Anderson Localization Application of the Lanczos Algorithm to Anderson Localization Adam Anderson The University of Chicago UW REU 2009 Advisor: David Thouless Effect of Impurities in Materials Naively, one might expect that

More information

Mathematische Zeitschrift

Mathematische Zeitschrift Math. Z. DOI 10.1007/s00209-010-0756-8 Mathematische Zeitschrift An uncertainty principle, Wegner estimates and localization near fluctuation boundaries Anne Boutet de Monvel Daniel Lenz Peter Stollmann

More information

1 Distributions (due January 22, 2009)

1 Distributions (due January 22, 2009) Distributions (due January 22, 29). The distribution derivative of the locally integrable function ln( x ) is the principal value distribution /x. We know that, φ = lim φ(x) dx. x ɛ x Show that x, φ =

More information

ON EFFECTIVE HAMILTONIANS FOR ADIABATIC PERTURBATIONS. Mouez Dimassi Jean-Claude Guillot James Ralston

ON EFFECTIVE HAMILTONIANS FOR ADIABATIC PERTURBATIONS. Mouez Dimassi Jean-Claude Guillot James Ralston ON EFFECTIVE HAMILTONIANS FOR ADIABATIC PERTURBATIONS Mouez Dimassi Jean-Claude Guillot James Ralston Abstract We construct almost invariant subspaces and the corresponding effective Hamiltonian for magnetic

More information

Massachusetts Institute of Technology Physics Department

Massachusetts Institute of Technology Physics Department Massachusetts Institute of Technology Physics Department Physics 8.32 Fall 2006 Quantum Theory I October 9, 2006 Assignment 6 Due October 20, 2006 Announcements There will be a makeup lecture on Friday,

More information

DRIFT OF SPECTRALLY STABLE SHIFTED STATES ON STAR GRAPHS

DRIFT OF SPECTRALLY STABLE SHIFTED STATES ON STAR GRAPHS DRIFT OF SPECTRALLY STABLE SHIFTED STATES ON STAR GRAPHS ADILBEK KAIRZHAN, DMITRY E. PELINOVSKY, AND ROY H. GOODMAN Abstract. When the coefficients of the cubic terms match the coefficients in the boundary

More information

On some singular limits for an atmosphere flow

On some singular limits for an atmosphere flow On some singular limits for an atmosphere flow Donatella Donatelli Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università degli Studi dell Aquila 67100 L Aquila, Italy donatella.donatelli@univaq.it

More information

Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends

Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends Kenichi ITO (University of Tokyo) joint work with Erik SKIBSTED (Aarhus University) 3 July 2018 Example: Free

More information

Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, 11-15th July 2005

Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, 11-15th July 2005 Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, 11-15th July 2005 SOME INVERSE SCATTERING PROBLEMS FOR TWO-DIMENSIONAL SCHRÖDINGER

More information

A diamagnetic inequality for semigroup differences

A diamagnetic inequality for semigroup differences A diamagnetic inequality for semigroup differences (Irvine, November 10 11, 2001) Barry Simon and 100DM 1 The integrated density of states (IDS) Schrödinger operator: H := H(V ) := 1 2 + V ω =: H(0, V

More information

A new proof of the analyticity of the electronic density of molecules.

A new proof of the analyticity of the electronic density of molecules. A new proof of the analyticity of the electronic density of molecules. Thierry Jecko AGM, UMR 8088 du CNRS, Université de Cergy-Pontoise, Département de mathématiques, site de Saint Martin, 2 avenue Adolphe

More information

On the existence of an eigenvalue below the essential spectrum

On the existence of an eigenvalue below the essential spectrum On the existence of an eigenvalue below the essential spectrum B.M.Brown, D.K.R.M c Cormack Department of Computer Science, Cardiff University of Wales, Cardiff, PO Box 916, Cardiff CF2 3XF, U.K. A. Zettl

More information

Introduction to Electronic Structure Theory

Introduction to Electronic Structure Theory Introduction to Electronic Structure Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2002 Last Revised: June 2003 1 Introduction The purpose of these

More information

Localization I: General considerations, one-parameter scaling

Localization I: General considerations, one-parameter scaling PHYS598PTD A.J.Leggett 2013 Lecture 4 Localization I: General considerations 1 Localization I: General considerations, one-parameter scaling Traditionally, two mechanisms for localization of electron states

More information

Some Mathematical and Physical Background

Some Mathematical and Physical Background Some Mathematical and Physical Background Linear partial differential operators Let H be a second-order, elliptic, self-adjoint PDO, on scalar functions, in a d-dimensional region Prototypical categories

More information

Perturbation Theory and Numerical Modeling of Quantum Logic Operations with a Large Number of Qubits

Perturbation Theory and Numerical Modeling of Quantum Logic Operations with a Large Number of Qubits Contemporary Mathematics Perturbation Theory and Numerical Modeling of Quantum Logic Operations with a Large Number of Qubits G. P. Berman, G. D. Doolen, D. I. Kamenev, G. V. López, and V. I. Tsifrinovich

More information

POSTULATES OF QUANTUM MECHANICS

POSTULATES OF QUANTUM MECHANICS POSTULATES OF QUANTUM MECHANICS Quantum-mechanical states - In the coordinate representation, the state of a quantum-mechanical system is described by the wave function ψ(q, t) = ψ(q 1,..., q f, t) (in

More information

The Finite Spectrum of Sturm-Liouville Operator With δ-interactions

The Finite Spectrum of Sturm-Liouville Operator With δ-interactions Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Applications and Applied Mathematics: An International Journal (AAM) Vol. 3, Issue (June 08), pp. 496 507 The Finite Spectrum of Sturm-Liouville

More information

CONTINUITY WITH RESPECT TO DISORDER OF THE INTEGRATED DENSITY OF STATES

CONTINUITY WITH RESPECT TO DISORDER OF THE INTEGRATED DENSITY OF STATES Illinois Journal of Mathematics Volume 49, Number 3, Fall 2005, Pages 893 904 S 0019-2082 CONTINUITY WITH RESPECT TO DISORDER OF THE INTEGRATED DENSITY OF STATES PETER D. HISLOP, FRÉDÉRIC KLOPP, AND JEFFREY

More information

2. As we shall see, we choose to write in terms of σ x because ( X ) 2 = σ 2 x.

2. As we shall see, we choose to write in terms of σ x because ( X ) 2 = σ 2 x. Section 5.1 Simple One-Dimensional Problems: The Free Particle Page 9 The Free Particle Gaussian Wave Packets The Gaussian wave packet initial state is one of the few states for which both the { x } and

More information

Classical behavior of the integrated density of states for the uniform magnetic field and a randomly perturbed

Classical behavior of the integrated density of states for the uniform magnetic field and a randomly perturbed Classical behavior of the integrated density of states for the uniform magnetic field and a randomly perturbed lattice * Naomasa Ueki 1 1 Graduate School of Human and Environmental Studies, Kyoto University

More information

Numerical Analysis Comprehensive Exam Questions

Numerical Analysis Comprehensive Exam Questions Numerical Analysis Comprehensive Exam Questions 1. Let f(x) = (x α) m g(x) where m is an integer and g(x) C (R), g(α). Write down the Newton s method for finding the root α of f(x), and study the order

More information

Magnetic wells in dimension three

Magnetic wells in dimension three Magnetic wells in dimension three Yuri A. Kordyukov joint with Bernard Helffer & Nicolas Raymond & San Vũ Ngọc Magnetic Fields and Semiclassical Analysis Rennes, May 21, 2015 Yuri A. Kordyukov (Ufa) Magnetic

More information

BFK-gluing formula for zeta-determinants of Laplacians and a warped product metric

BFK-gluing formula for zeta-determinants of Laplacians and a warped product metric BFK-gluing formula for zeta-determinants of Laplacians and a warped product metric Yoonweon Lee (Inha University, Korea) Geometric and Singular Analysis Potsdam University February 20-24, 2017 (Joint work

More information

Matthias Täufer (TU Chemnitz)

Matthias Täufer (TU Chemnitz) 2. Random breather model. Landau operators Wegner estimate for Landau operators with random breather potential Matthias Täufer (TU Chemnitz) Mainz, 5 September 206 (joint work with I. Veselić) 3. Wegner

More information

DECORRELATION ESTIMATES FOR RANDOM SCHRÖDINGER OPERATORS WITH NON RANK ONE PERTURBATIONS

DECORRELATION ESTIMATES FOR RANDOM SCHRÖDINGER OPERATORS WITH NON RANK ONE PERTURBATIONS DECORRELATION ESTIMATES FOR RANDOM SCHRÖDINGER OPERATORS WITH NON RANK ONE PERTURBATIONS PETER D. HISLOP, M. KRISHNA, AND C. SHIRLEY Abstract. We prove decorrelation estimates for generalized lattice Anderson

More information

References

References References 1. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 1505 (1958) 2. Abrahams, E. (ed.): 50 Years of Anderson Localization. World Scientific, Singapore (2010);

More information

Semicircle law on short scales and delocalization for Wigner random matrices

Semicircle law on short scales and delocalization for Wigner random matrices Semicircle law on short scales and delocalization for Wigner random matrices László Erdős University of Munich Weizmann Institute, December 2007 Joint work with H.T. Yau (Harvard), B. Schlein (Munich)

More information

Anderson Localization Theoretical description and experimental observation in Bose Einstein-condensates

Anderson Localization Theoretical description and experimental observation in Bose Einstein-condensates Anderson Localization Theoretical description and experimental observation in Bose Einstein-condensates Conrad Albrecht ITP Heidelberg 22.07.2009 Conrad Albrecht (ITP Heidelberg) Anderson Localization

More information

The Hamiltonian and the Schrödinger equation Consider time evolution from t to t + ɛ. As before, we expand in powers of ɛ; we have. H(t) + O(ɛ 2 ).

The Hamiltonian and the Schrödinger equation Consider time evolution from t to t + ɛ. As before, we expand in powers of ɛ; we have. H(t) + O(ɛ 2 ). Lecture 12 Relevant sections in text: 2.1 The Hamiltonian and the Schrödinger equation Consider time evolution from t to t + ɛ. As before, we expand in powers of ɛ; we have U(t + ɛ, t) = I + ɛ ( īh ) H(t)

More information

Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle

Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle Peter Woit Department of Mathematics, Columbia University woit@math.columbia.edu November 28, 2012 We ll now turn to

More information

EXPOSITORY NOTES ON DISTRIBUTION THEORY, FALL 2018

EXPOSITORY NOTES ON DISTRIBUTION THEORY, FALL 2018 EXPOSITORY NOTES ON DISTRIBUTION THEORY, FALL 2018 While these notes are under construction, I expect there will be many typos. The main reference for this is volume 1 of Hörmander, The analysis of liner

More information

Quantum transport of 2D Dirac fermions: the case for a topological metal

Quantum transport of 2D Dirac fermions: the case for a topological metal Quantum transport of 2D Dirac fermions: the case for a topological metal Christopher Mudry 1 Shinsei Ryu 2 Akira Furusaki 3 Hideaki Obuse 3,4 1 Paul Scherrer Institut, Switzerland 2 University of California

More information

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics We now consider the spatial degrees of freedom of a particle moving in 3-dimensional space, which of course is an important

More information

Path integrals and the classical approximation 1 D. E. Soper 2 University of Oregon 14 November 2011

Path integrals and the classical approximation 1 D. E. Soper 2 University of Oregon 14 November 2011 Path integrals and the classical approximation D. E. Soper University of Oregon 4 November 0 I offer here some background for Sections.5 and.6 of J. J. Sakurai, Modern Quantum Mechanics. Introduction There

More information

Holographic Geometries from Tensor Network States

Holographic Geometries from Tensor Network States Holographic Geometries from Tensor Network States J. Molina-Vilaplana 1 1 Universidad Politécnica de Cartagena Perspectives on Quantum Many-Body Entanglement, Mainz, Sep 2013 1 Introduction & Motivation

More information

Microlocal analysis and inverse problems Lecture 3 : Carleman estimates

Microlocal analysis and inverse problems Lecture 3 : Carleman estimates Microlocal analysis and inverse problems ecture 3 : Carleman estimates David Dos Santos Ferreira AGA Université de Paris 13 Monday May 16 Instituto de Ciencias Matemáticas, Madrid David Dos Santos Ferreira

More information

A classification of gapped Hamiltonians in d = 1

A classification of gapped Hamiltonians in d = 1 A classification of gapped Hamiltonians in d = 1 Sven Bachmann Mathematisches Institut Ludwig-Maximilians-Universität München Joint work with Yoshiko Ogata NSF-CBMS school on quantum spin systems Sven

More information

Quantum Mechanics Solutions

Quantum Mechanics Solutions Quantum Mechanics Solutions (a (i f A and B are Hermitian, since (AB = B A = BA, operator AB is Hermitian if and only if A and B commute So, we know that [A,B] = 0, which means that the Hilbert space H

More information

A class of non-convex polytopes that admit no orthonormal basis of exponentials

A class of non-convex polytopes that admit no orthonormal basis of exponentials A class of non-convex polytopes that admit no orthonormal basis of exponentials Mihail N. Kolountzakis and Michael Papadimitrakis 1 Abstract A conjecture of Fuglede states that a bounded measurable set

More information

Geometric Aspects of Sturm-Liouville Problems I. Structures on Spaces of Boundary Conditions

Geometric Aspects of Sturm-Liouville Problems I. Structures on Spaces of Boundary Conditions Geometric Aspects of Sturm-Liouville Problems I. Structures on Spaces of Boundary Conditions QINGKAI KONG HONGYOU WU and ANTON ZETTL Abstract. We consider some geometric aspects of regular Sturm-Liouville

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

On contact interactions realised as Friedrichs systems

On contact interactions realised as Friedrichs systems On contact interactions realised as Friedrichs systems Marko Erceg and Alessandro Michelangeli Abstract. We realise the Hamiltonians of contact interactions in quantum mechanics within the framework of

More information

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization. 23 August - 3 September, 2010

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization. 23 August - 3 September, 2010 16-5 Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization 3 August - 3 September, 010 INTRODUCTORY Anderson Localization - Introduction Boris ALTSHULER Columbia

More information

Condensation of fermion pairs in a domain

Condensation of fermion pairs in a domain Condensation of fermion pairs in a domain Marius Lemm (Caltech) joint with Rupert L. Frank and Barry Simon QMath 13, Georgia Tech, October 8, 2016 BCS states We consider a gas of spin 1/2 fermions, confined

More information

Exponential approach to equilibrium for a stochastic NLS

Exponential approach to equilibrium for a stochastic NLS Exponential approach to equilibrium for a stochastic NLS CNRS and Cergy Bonn, Oct, 6, 2016 I. Stochastic NLS We start with the dispersive nonlinear Schrödinger equation (NLS): i u = u ± u p 2 u, on the

More information

Physics 505 Homework No. 1 Solutions S1-1

Physics 505 Homework No. 1 Solutions S1-1 Physics 505 Homework No s S- Some Preliminaries Assume A and B are Hermitian operators (a) Show that (AB) B A dx φ ABψ dx (A φ) Bψ dx (B (A φ)) ψ dx (B A φ) ψ End (b) Show that AB [A, B]/2+{A, B}/2 where

More information

arxiv:math-ph/ v1 10 May 2000

arxiv:math-ph/ v1 10 May 2000 HEP-00-13 Conjecture on the Interlacing of Zeros in Complex Sturm-Liouville Problems arxiv:math-ph/0005012v1 10 May 2000 Carl M. Bender 1, Stefan Boettcher 2, and Van M. Savage 1 1 Department of Physics,

More information

Quantum decay rates in chaotic scattering

Quantum decay rates in chaotic scattering Quantum decay rates in chaotic scattering S. Nonnenmacher (Saclay) + M. Zworski (Berkeley) National AMS Meeting, New Orleans, January 2007 A resonant state for the partially open stadium billiard, computed

More information

Bounds and Error Estimates for Nonlinear Eigenvalue Problems

Bounds and Error Estimates for Nonlinear Eigenvalue Problems Bounds and Error Estimates for Nonlinear Eigenvalue Problems D. Bindel Courant Institute for Mathematical Sciences New York Univerity 8 Oct 28 Outline Resonances via nonlinear eigenproblems Sensitivity

More information

Title Project Summary

Title Project Summary Title Project Summary The aim of the project is an estimation theory of those special functions of analysis called zeta functions after the zeta function of Euler (1730). The desired estimates generalize

More information

Lecture 10. Central potential

Lecture 10. Central potential Lecture 10 Central potential 89 90 LECTURE 10. CENTRAL POTENTIAL 10.1 Introduction We are now ready to study a generic class of three-dimensional physical systems. They are the systems that have a central

More information

Elements of linear algebra

Elements of linear algebra Elements of linear algebra Elements of linear algebra A vector space S is a set (numbers, vectors, functions) which has addition and scalar multiplication defined, so that the linear combination c 1 v

More information

Harmonic Oscillator with raising and lowering operators. We write the Schrödinger equation for the harmonic oscillator in one dimension as follows:

Harmonic Oscillator with raising and lowering operators. We write the Schrödinger equation for the harmonic oscillator in one dimension as follows: We write the Schrödinger equation for the harmonic oscillator in one dimension as follows: H ˆ! = "!2 d 2! + 1 2µ dx 2 2 kx 2! = E! T ˆ = "! 2 2µ d 2 dx 2 V ˆ = 1 2 kx 2 H ˆ = ˆ T + ˆ V (1) where µ is

More information

Spectral Universality of Random Matrices

Spectral Universality of Random Matrices Spectral Universality of Random Matrices László Erdős IST Austria (supported by ERC Advanced Grant) Szilárd Leó Colloquium Technical University of Budapest February 27, 2018 László Erdős Spectral Universality

More information

Research Summary. Jeffrey H. Schenker

Research Summary. Jeffrey H. Schenker Research Summary Applications of mathematics, in particular harmonic analysis, functional analysis and probability, with a focus on deriving rigorous results for equations or models suggested by scientific

More information

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 ORIGINS E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 P.W. Anderson, Absence of Diffusion in Certain Random Lattices ; Phys.Rev., 1958, v.109, p.1492 L.D. Landau, Fermi-Liquid

More information

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I Physics 342 Lecture 17 Midterm I Recap Lecture 17 Physics 342 Quantum Mechanics I Monday, March 1th, 28 17.1 Introduction In the context of the first midterm, there are a few points I d like to make about

More information

MAGNETIC BLOCH FUNCTIONS AND VECTOR BUNDLES. TYPICAL DISPERSION LAWS AND THEIR QUANTUM NUMBERS

MAGNETIC BLOCH FUNCTIONS AND VECTOR BUNDLES. TYPICAL DISPERSION LAWS AND THEIR QUANTUM NUMBERS MAGNETIC BLOCH FUNCTIONS AND VECTOR BUNDLES. TYPICAL DISPERSION LAWS AND THEIR QUANTUM NUMBERS S. P. NOVIKOV I. In previous joint papers by the author and B. A. Dubrovin [1], [2] we computed completely

More information

Absolutely Continuous Spectrum for the Anderson Model on Trees

Absolutely Continuous Spectrum for the Anderson Model on Trees Absolutely Continuous Spectrum for the Anderson Model on Trees by Florina Halasan A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of

More information

Introduction to Quantum Spin Systems

Introduction to Quantum Spin Systems 1 Introduction to Quantum Spin Systems Lecture 2 Sven Bachmann (standing in for Bruno Nachtergaele) Mathematics, UC Davis MAT290-25, CRN 30216, Winter 2011, 01/10/11 2 Basic Setup For concreteness, consider

More information

Waves in Honeycomb Structures

Waves in Honeycomb Structures Waves in Honeycomb Structures Michael I. Weinstein Columbia University Nonlinear Schrödinger Equations: Theory and Applications Heraklion, Crete / Greece May 20-24, 2013 Joint work with C.L. Fefferman

More information