Quantitative MRI & Dynamic Models

Size: px
Start display at page:

Download "Quantitative MRI & Dynamic Models"

Transcription

1 Quantitative MRI & Dynamic Models The pre-eminent role of imaging now requires a new level of metric - quantitative measurements Robert I Grossman, Radiology Dep, NYU why measuring relaxation times? T1 mapping T2/T2* mapping, diffusion models MR contrast agents DCE image analysis basic model for DCE MRI numerical techniques for qmri and DCE-MRI: fitting model to data 1

2 Applications of qmri qmri allows statistical analysis of tissue by providing scale & units detects subtle changes that may not be apparent to radiologist' eye T1: tumor assessment, cartilage damage, conversion to tracer concentration T2* iron content, tissue oxygenation problems: propagation of noise lack of standard methods hard to deliver quickly -- complicated image post-processing Damedian "Patent 832" Table 2 envisions qmri even before MRI 2

3 T1 measurement User manipulates flip angle θ TI TR Several images are acquired. System of equations (2 or more) solved for M0 and T1 Saturation recovery method Acquisitions with different TR 's For accuracy we need to know what T1 is expected (a) TR < 0.5 T1 (b) TR > 2 T1 Relatively slow 3

4 Variable flip angle gradient echo method Repeated flip angles: Two or more equations with different θ 's Ernst angle E : flip angle that gives the maximum signal (in a fixed time) For accuracy we need to know what T1 is expected (a) θ < E (b) θ > E Faster than saturation recovery Needs accurate flip angles 4

5 Inversion recovery method sequence: TI readout... TR-TI... (a more general equation exists for arbitrary flip angles) Gold standard because it gives accurate T1 Used in spectroscopy Slow, but one could use bssp for faster acquisition (Bokacheva MRM 2006) 5

6 R2, R2*, ADC measurement Functional form so can be transformed to a linear regression. Special methods DESPOT1, DESPOT2 (Deoni MRM 2003, MRM 2005) DESPOT: combined T1 and T2 mapping DESPOT1: T1 is calculated from a series of SPGR DESPOT2: T2 is calculated from a series of SSFP images Both acquired over a range of flip angles with constant TR. T1 information used in computing T2. TRITONE (Fleysher & Fleysher MRI 2008) addresses the issue of B1 inhomogeneity by collecting three conventional 3D SPGR EPI images to produce unbiased T1 maps. FireVoxel demos: (a) T1 mapping (b) ADC mapping 6

7 MRI contrast agents Most clinical MRI contrast agents are complexes of gadolinium. Gd 3+ is a highly toxic metalic ion. Chelating is needed to administer in the patient. Approved chelating agents: DTPA, DOTA & derivatives. the electron spin resonance of Gd 3+ matches the Larmor frequency & induces electron-nucleus interactions. This indirectly shortens the T1 relaxation time of hydrogen protons (water and fat) that are in close proximity of Gd 3+. 7

8 Common MRI ligands 8

9 MRI signal vs concentration R1 = 1/T1 R2 = 1/T2 units of R1,2 s -1 1/T1,2obs = 1/T1,2tissue + 1/T1,2agent 1/T1,2obs = 1/T1,2tissue + r1,2 [Gd] [Gd] = concentration in mm linear relationship between R 1 and [Gd] linear relationship between R 2 and [Gd] 9

10 Factors affecting relaxivity macromolecular content water exchange water diffusion susceptibility DCE-MRI analysis 10

11 DCE-MRI: complete workflow 1) generate time series from DICOM files 2) coregister 3) form time activity curves TAC (may need segmentation) 4) convert to concentration (may use pre-contrast T1/T2) 5) fit model to concentration curves 11

12 Signal to concentration: S(t) C(t) in two steps 1. Compute T1(t) from above eq. given: S0 = signal before contrast arrival T10 = pre-contrast T1 of tissue θ = flip angle 2. Compute tracer concentration C(t) in tissue 1/T1(t) = 1/T10 + r1 C(t) r 1 = relaxivity, or increase in R1 per unit concentration of Gd 12

13 Single compartment perfusion model A bucket or a pool of volume V (ml) well-mixed input flow = output flow = k (ml/min) A(t) = concentration in inlet tube = input function (measured) C(t) = concentration in the pool = outlet tube (measured) Conservation of mass: foe each delta t amount of tracer entering the pool : k A(t) amount of tracer exiting the pool: k C(t) amount of tracer inside the pool: V C(t) V C'(t) = k A(t) k C(t) linear 1st order differential equation with constant coefficients can be solved for k/v = flow rate in (ml blood/min)/(ml tissue) 13

14 Linear 1st order differential equation with constant coefficients a1 y'(t) + a0 y(t) = g(t) The solution is given by convolving g(t) and an exponential function: where k= a0/a1 & q(t) = (1/a1) g(t) Proof: divide by a1 to get the "standard form": y'(t) + k y(t) = q(t) y(t) = particular solution + const general solution of homogenous equ. particular general y(t) is the tissue concentration, t=0 is just before initial contrast appearance in the arterial system, so we usually want y(0)=0 const =0 14

15 V C'(t) = k A(t) k C(t) regional flow (tissue perfusion) = k / V often expressed in: ml blood per min per 100 gram of tissue 15

16 Basic DCE-MRI model of tissue concentration (Tofts model) Contrast injected into blood plasma compartment plasma ~60% of blood volume (blood cells = other 40%) plasma considered a variable fraction of tissue reversible exchange between blood and extravascular extracellular space EES EES 10-60% of tissue 16

17 vp plasma included as part of tissue volume (high in liver, kidney, low in brain) Cp(t) = arterial (plasma) input function (measured) kep = K trans /ve flow of tracer between plasma & EED = kep differences in concentrations (passive exchange) ve Ce'(t) = kep Cp(t) kep Ce (t) Tofts model: 1st term often omitted 17

18 Tofts et al JMRI 1999 Standard terminology and units 18

19 Properties of parameters ve volume of EES regions with high ve take longer to reach the peak K trans transfer rate rapid enhancement high K trans For healthy blood vessel (no Gd leakage): K trans = vessel permeability x surface area permeability-limited regime regional blood flow >> PS For leaky vessels (in many tumors) K trans = blood flow flow-limited regime PS >> regional blood flow 19

20 Two representative DCE-MRI studies Pickles et al. Breast Cancer Research & Treat 2005 Ocak et al. AJR 2007 Some clinical DCE-MRI results using Tofts model are hard to interpret. More sophisticated models are able to estimate both flow and leakage: AATH model Multi-compartment models Both require good temporal resolution for meaningful fitting. 20

21 Estimating model parameters model (green curve): data (white crosses): model fits the data compute parameters to minimize the difference (sum of squares) This problem (also many T1 mapping approaches) is an example of non-linear minimization Minimization problem = maximization problem maximize f(x 1, x 2..x n ) is equivalent to minimizing g() = -f() (we can say optimization but then there is confusion with control theory that uses analytical techniques) 21

22 Grid method Brute force, but becomes more effective as computers become faster 22

23 Random grid vs. uniform grid 23

24 A sequence of 1-D minimizations (iterative) General rule in function minimization: we don't expect good one-dimensional techniques to perform well when extended to high dimensionality 24

25 Simplex method of Nelder & Mead (amoeba) One of the most successful iterative (stepping) methods. MATLAB: fminsearch() Simplex is an n-dimensional figure specified by n + 1 points in n-space. Triangle in two dimensions, tetrahedron in 3D. At each step the program remembers the value of minimized function at n + 1 points. Starting simplex points are arbitrary (healthy tissue parameters). P H point is where the function is highest (worst) P L point is where the function is lowest (best so far) 25

26 From the original simplex, a new simplex is formed by replacing P H by a "better" point. Each search is in an `intelligent' direction, pointing from the highest value to the average of the other values P. P is the center of gravity (centroid) of n other points (after excluding the worst point) Ameoba can: reflect expand contract see video: 26

27 Reflection The first attempt to find a better point is made by reflecting P H with respect to P: P* = P + (P - P H ) Ameoba is told to reflect if P* is lower than the second worst, but not better than the best. then iterate keep P* if f(p*) < f(p 2 ) & f(p*) > f(p L ) 27

28 ... otherwise consider expansion (move down hill faster) else if f(p*) < f(p L ), a new point is tried at P** = P + 2 (P - P H )... otherwise consider contraction else if f(p*) > f(p H ), a new point is tried at P** = P (P - P H ). 28

29 The best new points replaces P H in the simplex, then we iterate. If none of reflection, expansion, contraction are applicable (all are larger than PH), a whole new simplex is formed around P L, with dimensions reduced by a factor of 0.5. Note we don't let amoeba to collapse into a hyperplane of n - 1 dimensions amoeba is designed to take as big steps as possible, and therefore amoeba is relatively insensitive to shallow local minima -- fine structures in the function caused by noisy data, rounding errors, etc. 29

30 Analytic methods Many require that we compute partial derivatives. Steepest descent -- series of minimizations along the direction of local gradient. Unfortunate property: successive searches are in orthogonal directions. Newton's method (requires the matrix of 2nd derivatives or Hessian matrix) Conjugate gradient method. Variable metric method of Fletcher and Powell. Least squares fit: Levenberg-Marquard algorithm. MATLAB: lsqnonlin() Interval arithmetic & Global optimization FireVoxel demo: prostate perfusion 30

31 To make a good model (not just DCE-MRI) 1. Ensure estimated parameters represent known physiology (validation). This work leads to successive revisions. 2. Make sure that changes in model parameter lead to changes in measured data. This could lead to a revised, simpler model. 3. Ensure precision of estimated parameters using phantoms, repeated imaging, Monte- Carlo simulations. This also often leads to a revised, simpler model. Model parameter becomes a biomarker if sensitive to physiological changes -- responds to progression of disease, responds to successful treatment reliable (good precision) agrees with well established reference measures (accurate) 31

Dynamic Contrast Enhance (DCE)-MRI

Dynamic Contrast Enhance (DCE)-MRI Dynamic Contrast Enhance (DCE)-MRI contrast enhancement in ASL: labeling of blood (endogenous) for this technique: usage of a exogenous contras agent typically based on gadolinium molecules packed inside

More information

Part III: Sequences and Contrast

Part III: Sequences and Contrast Part III: Sequences and Contrast Contents T1 and T2/T2* Relaxation Contrast of Imaging Sequences T1 weighting T2/T2* weighting Contrast Agents Saturation Inversion Recovery JUST WATER? (i.e., proton density

More information

HY Ιατρική Απεικόνιση. Διδάσκων: Kώστας Μαριάς

HY Ιατρική Απεικόνιση. Διδάσκων: Kώστας Μαριάς HY 571 - Ιατρική Απεικόνιση Διδάσκων: Kώστας Μαριάς 11. MRI Τ1,Τ2, PD and physiological parameter imaging Summary and Clarifications Resonance is referred to as the property of an atom to absorb energy

More information

Magnetic Resonance Imaging. Qun Zhao Bioimaging Research Center University of Georgia

Magnetic Resonance Imaging. Qun Zhao Bioimaging Research Center University of Georgia Magnetic Resonance Imaging Qun Zhao Bioimaging Research Center University of Georgia The Nobel Prize in Physiology or Medicine 2003 "for their discoveries concerning magnetic resonance imaging" Paul C.

More information

Chapter 24 MRA and Flow quantification. Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University

Chapter 24 MRA and Flow quantification. Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University Chapter 24 MRA and Flow quantification Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University Previous classes Flow and flow compensation (Chap. 23) Steady state signal (Cha. 18) Today

More information

Tissue Parametric Mapping:

Tissue Parametric Mapping: Tissue Parametric Mapping: Contrast Mechanisms Using SSFP Sequences Jongho Lee Department of Radiology University of Pennsylvania Tissue Parametric Mapping: Contrast Mechanisms Using bssfp Sequences Jongho

More information

Contrast Mechanisms in MRI. Michael Jay Schillaci

Contrast Mechanisms in MRI. Michael Jay Schillaci Contrast Mechanisms in MRI Michael Jay Schillaci Overview Image Acquisition Basic Pulse Sequences Unwrapping K-Space Image Optimization Contrast Mechanisms Static and Motion Contrasts T1 & T2 Weighting,

More information

Blood Water Dynamics

Blood Water Dynamics Bioengineering 208 Magnetic Resonance Imaging Winter 2007 Lecture 8 Arterial Spin Labeling ASL Basics ASL for fmri Velocity Selective ASL Vessel Encoded ASL Blood Water Dynamics Tissue Water Perfusion:

More information

NMR/MRI examination (8N080 / 3F240)

NMR/MRI examination (8N080 / 3F240) NMR/MRI examination (8N080 / 3F240) Remarks: 1. This test consists of 3 problems with at total of 26 sub-questions. 2. Questions are in English. You are allowed to answer them in English or Dutch. 3. Please

More information

Lecture #7 In Vivo Water

Lecture #7 In Vivo Water Lecture #7 In Vivo Water Topics Hydration layers Tissue relaxation times Magic angle effects Magnetization Transfer Contrast (MTC) CEST Handouts and Reading assignments Mathur-De Vre, R., The NMR studies

More information

The Basics of Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBM-AIT, EPFL Course 2013-2014-Chemistry 1 Course 2013-2014-Chemistry 2 MRI: Many different contrasts Proton density T1

More information

Cambridge University Press MRI from A to Z: A Definitive Guide for Medical Professionals Gary Liney Excerpt More information

Cambridge University Press MRI from A to Z: A Definitive Guide for Medical Professionals Gary Liney Excerpt More information Main glossary Aa AB systems Referring to molecules exhibiting multiply split MRS peaks due to spin-spin interactions. In an AB system, the chemical shift between the spins is of similar magnitude to the

More information

MRI Physics I: Spins, Excitation, Relaxation

MRI Physics I: Spins, Excitation, Relaxation MRI Physics I: Spins, Excitation, Relaxation Douglas C. Noll Biomedical Engineering University of Michigan Michigan Functional MRI Laboratory Outline Introduction to Nuclear Magnetic Resonance Imaging

More information

Magnetic Resonance Imaging

Magnetic Resonance Imaging http://www.qldxray.com.au/filelibrary/mri_cardiovascular_system_ca_0005.jpg Magnetic Resonance Imaging 1 Overview 1. The magnetic properties of nuclei, and how they behave in strong magnetic fields. 2.

More information

FREQUENCY SELECTIVE EXCITATION

FREQUENCY SELECTIVE EXCITATION PULSE SEQUENCES FREQUENCY SELECTIVE EXCITATION RF Grad 0 Sir Peter Mansfield A 1D IMAGE Field Strength / Frequency Position FOURIER PROJECTIONS MR Image Raw Data FFT of Raw Data BACK PROJECTION Image Domain

More information

Field trip: Tuesday, Feb 5th

Field trip: Tuesday, Feb 5th Pulse Sequences Field trip: Tuesday, Feb 5th Hardware tour of VUIIIS Philips 3T Meet here at regular class time (11.15) Complete MRI screening form! Chuck Nockowski Philips Service Engineer Reminder: Project/Presentation

More information

Bioengineering 278" Magnetic Resonance Imaging" " Winter 2011" Lecture 9! Time of Flight MRA!

Bioengineering 278 Magnetic Resonance Imaging  Winter 2011 Lecture 9! Time of Flight MRA! Bioengineering 278" Magnetic Resonance Imaging" " Winter 2011" Lecture 9 Motion Encoding using Longitudinal Magnetization: Magnetic Resonance Angiography Time of Flight Contrast Enhanced Arterial Spin

More information

Basic perfusion theory

Basic perfusion theory Basic perfusion theory January 24 th 2012 by Henrik BW Larsson Functional Imaging Unit, Diagnostic Department Outline What is perfusion Why measure perfusion Measures The easy part: What to do and why

More information

MRI in Review: Simple Steps to Cutting Edge Part I

MRI in Review: Simple Steps to Cutting Edge Part I MRI in Review: Simple Steps to Cutting Edge Part I DWI is now 2 years old... Mike Moseley Radiology Stanford DWI, b = 1413 T2wt, 28/16 ASN 21 San Francisco + Disclosures: Funding NINDS, NCRR, NCI 45 minutes

More information

MRI in Practice. Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK. John Talbot MSc, DCRR

MRI in Practice. Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK. John Talbot MSc, DCRR MRI in Practice Third edition Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK and Carolyn Kaut RothRT(R) (MR) (CT) (M) (CV) Fellow SMRT (Section for Magnetic

More information

Measuring the invisible using Quantitative Magnetic Resonance Imaging

Measuring the invisible using Quantitative Magnetic Resonance Imaging Measuring the invisible using Quantitative Magnetic Resonance Imaging Paul Tofts Emeritus Professor University of Sussex, Brighton, UK Formerly Chair in Imaging Physics, Brighton and Sussex Medical School,

More information

Physics of MR Image Acquisition

Physics of MR Image Acquisition Physics of MR Image Acquisition HST-583, Fall 2002 Review: -MRI: Overview - MRI: Spatial Encoding MRI Contrast: Basic sequences - Gradient Echo - Spin Echo - Inversion Recovery : Functional Magnetic Resonance

More information

Medical Imaging Physics Spring Quarter Week 9-1

Medical Imaging Physics Spring Quarter Week 9-1 Medical Imaging Physics Spring Quarter Week 9-1 NMR and MRI Davor Balzar balzar@du.edu www.du.edu/~balzar Intro MRI Outline NMR & MRI Guest lecturer fmri Thursday, May 22 Visit to CUHSC It s not mandatory

More information

Pulse Sequences: RARE and Simulations

Pulse Sequences: RARE and Simulations Pulse Sequences: RARE and Simulations M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.04.19 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business Final project

More information

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam (closed book, 1 sheets of notes double sided allowed, no calculator or other electronic devices allowed) 1. Ultrasound Physics (15 pt) A) (9

More information

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics Magnetic Resonance Imaging Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics pal.e.goa@ntnu.no 1 Why MRI? X-ray/CT: Great for bone structures and high spatial resolution Not so great

More information

QUALITY ASSURANCE OF MAGNETIC RESONANCE IMAGING FOR ADAPTIVE RADIOTHERAPY: PRELIMINARY INVESTIGATIONS TREVOR THANG 1 Supervisors: Dr.

QUALITY ASSURANCE OF MAGNETIC RESONANCE IMAGING FOR ADAPTIVE RADIOTHERAPY: PRELIMINARY INVESTIGATIONS TREVOR THANG 1 Supervisors: Dr. QUALITY ASSURANCE OF MAGNETIC RESONANCE IMAGING FOR ADAPTIVE RADIOTHERAPY: PRELIMINARY INVESTIGATIONS TREVOR THANG 1 Supervisors: Dr. Eugene Wong 2, Dr. Rob Bartha 1 Department of Medical Biophysics 1,

More information

Investigation of Multicomponent MRI Relaxation Data with Stochastic Contraction Fitting Algorithm

Investigation of Multicomponent MRI Relaxation Data with Stochastic Contraction Fitting Algorithm Investigation of Multicomponent MRI Relaxation Data with Stochastic Contraction Fitting Algorithm Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master in Mathematical Science

More information

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Multidimensional Unconstrained Optimization Suppose we have a function f() of more than one

More information

Numerical optimization

Numerical optimization THE UNIVERSITY OF WESTERN ONTARIO LONDON ONTARIO Paul Klein Office: SSC 408 Phone: 661-111 ext. 857 Email: paul.klein@uwo.ca URL: www.ssc.uwo.ca/economics/faculty/klein/ Numerical optimization In these

More information

Welcome to MR! CT PET (with FDG) MRI (T2 w.) MR Image types: T2 weighted T1 weighted Sequence parameters FLAIR Diffusion

Welcome to MR! CT PET (with FDG) MRI (T2 w.) MR Image types: T2 weighted T1 weighted Sequence parameters FLAIR Diffusion Phsics Images Welcome to R! Introduction to agnetic Resonance Imaging Adam Espe Hansen, PET/R-phsicist Department of Clinical Phsiolog, Nuclear medicine & PET Rigshospitalet Basic Kinetic odeling in olecular

More information

MRS: IN VIVO SPECTROSCOPIC IMAGING MAIN POINTS

MRS: IN VIVO SPECTROSCOPIC IMAGING MAIN POINTS MRS: IN VIVO SPECTROSCOPIC IMAGING MAIN POINTS 1. A MR spectrum can identify many metabolites other than water by: Locating the peak(s) determined by a characteristic chemical shift (ppm) resulting from

More information

Measuring cerebral blood flow and other haemodynamic parameters using Arterial Spin Labelling MRI. David Thomas

Measuring cerebral blood flow and other haemodynamic parameters using Arterial Spin Labelling MRI. David Thomas Measuring cerebral blood flow and other haemodynamic parameters using Arterial Spin Labelling MRI David Thomas Principal Research Associate in MR Physics Leonard Wolfson Experimental Neurology Centre UCL

More information

Quantitative/Mapping Methods

Quantitative/Mapping Methods Quantitative/Mapping Methods Gradient Measurement Fat/Water Separation B0 and B1 mapping T1, T2 and T2* mapping 426 Gradient Measurement Duyn method Modifications 427 Duyn Method - Pulse Sequence Excite

More information

Outline. Superconducting magnet. Magnetic properties of blood. Physiology BOLD-MRI signal. Magnetic properties of blood

Outline. Superconducting magnet. Magnetic properties of blood. Physiology BOLD-MRI signal. Magnetic properties of blood Magnetic properties of blood Physiology BOLD-MRI signal Aart Nederveen Department of Radiology AMC a.j.nederveen@amc.nl Outline Magnetic properties of blood Moses Blood oxygenation BOLD fmri Superconducting

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu MRI advantages Superior soft-tissue contrast Depends on among

More information

The physics US and MRI. Prof. Peter Bogner

The physics US and MRI. Prof. Peter Bogner The physics US and MRI Prof. Peter Bogner Sound waves mechanical disturbance, a pressure wave moves along longitudinal wave compression rarefaction zones c = nl, (c: velocity, n: frequency, l: wavelength

More information

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner The physics of medical imaging US, CT, MRI Prof. Peter Bogner Clinical radiology curriculum blocks of lectures and clinical practice (7x2) Physics of medical imaging Neuroradiology Head and neck I. Head

More information

Magnetic resonance imaging MRI

Magnetic resonance imaging MRI Magnetic resonance imaging MRI Introduction What is MRI MRI is an imaging technique used primarily in medical settings that uses a strong magnetic field and radio waves to produce very clear and detailed

More information

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution. Introduction to MRI Spin & Magnetic Moments Relaxation (T1, T2) Spin Echoes 2DFT Imaging Selective excitation, phase & frequency encoding K-space & Spatial Resolution Contrast (T1, T2) Acknowledgement:

More information

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23 Optimization: Nonlinear Optimization without Constraints Nonlinear Optimization without Constraints 1 / 23 Nonlinear optimization without constraints Unconstrained minimization min x f(x) where f(x) is

More information

Lecture 7: Minimization or maximization of functions (Recipes Chapter 10)

Lecture 7: Minimization or maximization of functions (Recipes Chapter 10) Lecture 7: Minimization or maximization of functions (Recipes Chapter 10) Actively studied subject for several reasons: Commonly encountered problem: e.g. Hamilton s and Lagrange s principles, economics

More information

On Signal to Noise Ratio Tradeoffs in fmri

On Signal to Noise Ratio Tradeoffs in fmri On Signal to Noise Ratio Tradeoffs in fmri G. H. Glover April 11, 1999 This monograph addresses the question of signal to noise ratio (SNR) in fmri scanning, when parameters are changed under conditions

More information

Lecture V. Numerical Optimization

Lecture V. Numerical Optimization Lecture V Numerical Optimization Gianluca Violante New York University Quantitative Macroeconomics G. Violante, Numerical Optimization p. 1 /19 Isomorphism I We describe minimization problems: to maximize

More information

NMR and MRI : an introduction

NMR and MRI : an introduction Intensive Programme 2011 Design, Synthesis and Validation of Imaging Probes NMR and MRI : an introduction Walter Dastrù Università di Torino walter.dastru@unito.it \ Introduction Magnetic Resonance Imaging

More information

MR Advance Techniques. Flow Phenomena. Class I

MR Advance Techniques. Flow Phenomena. Class I MR Advance Techniques Flow Phenomena Class I Flow Phenomena In this class we will explore different phenomenona produced from nuclei that move during the acquisition of data. Flowing nuclei exhibit different

More information

Tissue Characteristics Module Three

Tissue Characteristics Module Three Tissue Characteristics Module Three 1 Equilibrium State Equilibrium State At equilibrium, the hydrogen vector is oriented in a direction parallel to the main magnetic field. Hydrogen atoms within the vector

More information

RADIOLOGIV TECHNOLOGY 4912 COMPREHENSEIVE REVIEW/MRI WORSHEET #1- PATIENT CARE AND SAFETY/PHYSICAL PRINCIPLES

RADIOLOGIV TECHNOLOGY 4912 COMPREHENSEIVE REVIEW/MRI WORSHEET #1- PATIENT CARE AND SAFETY/PHYSICAL PRINCIPLES RADIOLOGIV TECHNOLOGY 4912 COMPREHENSEIVE REVIEW/MRI WORSHEET #1- PATIENT CARE AND SAFETY/PHYSICAL PRINCIPLES 1. What are potential consequences to patients and personnel should there be a release of gaseous

More information

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013 EE5E/BIOE65 Spring 013 Principles of MRI Miki Lustig This is the last homework in class. Enjoy it. Assignment 9 Solutions Due April 9th, 013 1) In class when we presented the spin-echo saturation recovery

More information

Introduction to the Physics of NMR, MRI, BOLD fmri

Introduction to the Physics of NMR, MRI, BOLD fmri Pittsburgh, June 13-17, 2011 Introduction to the Physics of NMR, MRI, BOLD fmri (with an orientation toward the practical aspects of data acquisition) Pittsburgh, June 13-17, 2001 Functional MRI in Clinical

More information

Introduction to the Course and the Techniques. Jeffry R. Alger, PhD Ahmanson-Lovelace Brain Mapping Center Department of Neurology

Introduction to the Course and the Techniques. Jeffry R. Alger, PhD Ahmanson-Lovelace Brain Mapping Center Department of Neurology Introduction to the Course and the Techniques Jeffry R. Alger, PhD Ahmanson-Lovelace Brain Mapping Center Department of Neurology (jralger@ucla.edu) CTSI Neuroimaging April 2013 Rationale for the Course

More information

G Medical Imaging. Outline 4/13/2012. Physics of Magnetic Resonance Imaging

G Medical Imaging. Outline 4/13/2012. Physics of Magnetic Resonance Imaging G16.4426 Medical Imaging Physics of Magnetic Resonance Imaging Riccardo Lattanzi, Ph.D. Assistant Professor Department of Radiology, NYU School of Medicine Department of Electrical and Computer Engineering,

More information

Chapter 14:Physics of Magnetic Resonance

Chapter 14:Physics of Magnetic Resonance Chapter 14:Physics of Magnetic Resonance Slide set of 141 slides based on the chapter authored by Hee Kwon Song of the publication (ISBN 978-92-0-131010-1): Diagnostic Radiology Physics: A Handbook for

More information

Basic MRI physics and Functional MRI

Basic MRI physics and Functional MRI Basic MRI physics and Functional MRI Gregory R. Lee, Ph.D Assistant Professor, Department of Radiology June 24, 2013 Pediatric Neuroimaging Research Consortium Objectives Neuroimaging Overview MR Physics

More information

Magnetization Preparation Sequences

Magnetization Preparation Sequences Magnetization Preparation Sequences Acquisition method may not give desired contrast Prep block adds contrast (and/or encoding) MP-RAGE = Magnetization prepared rapid acquisition with gradient echo (Mugler,

More information

ONLINE ESTIMATION OF CAPILLARY PERMEABILITY AND CONTRAST AGENT CONCENTRATION IN RAT TUMORS

ONLINE ESTIMATION OF CAPILLARY PERMEABILITY AND CONTRAST AGENT CONCENTRATION IN RAT TUMORS Hacettepe Journal of Mathematics and Statistics Volume 39(2) (2010), 283 293 ONLINE ESTIMATION OF CAPILLARY PERMEABILITY AND CONTRAST AGENT CONCENTRATION IN RAT TUMORS Levent Ozbek, Murat Efe, Esin Koksal

More information

Advanced Topics and Diffusion MRI

Advanced Topics and Diffusion MRI Advanced Topics and Diffusion MRI Slides originally by Karla Miller, FMRIB Centre Modified by Mark Chiew (mark.chiew@ndcn.ox.ac.uk) Slides available at: http://users.fmrib.ox.ac.uk/~mchiew/teaching/ MRI

More information

Rad 226b/BioE 326b In Vivo MR: Relaxation Theory and Contrast Mechanisms

Rad 226b/BioE 326b In Vivo MR: Relaxation Theory and Contrast Mechanisms Rad 226b/BioE 326b In Vivo MR: Relaxation Theory and Contrast Mechanisms Daniel Spielman, Ph.D., Dept. of Radiology Lucas Center for MR Spectroscopy and Imaging (corner of Welch Rd and Pasteur Dr) office:

More information

Introductory MRI Physics

Introductory MRI Physics C HAPR 18 Introductory MRI Physics Aaron Sodickson EXRNAL MAGNETIC FIELD, PROTONS AND EQUILIBRIUM MAGNETIZATION Much of the bulk of the magnetic resonance imaging (MRI) scanner apparatus is dedicated to

More information

22.56J Noninvasive Imaging in Biology and Medicine Instructor: Prof. Alan Jasanoff Fall 2005, TTh 1-2:30

22.56J Noninvasive Imaging in Biology and Medicine Instructor: Prof. Alan Jasanoff Fall 2005, TTh 1-2:30 22.56J Noninvasive Imaging in Biology and Medicine Instructor: Prof. Alan Jasanoff Fall 2005, TTh 1-2:30 Sample problems HW1 1. Look up (e.g. in the CRC Manual of Chemistry and Physics www.hbcpnetbase.com)

More information

USING A VOXEL-BASED KROGH CYLINDER ARRAY TO SIMULATE MICROVASCULAR CONTRAST ENHANCEMENT DANIEL SPENCER BRADLEY THESIS

USING A VOXEL-BASED KROGH CYLINDER ARRAY TO SIMULATE MICROVASCULAR CONTRAST ENHANCEMENT DANIEL SPENCER BRADLEY THESIS USING A VOXEL-BASED KROGH CYLINDER ARRAY TO SIMULATE MICROVASCULAR CONTRAST ENHANCEMENT BY DANIEL SPENCER BRADLEY THESIS Submitted in partial fulfillment of the requirements for the degree of Master of

More information

Simultaneous PET/MRI imaging using nanoparticles

Simultaneous PET/MRI imaging using nanoparticles Simultaneous PET/MRI imaging using nanoparticles Ramesh Sharma 4, Yowen Xu 1, S. David Smith 1, Valerie Carroll 2, Dmitri Medvedev 1, Sri- Harsha Maramraju 3, David. Alexoff 1, Daniela Schulz 1, Paul Vaska

More information

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method.

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method. Optimization Unconstrained optimization One-dimensional Multi-dimensional Newton s method Basic Newton Gauss- Newton Quasi- Newton Descent methods Gradient descent Conjugate gradient Constrained optimization

More information

Principles of Magnetic Resonance Imaging

Principles of Magnetic Resonance Imaging Principles of Magnetic Resonance Imaging Hi Klaus Scheffler, PhD Radiological Physics University of 1 Biomedical Magnetic Resonance: 1 Introduction Magnetic Resonance Imaging Contents: Hi 1 Introduction

More information

Basis of MRI Contrast

Basis of MRI Contrast Basis of MRI Contrast MARK A. HORSFIELD Department of Cardiovascular Sciences University of Leicester Leicester LE1 5WW UK Tel: +44-116-2585080 Fax: +44-870-7053111 e-mail: mah5@le.ac.uk 1 1.1 The Magnetic

More information

Technical University of Denmark

Technical University of Denmark Technical University of Denmark Page 1 of 10 pages Written test, 12 December 2012 Course name: Introduction to medical imaging Course no. 31540 Aids allowed: None. Pocket calculator not allowed "Weighting":

More information

Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging. Magnetization and Susceptibility

Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging. Magnetization and Susceptibility Quantitative Susceptibility Mapping and Susceptibility Tensor Imaging 1, Chunlei Liu, Ph.D. 1 Brain Imaging and Analysis Center Department of Radiology Duke University, Durham, NC, USA 1 Magnetization

More information

MRI. made. likely simplistic. Sorry, guys! We have less than one hour! Part 2: Sources of contrast. Endogenous (tissue) contrast

MRI. made. likely simplistic. Sorry, guys! We have less than one hour! Part 2: Sources of contrast. Endogenous (tissue) contrast .. made simple likely simplistic Sorry, guys! We have less than one hour! U. Himmelreich K.U.Leuven.. B. Gallez U.C.Louvain.. B. Jordan U.C.Louvain Part 2: Sources of contrast Endogenous (tissue) contrast

More information

Today. Introduction to optimization Definition and motivation 1-dimensional methods. Multi-dimensional methods. General strategies, value-only methods

Today. Introduction to optimization Definition and motivation 1-dimensional methods. Multi-dimensional methods. General strategies, value-only methods Optimization Last time Root inding: deinition, motivation Algorithms: Bisection, alse position, secant, Newton-Raphson Convergence & tradeos Eample applications o Newton s method Root inding in > 1 dimension

More information

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229 Sequence Overview Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging 75 Pulse Sequences and k-space RF k y G z k x G x 3D k-space G y k y k z Acq. k x 76 Gradient

More information

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x )

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x ) Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2013 MRI Lecture 5 GE Medical Systems 2003 Gibbs Artifact Apodization rect(k ) Hanning Window h(k )=1/2(1+cos(2πk ) 256256 image 256128

More information

Physical fundamentals of magnetic resonance imaging

Physical fundamentals of magnetic resonance imaging Physical fundamentals of magnetic resonance imaging Stepan Sereda University of Bonn 1 / 26 Why? Figure 1 : Full body MRI scan (Source: [4]) 2 / 26 Overview Spin angular momentum Rotating frame and interaction

More information

Nuclei, Excitation, Relaxation

Nuclei, Excitation, Relaxation Outline 4.1 Principles of MRI uclei, Excitation, Relaxation Carolyn Kaut Roth, RT (R)(MR)(CT)(M)(CV) FSMRT CEO Imaging Education Associates www.imaginged.com candi@imaginged.com What nuclei are MR active?

More information

7.3.A. The expression for signal recovery is similar to that derived under exercise 7.2 and is given by:

7.3.A. The expression for signal recovery is similar to that derived under exercise 7.2 and is given by: 7..A. Chemical shift difference 3..0. ppm, which equals 54.5 Hz at 3.0 T. Spatial displacement 54.5/00 0.87, which equals.03 cm along the 8 cm side and 0.77 cm along the 6 cm. The cm slice does not have

More information

Unconstrained Multivariate Optimization

Unconstrained Multivariate Optimization Unconstrained Multivariate Optimization Multivariate optimization means optimization of a scalar function of a several variables: and has the general form: y = () min ( ) where () is a nonlinear scalar-valued

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Jeffrey A. Fessler EECS Department The University of Michigan NSS-MIC: Fundamentals of Medical Imaging Oct. 20, 2003 NMR-0 Background Basic physics 4 magnetic fields

More information

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Spin Echo Imaging Hahn Spin Echo

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Introduction to MRI Acquisition

Introduction to MRI Acquisition Introduction to MRI Acquisition James Meakin FMRIB Physics Group FSL Course, Bristol, September 2012 1 What are we trying to achieve? 2 What are we trying to achieve? Informed decision making: Protocols

More information

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY Spatial encoding in Magnetic Resonance Imaging Jean-Marie BONNY What s Qu est an image ce qu une? image? «a reproduction of a material object by a camera or a related technique» Multi-dimensional signal

More information

MR Thermometry. Invited Review. Viola Rieke, PhD,* and Kim Butts Pauly, PhD

MR Thermometry. Invited Review. Viola Rieke, PhD,* and Kim Butts Pauly, PhD JOURNAL OF MAGNETIC RESONANCE IMAGING 27:376 390 (2008) Invited Review MR Thermometry Viola Rieke, PhD,* and Kim Butts Pauly, PhD Minimally invasive thermal therapy as local treatment of benign and malignant

More information

How is it different from conventional MRI? What is MR Spectroscopy? How is it different from conventional MRI? MR Active Nuclei

How is it different from conventional MRI? What is MR Spectroscopy? How is it different from conventional MRI? MR Active Nuclei What is MR Spectroscopy? MR-Spectroscopy (MRS) is a technique to measure the (relative) concentration of certain chemical or biochemical molecules in a target volume. MR-Spectroscopy is an in vivo (in

More information

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori

Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori Introduction to Magnetic Resonance Imaging (MRI) Pietro Gori Enseignant-chercheur Equipe IMAGES - Télécom ParisTech pietro.gori@telecom-paristech.fr September 20, 2017 P. Gori BIOMED 20/09/2017 1 / 76

More information

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY Spatial encoding in Magnetic Resonance Imaging Jean-Marie BONNY What s Qu est an image ce qu une? image? «a reproduction of a material object by a camera or a related technique» Multi-dimensional signal

More information

Optimization. Totally not complete this is...don't use it yet...

Optimization. Totally not complete this is...don't use it yet... Optimization Totally not complete this is...don't use it yet... Bisection? Doing a root method is akin to doing a optimization method, but bi-section would not be an effective method - can detect sign

More information

Sketch of the MRI Device

Sketch of the MRI Device Outline for Today 1. 2. 3. Introduction to MRI Quantum NMR and MRI in 0D Magnetization, m(x,t), in a Voxel Proton T1 Spin Relaxation in a Voxel Proton Density MRI in 1D MRI Case Study, and Caveat Sketch

More information

Spin Echo Imaging Sequence

Spin Echo Imaging Sequence 1 MRI In Stereotactic Procedures Edward F. Jackson, Ph.D. The University of Texas M.D. Anderson Cancer Center Houston, Texas 2 RF G slice G phase G freq Signal k-space Spin Echo Imaging Sequence TE 1st

More information

1 Numerical optimization

1 Numerical optimization Contents 1 Numerical optimization 5 1.1 Optimization of single-variable functions............ 5 1.1.1 Golden Section Search................... 6 1.1. Fibonacci Search...................... 8 1. Algorithms

More information

Part II: Magnetic Resonance Imaging (MRI)

Part II: Magnetic Resonance Imaging (MRI) Part II: Magnetic Resonance Imaging (MRI) Contents Magnetic Field Gradients Selective Excitation Spatially Resolved Reception k-space Gradient Echo Sequence Spin Echo Sequence Magnetic Resonance Imaging

More information

Navigator Echoes. BioE 594 Advanced Topics in MRI Mauli. M. Modi. BioE /18/ What are Navigator Echoes?

Navigator Echoes. BioE 594 Advanced Topics in MRI Mauli. M. Modi. BioE /18/ What are Navigator Echoes? Navigator Echoes BioE 594 Advanced Topics in MRI Mauli. M. Modi. 1 What are Navigator Echoes? In order to correct the motional artifacts in Diffusion weighted MR images, a modified pulse sequence is proposed

More information

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison Optimization Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison optimization () cost constraints might be too much to cover in 3 hours optimization (for big

More information

Radioisotopes and PET

Radioisotopes and PET Radioisotopes and PET 1 Radioisotopes Elements are defined by their number of protons, but there is some variation in the number of neutrons. Atoms resulting from this variation are called isotopes. Consider

More information

Physics 403. Segev BenZvi. Numerical Methods, Maximum Likelihood, and Least Squares. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Numerical Methods, Maximum Likelihood, and Least Squares. Department of Physics and Astronomy University of Rochester Physics 403 Numerical Methods, Maximum Likelihood, and Least Squares Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Quadratic Approximation

More information

Procesamiento de Imágenes y Bioseñales

Procesamiento de Imágenes y Bioseñales Procesamiento de Imágenes y Bioseñales Dr. Víctor Castañeda Agenda Physical basis of X-ray- CT, NMR, Ultrasound, Nuclear Medicine Sensors (cameras, gamma probes, microphone) Computational Tomography (CT)

More information

Overview Optimizing MR Imaging Procedures:

Overview Optimizing MR Imaging Procedures: Overview Optimizing MR Imaging Procedures: The Physicist as a Consultant Lisa C. Lemen, Radiology Department University of Cincinnati Image contrast in standard clinical sequences (pulse timing parameters)

More information

Chapter 7 MAGNETIC RESONANCE IMAGING (MRI) STUDIES OF MODIFIED MESOPOROUS SILICA

Chapter 7 MAGNETIC RESONANCE IMAGING (MRI) STUDIES OF MODIFIED MESOPOROUS SILICA 192 Chapter 7 MAGNETIC RESONANCE IMAGING (MRI) STUDIES OF MODIFIED MESOPOROUS SILICA 7.1. Introduction Imaging of molecular and cellular level changes occurring during diseased conditions with high resolution

More information

ADIABATIC PULSE PREPARATION FOR IMAGING IRON OXIDE NANOPARTICLES

ADIABATIC PULSE PREPARATION FOR IMAGING IRON OXIDE NANOPARTICLES ADIABATIC PULSE PREPARATION FOR IMAGING IRON OXIDE NANOPARTICLES A Dissertation Presented to The Academic Faculty by Steven S. Harris In Partial Fulfillment of the Requirements for the Degree Doctor of

More information

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2015 MRI Lecture 4 k (t) = γ 2π k y (t) = γ 2π K-space At each point in time, the received signal is the Fourier transform of the object

More information

A Study of Flow Effects on the Gradient Echo Sequence

A Study of Flow Effects on the Gradient Echo Sequence -MR Flow Imaging- A Study of Flow Effects on the Gradient Echo Sequence Cylinder filled with doped water α pulse α pulse Flowing water Plastic pipes Slice Phase Read a TE b Signal sampling TR Thesis for

More information