EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

Size: px
Start display at page:

Download "EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science"

Transcription

1 EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science

2 Multidimensional Unconstrained Optimization Suppose we have a function f() of more than one variable f(x 1, x 2,, x n ) We want to find the values of x 1, x 2,, x n that give f() the largest (or smallest) possible value Graphical solution is not possible, but a graphical picture helps understanding Hilltops and contour maps

3

4 Methods of solution Direct or non-gradient methods do not require derivatives Grid search Random search One variable at a time Line searches and Powell s method Simplex optimization

5 Gradient methods use first and possibly second derivatives Gradient is the vector of first partials Hessian is the matrix of second partials Steepest ascent/descent Conjugate gradient Newton s method Quasi-Newton methods

6 Grid and Random Search Given a function and limits on each variable, generate a set of random points in the domain, and eventually choose the one with the largest function value Alternatively, divide the interval on each variable into small segments and check the function for all possible combinations

7 f( x, x ) x x 2x 2x x x 2 x 2 1 x 3 f( 1,1.5)

8 Direct Search with 10,000 Points Method x 1 x 2 f E Random Random Random Random Random Random Random Random Grid

9 Features of Random and Grid Search Slow and inefficient Requires knowledge of domain Works even for discontinuous functions Poor in high dimension Grid search can be used iteratively, with progressively narrowing domains

10 Line searches Given a starting point and a direction, search for the maximum, or for a good next point, in that direction. Equivalent to one dimensional optimization, so can use Newton s method or another method from previous chapter Different methods use different directions

11 x v ( x, x,, x ) 1 2 ( v, v,, v ) 1 2 n n f ( x) f( x, x,, x ) 1 2 g( λ) f ( x λv) n

12 One-Variable-at-a Time Search Given a function f() of n variables, search in the direction in which only variable 1, changes Then search in the direction from that point in which only variable 2 changes, etc. Slow and inefficient in general Can speed up by searching in a direction after n changes (pattern direction)

13

14 Powell s Method If f() is quadratic, and if two points are found by line searches in the same direction from two different starting points, then the line joining the two ending points (a conjugate direction) heads toward the optimum Since many functions we encounter are approximately quadratic near the optimum, this can be effective

15

16 Start with a point x 0 and two random directions h 1 and h 2 Search in the direction of h 1 from x 0 to find a new point x 1 Search in the direction of h 2 from x 1 to find a new point x 2. Let h 3 be the direction joining x 0 to x 2 Search in the direction of h 3 from x 2 to find a new point x 3 Search in the direction of h 2 from x 3 to find a new point x 4 Search in the direction of h 3 from x 4 to find a new point x 5

17 Points x 3 and x 5 have been found by searching in the direction of h 3 from two starting points x 2 and x 4 Call the direction joining x 3 and x 5 h 4 Search in the direction of h 4 from x 5 to find a new point x 6 The new point x 6 will be exactly the optimum if f() is quadratic The iterations can then be repeated Errors estimated by change in x or in f()

18

19 Nelder-Mead Simplex Algorithm Direct search method that uses simplices, which are triangles in dimension 2, pyramids in dimension 3, etc. At each iteration a new point is added usually in the direction of the face of the simplex with largest function values

20

21 Gradient Methods The gradient of f() at a point x is the vector of partial derivatives of the function f() at x For smooth functions, the gradient is zero at an optimum, but may also be zero at a non-optimum The gradient points uphill The gradient is orthogonal to the contour lines of a function at a point

22 Directional Derivatives Given a point x in R n, a unit direction v, and a function f() of n variables, we can define a new function g() of one variable by g(λ)=f(x+λv) The derivative g (λ) is the directional derivative of f() at x in the direction of v This is greatest when v is in the gradient direction

23 x v 1 ( x, x,, x ) 1 2 ( v, v,, v ) T vv 1 2 i 1 2 i f( x) f( x, x,, x ) 1 2 f f f f,,, x x x 1 2 g( λ) f ( x λv) n v n n n T f f f g'(0) ( f) v v, v,, vn x x x n n

24 Steepest Ascent The gradient direction is the direction of steepest ascent, but not necessarily the direction leading directly to the summit We can search along the direction of steepest ascent until a maximum is reached Then we can search again from a new steepest ascent direction

25 x x f( x, x ) at (2,2) f (2,2) f ( x, x ) x f (2,2) 4 f ( x, x ) 2 x x f (2,2) f (2,2) (4,8) (2 4 λ,2 8 λ) is the gradient line g( λ) f (2 4 λ,2 8 λ) (2 4 λ)(2 8 λ) 2

26

27

28 The Hessian The Hessian of a function f() is the matrix of second partial derivatives The gradient is always 0 at a maximum (for smooth functions) The gradient is also 0 at a minimum The gradient is also 0 at a saddle point, which is neither a maximum nor a minimum A saddle point is a max in at least one direction and a min in at least one direction

29

30 Max, Min, and Saddle Point For one-variable functions, the second derivative is negative at a maximum and positive at a minimum For functions of more than one variable, a zero of the gradient is a max if the second directional derivative is negative for every direction and is a min if the second directional derivative is positive for every direction

31 Positive Definiteness A matrix H is positive definite if x T Hx > 0 for every vector x Equivalently, every eigenvalue of H is positive λ is an eigenvalue of H with eigenvector x if Hx = λx -H is positive definite if every eigenvalue of H is negative

32 Max, Min, and Saddle Point If the gradient f of a function f is zero at a point x and the Hessian H is positive definite at that point, then x is a local min If f is zero at a point x and -H is positive definite at that point, then x is a local max If f is zero at a point x and neither H nor -H is positive definite at that point, then x is a saddle point The determinant H helps only in dimension 1 or 2

33 Finite-Difference Approximations If analytical derivatives cannot be evaluated, one can use finite-difference approximations Centered difference approximations are in general more accurate, though requiring extra function evaluations Increment often macheps 1/2 or 1e-8 for dp This can be problematic for large problems

34 Complexity of Finite-Difference Derivatives In an n-variable problem, the function value is one function evaluation (FE) A finite-difference gradient is n FE s if forward or backward and 2n FE s if centered. A finite difference Hessian is O(n 2 ) FE s With a thousand variable problem, this can be huge

35 Steepest Ascent/Descent This is the simplest of the gradient-based methods From the current guess, compute the gradient Search along the gradient direction until a local max is reached of this onedimensional function Repeat until convergence

36

37 f( x, x ) 2x x 2x x 2x f x f x ( x, x ) f ( x, x ) 2x 2 2x ( x, x ) f ( x, x ) 2x 4x True optimum 0 2x 2 2x x 4x x ( x, x ) (2,1) 2 2 H 2 4 2

38 Eigenvalues If H is a matrix, we can find the eigenvalues in a number of ways We will examine numerical methods for this later, but there is an algebraic method for small matrices We illustrate this for the Hessian in this example

39 H Hx H I x x ( 2)( 4) x 0 2 solution is a maximum

40 f x f x f( x, x ) 2x x 2x x 2x ( x, x ) f ( x, x ) 2x 2 2x ( x, x ) f ( x, x ) 2x 4x f ( 1,1) 7 f ( 1,1) 2x 2 2x f ( 1,1) 2x 4x g( ) f( 1 6,1 6 )

41 g( ) f( 1 6,1 6 ) 2( 1 6 )(1 6 ) 2( 1 6 ) ( 1 6 ) 2(1 6 ) g '( ) x ( 1 6(.2),1 6(.2)) (.2,.2) 2 2

42 f (2,1) 2 f (1, 1) 7 f (0.2, 0.2) 0.2 f f 1 2 (0.2, 0.2) 1.2 (0.2, 0.2) 1.2 g( ) f( , ) g '( ) f (1.4,1) 1.64

43

44 Practical Steepest Ascent In real examples, the maximum in the gradient direction cannot be calculated analytically Problem reduces to one dimensional optimization as a line search One can also use more primitive line searches that are fast but do not try to find the absolute optimum

45 Newton s Method Steepest ascent can be quite slow Newton s method is faster, though it requires evaluation of the Hessian Function is modeled by a quadratic at a point using first and second derivatives The quadratic is solved exactly This is used as the next iterate

46 A second-order multivariate Taylor series expansion at the current iterate is T T f( x) f( x ) f ( x )( x x ) 0.5( x x ) H ( x x ) i i i i i i At the optimum, the gradient is 0, so f( x) f( x ) H ( x x ) 0 i i i If H is invertible,then 1 x i 1 x i H i f( xi) In practice, solve the linear problem, H x H x f( x ) i i i i

47

48 Variations on Newton s Method Quasi-Newton methods use approximate Hessians that are built up as the iterations progress. There are several methods of doing this, the best is probably BFGS (Broyden-Fletcher-Goldfarb-Shanno) These do not require analytical or numerical Hessians to be calculated at each step

49 The Marquardt algorithm uses a compromise between steepest ascent and the Newton solution The steepest ascent direction is equivalent to using H=I Thus, if we use a Hessian of H+αI, and gradually reduce α from a large value, we get steepest ascent at first followed by more and more of the Newton direction

50 The trust region approach is an alternative to line searches Rather than searching along the gradient, or moving directly to the Newton solution (which may diverge), the trust region approach finds the maximum/minimum value of the quadratic model subject to a constraint on the stepsize This also results in a mixture of gradient and Newton until the Newton step is in the trust region

51 Using Matlab to find Optima fminbnd finds the minimum of a onevariable function fminsearch finds the minimum of a multivariable function fminunc (in the Optimization Toolbox) also finds minima of unconstrained functions

52 fminbnd Finds the minimum of a function of one variable on a closed interval. Assumes the function is continuous Uses a combination of golden section search and quadratic interpolation Exhibits slow convergence when the minimum is near the boundary fmincon is better (in Optimization Toolbox)

53 fminsearch Direct search method for functions of several variables Does not assume differentiability Can handle discontinuities Uses Nelder-Mead simplex algorithm Tends to be reliable but slow

54 fminunc Finds minima in unconstrained problems in several to large dimension For medium-scale optimization uses quasi-newton method with BFGS updates and mixed quadratic-cubic line search For large-scale optimization uses subspace trust-region method based on interior-reflective Newton method using preconditioned conjugate gradients

55 function f=fx(x) f=-(2*sin(x)-x^2/10) >> [ x fval ] = fminbnd('fx',0,4) >> x x = >> fval fval =

56 function f=fxy(x) f=-(2*x(1)*x(2)+2*x(1)-x(1)^2-2*x(2)^2) >> [ x fval ] = fminsearch('fxy',[-1,1]) >> x x = >> fval fval = >> [ x fval ] = fminunc('fxy',[-1,1]) >> x x = >> fval fval =

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Taylor s Theorem Can often approximate a function by a polynomial The error in the approximation

More information

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23

Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23 Optimization: Nonlinear Optimization without Constraints Nonlinear Optimization without Constraints 1 / 23 Nonlinear optimization without constraints Unconstrained minimization min x f(x) where f(x) is

More information

Lecture V. Numerical Optimization

Lecture V. Numerical Optimization Lecture V Numerical Optimization Gianluca Violante New York University Quantitative Macroeconomics G. Violante, Numerical Optimization p. 1 /19 Isomorphism I We describe minimization problems: to maximize

More information

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Multidimensional Unconstrained Optimization Suppose we have a function f() of more than one

More information

1 Numerical optimization

1 Numerical optimization Contents 1 Numerical optimization 5 1.1 Optimization of single-variable functions............ 5 1.1.1 Golden Section Search................... 6 1.1. Fibonacci Search...................... 8 1. Algorithms

More information

Unconstrained Multivariate Optimization

Unconstrained Multivariate Optimization Unconstrained Multivariate Optimization Multivariate optimization means optimization of a scalar function of a several variables: and has the general form: y = () min ( ) where () is a nonlinear scalar-valued

More information

Optimization Methods

Optimization Methods Optimization Methods Decision making Examples: determining which ingredients and in what quantities to add to a mixture being made so that it will meet specifications on its composition allocating available

More information

NonlinearOptimization

NonlinearOptimization 1/35 NonlinearOptimization Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Jiří Kašpar, Pavel Tvrdík, 2011 Unconstrained nonlinear optimization,

More information

Optimization and Root Finding. Kurt Hornik

Optimization and Root Finding. Kurt Hornik Optimization and Root Finding Kurt Hornik Basics Root finding and unconstrained smooth optimization are closely related: Solving ƒ () = 0 can be accomplished via minimizing ƒ () 2 Slide 2 Basics Root finding

More information

1 Numerical optimization

1 Numerical optimization Contents Numerical optimization 5. Optimization of single-variable functions.............................. 5.. Golden Section Search..................................... 6.. Fibonacci Search........................................

More information

Introduction to unconstrained optimization - direct search methods

Introduction to unconstrained optimization - direct search methods Introduction to unconstrained optimization - direct search methods Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Structure of optimization methods Typically Constraint handling converts the

More information

Motivation: We have already seen an example of a system of nonlinear equations when we studied Gaussian integration (p.8 of integration notes)

Motivation: We have already seen an example of a system of nonlinear equations when we studied Gaussian integration (p.8 of integration notes) AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 5: Nonlinear Equations Dianne P. O Leary c 2001, 2002, 2007 Solving Nonlinear Equations and Optimization Problems Read Chapter 8. Skip Section 8.1.1.

More information

Convex Optimization. Problem set 2. Due Monday April 26th

Convex Optimization. Problem set 2. Due Monday April 26th Convex Optimization Problem set 2 Due Monday April 26th 1 Gradient Decent without Line-search In this problem we will consider gradient descent with predetermined step sizes. That is, instead of determining

More information

ECS550NFB Introduction to Numerical Methods using Matlab Day 2

ECS550NFB Introduction to Numerical Methods using Matlab Day 2 ECS550NFB Introduction to Numerical Methods using Matlab Day 2 Lukas Laffers lukas.laffers@umb.sk Department of Mathematics, University of Matej Bel June 9, 2015 Today Root-finding: find x that solves

More information

Quasi-Newton Methods

Quasi-Newton Methods Newton s Method Pros and Cons Quasi-Newton Methods MA 348 Kurt Bryan Newton s method has some very nice properties: It s extremely fast, at least once it gets near the minimum, and with the simple modifications

More information

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09 Numerical Optimization 1 Working Horse in Computer Vision Variational Methods Shape Analysis Machine Learning Markov Random Fields Geometry Common denominator: optimization problems 2 Overview of Methods

More information

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods Optimality Conditions: Equality Constrained Case As another example of equality

More information

Comparative study of Optimization methods for Unconstrained Multivariable Nonlinear Programming Problems

Comparative study of Optimization methods for Unconstrained Multivariable Nonlinear Programming Problems International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 013 1 ISSN 50-3153 Comparative study of Optimization methods for Unconstrained Multivariable Nonlinear Programming

More information

8 Numerical methods for unconstrained problems

8 Numerical methods for unconstrained problems 8 Numerical methods for unconstrained problems Optimization is one of the important fields in numerical computation, beside solving differential equations and linear systems. We can see that these fields

More information

Statistics 580 Optimization Methods

Statistics 580 Optimization Methods Statistics 580 Optimization Methods Introduction Let fx be a given real-valued function on R p. The general optimization problem is to find an x ɛ R p at which fx attain a maximum or a minimum. It is of

More information

Optimization II: Unconstrained Multivariable

Optimization II: Unconstrained Multivariable Optimization II: Unconstrained Multivariable CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Optimization II: Unconstrained Multivariable 1

More information

Line Search Methods for Unconstrained Optimisation

Line Search Methods for Unconstrained Optimisation Line Search Methods for Unconstrained Optimisation Lecture 8, Numerical Linear Algebra and Optimisation Oxford University Computing Laboratory, MT 2007 Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The Generic

More information

Static unconstrained optimization

Static unconstrained optimization Static unconstrained optimization 2 In unconstrained optimization an objective function is minimized without any additional restriction on the decision variables, i.e. min f(x) x X ad (2.) with X ad R

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Quasi Newton Methods Barnabás Póczos & Ryan Tibshirani Quasi Newton Methods 2 Outline Modified Newton Method Rank one correction of the inverse Rank two correction of the

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Methods that avoid calculating the Hessian. Nonlinear Optimization; Steepest Descent, Quasi-Newton. Steepest Descent

Methods that avoid calculating the Hessian. Nonlinear Optimization; Steepest Descent, Quasi-Newton. Steepest Descent Nonlinear Optimization Steepest Descent and Niclas Börlin Department of Computing Science Umeå University niclas.borlin@cs.umu.se A disadvantage with the Newton method is that the Hessian has to be derived

More information

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods Quasi-Newton Methods General form of quasi-newton methods: x k+1 = x k α

More information

Chapter 4. Unconstrained optimization

Chapter 4. Unconstrained optimization Chapter 4. Unconstrained optimization Version: 28-10-2012 Material: (for details see) Chapter 11 in [FKS] (pp.251-276) A reference e.g. L.11.2 refers to the corresponding Lemma in the book [FKS] PDF-file

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Unit 2: Multivariable optimization problems Che-Rung Lee Scribe: February 28, 2011 (UNIT 2) Numerical Optimization February 28, 2011 1 / 17 Partial derivative of a two variable function

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-3: Unconstrained optimization II Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428

More information

Math 411 Preliminaries

Math 411 Preliminaries Math 411 Preliminaries Provide a list of preliminary vocabulary and concepts Preliminary Basic Netwon s method, Taylor series expansion (for single and multiple variables), Eigenvalue, Eigenvector, Vector

More information

Unconstrained optimization

Unconstrained optimization Chapter 4 Unconstrained optimization An unconstrained optimization problem takes the form min x Rnf(x) (4.1) for a target functional (also called objective function) f : R n R. In this chapter and throughout

More information

Lecture 7 Unconstrained nonlinear programming

Lecture 7 Unconstrained nonlinear programming Lecture 7 Unconstrained nonlinear programming Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University,

More information

Optimization. Totally not complete this is...don't use it yet...

Optimization. Totally not complete this is...don't use it yet... Optimization Totally not complete this is...don't use it yet... Bisection? Doing a root method is akin to doing a optimization method, but bi-section would not be an effective method - can detect sign

More information

(One Dimension) Problem: for a function f(x), find x 0 such that f(x 0 ) = 0. f(x)

(One Dimension) Problem: for a function f(x), find x 0 such that f(x 0 ) = 0. f(x) Solving Nonlinear Equations & Optimization One Dimension Problem: or a unction, ind 0 such that 0 = 0. 0 One Root: The Bisection Method This one s guaranteed to converge at least to a singularity, i not

More information

5 Quasi-Newton Methods

5 Quasi-Newton Methods Unconstrained Convex Optimization 26 5 Quasi-Newton Methods If the Hessian is unavailable... Notation: H = Hessian matrix. B is the approximation of H. C is the approximation of H 1. Problem: Solve min

More information

Lecture Notes: Geometric Considerations in Unconstrained Optimization

Lecture Notes: Geometric Considerations in Unconstrained Optimization Lecture Notes: Geometric Considerations in Unconstrained Optimization James T. Allison February 15, 2006 The primary objectives of this lecture on unconstrained optimization are to: Establish connections

More information

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

More information

Geometry optimization

Geometry optimization Geometry optimization Trygve Helgaker Centre for Theoretical and Computational Chemistry Department of Chemistry, University of Oslo, Norway European Summer School in Quantum Chemistry (ESQC) 211 Torre

More information

Gradient Descent. Dr. Xiaowei Huang

Gradient Descent. Dr. Xiaowei Huang Gradient Descent Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ Up to now, Three machine learning algorithms: decision tree learning k-nn linear regression only optimization objectives are discussed,

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 3. Gradient Method

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 3. Gradient Method Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 3 Gradient Method Shiqian Ma, MAT-258A: Numerical Optimization 2 3.1. Gradient method Classical gradient method: to minimize a differentiable convex

More information

OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review

OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review Department of Statistical Sciences and Operations Research Virginia Commonwealth University Oct 16, 2013 (Lecture 14) Nonlinear Optimization

More information

Optimization II: Unconstrained Multivariable

Optimization II: Unconstrained Multivariable Optimization II: Unconstrained Multivariable CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Optimization II: Unconstrained

More information

Optimization. Next: Curve Fitting Up: Numerical Analysis for Chemical Previous: Linear Algebraic and Equations. Subsections

Optimization. Next: Curve Fitting Up: Numerical Analysis for Chemical Previous: Linear Algebraic and Equations. Subsections Next: Curve Fitting Up: Numerical Analysis for Chemical Previous: Linear Algebraic and Equations Subsections One-dimensional Unconstrained Optimization Golden-Section Search Quadratic Interpolation Newton's

More information

Outline. Scientific Computing: An Introductory Survey. Optimization. Optimization Problems. Examples: Optimization Problems

Outline. Scientific Computing: An Introductory Survey. Optimization. Optimization Problems. Examples: Optimization Problems Outline Scientific Computing: An Introductory Survey Chapter 6 Optimization 1 Prof. Michael. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

MATH 4211/6211 Optimization Quasi-Newton Method

MATH 4211/6211 Optimization Quasi-Newton Method MATH 4211/6211 Optimization Quasi-Newton Method Xiaojing Ye Department of Mathematics & Statistics Georgia State University Xiaojing Ye, Math & Stat, Georgia State University 0 Quasi-Newton Method Motivation:

More information

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng Optimization 2 CS5240 Theoretical Foundations in Multimedia Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (NUS) Optimization 2 1 / 38

More information

Numerical Methods I Solving Nonlinear Equations

Numerical Methods I Solving Nonlinear Equations Numerical Methods I Solving Nonlinear Equations Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 16th, 2014 A. Donev (Courant Institute)

More information

Optimization Methods

Optimization Methods Optimization Methods Categorization of Optimization Problems Continuous Optimization Discrete Optimization Combinatorial Optimization Variational Optimization Common Optimization Concepts in Computer Vision

More information

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method.

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method. Optimization Unconstrained optimization One-dimensional Multi-dimensional Newton s method Basic Newton Gauss- Newton Quasi- Newton Descent methods Gradient descent Conjugate gradient Constrained optimization

More information

Exploring the energy landscape

Exploring the energy landscape Exploring the energy landscape ChE210D Today's lecture: what are general features of the potential energy surface and how can we locate and characterize minima on it Derivatives of the potential energy

More information

Numerical optimization

Numerical optimization Numerical optimization Lecture 4 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 2 Longest Slowest Shortest Minimal Maximal

More information

Lecture 7: Minimization or maximization of functions (Recipes Chapter 10)

Lecture 7: Minimization or maximization of functions (Recipes Chapter 10) Lecture 7: Minimization or maximization of functions (Recipes Chapter 10) Actively studied subject for several reasons: Commonly encountered problem: e.g. Hamilton s and Lagrange s principles, economics

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

Multivariate Newton Minimanization

Multivariate Newton Minimanization Multivariate Newton Minimanization Optymalizacja syntezy biosurfaktantu Rhamnolipid Rhamnolipids are naturally occuring glycolipid produced commercially by the Pseudomonas aeruginosa species of bacteria.

More information

Algorithms for Constrained Optimization

Algorithms for Constrained Optimization 1 / 42 Algorithms for Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University April 19, 2015 2 / 42 Outline 1. Convergence 2. Sequential quadratic

More information

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems

Numerical optimization. Numerical optimization. Longest Shortest where Maximal Minimal. Fastest. Largest. Optimization problems 1 Numerical optimization Alexander & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book Numerical optimization 048921 Advanced topics in vision Processing and Analysis of

More information

Numerical optimization

Numerical optimization THE UNIVERSITY OF WESTERN ONTARIO LONDON ONTARIO Paul Klein Office: SSC 408 Phone: 661-111 ext. 857 Email: paul.klein@uwo.ca URL: www.ssc.uwo.ca/economics/faculty/klein/ Numerical optimization In these

More information

, b = 0. (2) 1 2 The eigenvectors of A corresponding to the eigenvalues λ 1 = 1, λ 2 = 3 are

, b = 0. (2) 1 2 The eigenvectors of A corresponding to the eigenvalues λ 1 = 1, λ 2 = 3 are Quadratic forms We consider the quadratic function f : R 2 R defined by f(x) = 2 xt Ax b T x with x = (x, x 2 ) T, () where A R 2 2 is symmetric and b R 2. We will see that, depending on the eigenvalues

More information

Scientific Computing: Optimization

Scientific Computing: Optimization Scientific Computing: Optimization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 March 8th, 2011 A. Donev (Courant Institute) Lecture

More information

MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year

MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2 1 Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year 2013-14 OUTLINE OF WEEK 8 topics: quadratic optimisation, least squares,

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained

More information

Lecture 8 Optimization

Lecture 8 Optimization 4/9/015 Lecture 8 Optimization EE 4386/5301 Computational Methods in EE Spring 015 Optimization 1 Outline Introduction 1D Optimization Parabolic interpolation Golden section search Newton s method Multidimensional

More information

Mathematical optimization

Mathematical optimization Optimization Mathematical optimization Determine the best solutions to certain mathematically defined problems that are under constrained determine optimality criteria determine the convergence of the

More information

STAT Advanced Bayesian Inference

STAT Advanced Bayesian Inference 1 / 8 STAT 625 - Advanced Bayesian Inference Meng Li Department of Statistics March 5, 2018 Distributional approximations 2 / 8 Distributional approximations are useful for quick inferences, as starting

More information

Minimization of Static! Cost Functions!

Minimization of Static! Cost Functions! Minimization of Static Cost Functions Robert Stengel Optimal Control and Estimation, MAE 546, Princeton University, 2017 J = Static cost function with constant control parameter vector, u Conditions for

More information

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares Robert Bridson October 29, 2008 1 Hessian Problems in Newton Last time we fixed one of plain Newton s problems by introducing line search

More information

Derivative-Free Optimization of Noisy Functions via Quasi-Newton Methods. Jorge Nocedal

Derivative-Free Optimization of Noisy Functions via Quasi-Newton Methods. Jorge Nocedal Derivative-Free Optimization of Noisy Functions via Quasi-Newton Methods Jorge Nocedal Northwestern University Huatulco, Jan 2018 1 Collaborators Albert Berahas Northwestern University Richard Byrd University

More information

Higher-Order Methods

Higher-Order Methods Higher-Order Methods Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. PCMI, July 2016 Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 1 / 25 Smooth

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

CHAPTER 2: QUADRATIC PROGRAMMING

CHAPTER 2: QUADRATIC PROGRAMMING CHAPTER 2: QUADRATIC PROGRAMMING Overview Quadratic programming (QP) problems are characterized by objective functions that are quadratic in the design variables, and linear constraints. In this sense,

More information

Introduction to Unconstrained Optimization: Part 2

Introduction to Unconstrained Optimization: Part 2 Introduction to Unconstrained Optimization: Part 2 James Allison ME 555 January 29, 2007 Overview Recap Recap selected concepts from last time (with examples) Use of quadratic functions Tests for positive

More information

Today. Introduction to optimization Definition and motivation 1-dimensional methods. Multi-dimensional methods. General strategies, value-only methods

Today. Introduction to optimization Definition and motivation 1-dimensional methods. Multi-dimensional methods. General strategies, value-only methods Optimization Last time Root inding: deinition, motivation Algorithms: Bisection, alse position, secant, Newton-Raphson Convergence & tradeos Eample applications o Newton s method Root inding in > 1 dimension

More information

Applied Computational Economics Workshop. Part 3: Nonlinear Equations

Applied Computational Economics Workshop. Part 3: Nonlinear Equations Applied Computational Economics Workshop Part 3: Nonlinear Equations 1 Overview Introduction Function iteration Newton s method Quasi-Newton methods Practical example Practical issues 2 Introduction Nonlinear

More information

Nonlinear Optimization for Optimal Control

Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming Kees Roos e-mail: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos LNMB Course De Uithof, Utrecht February 6 - May 8, A.D. 2006 Optimization Group 1 Outline for week

More information

Performance Surfaces and Optimum Points

Performance Surfaces and Optimum Points CSC 302 1.5 Neural Networks Performance Surfaces and Optimum Points 1 Entrance Performance learning is another important class of learning law. Network parameters are adjusted to optimize the performance

More information

ECE 595, Section 10 Numerical Simulations Lecture 7: Optimization and Eigenvalues. Prof. Peter Bermel January 23, 2013

ECE 595, Section 10 Numerical Simulations Lecture 7: Optimization and Eigenvalues. Prof. Peter Bermel January 23, 2013 ECE 595, Section 10 Numerical Simulations Lecture 7: Optimization and Eigenvalues Prof. Peter Bermel January 23, 2013 Outline Recap from Friday Optimization Methods Brent s Method Golden Section Search

More information

10.34 Numerical Methods Applied to Chemical Engineering Fall Quiz #1 Review

10.34 Numerical Methods Applied to Chemical Engineering Fall Quiz #1 Review 10.34 Numerical Methods Applied to Chemical Engineering Fall 2015 Quiz #1 Review Study guide based on notes developed by J.A. Paulson, modified by K. Severson Linear Algebra We ve covered three major topics

More information

NUMERICAL MATHEMATICS AND COMPUTING

NUMERICAL MATHEMATICS AND COMPUTING NUMERICAL MATHEMATICS AND COMPUTING Fourth Edition Ward Cheney David Kincaid The University of Texas at Austin 9 Brooks/Cole Publishing Company I(T)P An International Thomson Publishing Company Pacific

More information

4M020 Design tools. Algorithms for numerical optimization. L.F.P. Etman. Department of Mechanical Engineering Eindhoven University of Technology

4M020 Design tools. Algorithms for numerical optimization. L.F.P. Etman. Department of Mechanical Engineering Eindhoven University of Technology 4M020 Design tools Algorithms for numerical optimization L.F.P. Etman Department of Mechanical Engineering Eindhoven University of Technology Wednesday September 3, 2008 1 / 32 Outline 1 Problem formulation:

More information

Contents. Preface. 1 Introduction Optimization view on mathematical models NLP models, black-box versus explicit expression 3

Contents. Preface. 1 Introduction Optimization view on mathematical models NLP models, black-box versus explicit expression 3 Contents Preface ix 1 Introduction 1 1.1 Optimization view on mathematical models 1 1.2 NLP models, black-box versus explicit expression 3 2 Mathematical modeling, cases 7 2.1 Introduction 7 2.2 Enclosing

More information

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL)

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL) Part 3: Trust-region methods for unconstrained optimization Nick Gould (RAL) minimize x IR n f(x) MSc course on nonlinear optimization UNCONSTRAINED MINIMIZATION minimize x IR n f(x) where the objective

More information

Optimization for neural networks

Optimization for neural networks 0 - : Optimization for neural networks Prof. J.C. Kao, UCLA Optimization for neural networks We previously introduced the principle of gradient descent. Now we will discuss specific modifications we make

More information

Gradient Descent. Sargur Srihari

Gradient Descent. Sargur Srihari Gradient Descent Sargur srihari@cedar.buffalo.edu 1 Topics Simple Gradient Descent/Ascent Difficulties with Simple Gradient Descent Line Search Brent s Method Conjugate Gradient Descent Weight vectors

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 2 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization 1 Outline 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization Summary 2 Outline 3.2

More information

AM 205: lecture 18. Last time: optimization methods Today: conditions for optimality

AM 205: lecture 18. Last time: optimization methods Today: conditions for optimality AM 205: lecture 18 Last time: optimization methods Today: conditions for optimality Existence of Global Minimum For example: f (x, y) = x 2 + y 2 is coercive on R 2 (global min. at (0, 0)) f (x) = x 3

More information

Introduction to Black-Box Optimization in Continuous Search Spaces. Definitions, Examples, Difficulties

Introduction to Black-Box Optimization in Continuous Search Spaces. Definitions, Examples, Difficulties 1 Introduction to Black-Box Optimization in Continuous Search Spaces Definitions, Examples, Difficulties Tutorial: Evolution Strategies and CMA-ES (Covariance Matrix Adaptation) Anne Auger & Nikolaus Hansen

More information

Data Mining (Mineria de Dades)

Data Mining (Mineria de Dades) Data Mining (Mineria de Dades) Lluís A. Belanche belanche@lsi.upc.edu Soft Computing Research Group Dept. de Llenguatges i Sistemes Informàtics (Software department) Universitat Politècnica de Catalunya

More information

Optimization Concepts and Applications in Engineering

Optimization Concepts and Applications in Engineering Optimization Concepts and Applications in Engineering Ashok D. Belegundu, Ph.D. Department of Mechanical Engineering The Pennsylvania State University University Park, Pennsylvania Tirupathi R. Chandrupatia,

More information

Review of Classical Optimization

Review of Classical Optimization Part II Review of Classical Optimization Multidisciplinary Design Optimization of Aircrafts 51 2 Deterministic Methods 2.1 One-Dimensional Unconstrained Minimization 2.1.1 Motivation Most practical optimization

More information

Discussion of Maximization by Parts in Likelihood Inference

Discussion of Maximization by Parts in Likelihood Inference Discussion of Maximization by Parts in Likelihood Inference David Ruppert School of Operations Research & Industrial Engineering, 225 Rhodes Hall, Cornell University, Ithaca, NY 4853 email: dr24@cornell.edu

More information

Topic 8c Multi Variable Optimization

Topic 8c Multi Variable Optimization Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@utep.edu Topic 8c Multi Variable Optimization EE 4386/5301 Computational Methods in EE Outline Mathematical Preliminaries

More information

Lecture 17: Numerical Optimization October 2014

Lecture 17: Numerical Optimization October 2014 Lecture 17: Numerical Optimization 36-350 22 October 2014 Agenda Basics of optimization Gradient descent Newton s method Curve-fitting R: optim, nls Reading: Recipes 13.1 and 13.2 in The R Cookbook Optional

More information

2. Quasi-Newton methods

2. Quasi-Newton methods L. Vandenberghe EE236C (Spring 2016) 2. Quasi-Newton methods variable metric methods quasi-newton methods BFGS update limited-memory quasi-newton methods 2-1 Newton method for unconstrained minimization

More information

434 CHAP. 8 NUMERICAL OPTIMIZATION. Powell's Method. Powell s Method

434 CHAP. 8 NUMERICAL OPTIMIZATION. Powell's Method. Powell s Method 434 CHAP. 8 NUMERICAL OPTIMIZATION Powell's Method Powell s Method Let X be an initial guess at the location of the minimum of the function z = f (x, x 2,...,x N ). Assume that the partial derivatives

More information

Numerical Optimization: Basic Concepts and Algorithms

Numerical Optimization: Basic Concepts and Algorithms May 27th 2015 Numerical Optimization: Basic Concepts and Algorithms R. Duvigneau R. Duvigneau - Numerical Optimization: Basic Concepts and Algorithms 1 Outline Some basic concepts in optimization Some

More information

A projected Hessian for full waveform inversion

A projected Hessian for full waveform inversion CWP-679 A projected Hessian for full waveform inversion Yong Ma & Dave Hale Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401, USA (c) Figure 1. Update directions for one iteration

More information