Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23

Size: px
Start display at page:

Download "Optimization: Nonlinear Optimization without Constraints. Nonlinear Optimization without Constraints 1 / 23"

Transcription

1 Optimization: Nonlinear Optimization without Constraints Nonlinear Optimization without Constraints 1 / 23

2 Nonlinear optimization without constraints Unconstrained minimization min x f(x) where f(x) is nonlinear and non-convex. Algorithms: 1. Newton and Quasi-Newton methods 2. Methods with direction determination and line optimization 3. Nelder-Mead Method Nonlinear Optimization without Constraints 2 / 23

3 Newton s algorithm 2nd-order Taylor expansion f(x) = f(x 0 )+ T f(x 0 ) (x x 0 )+ 1 2 (x x 0) T H(x 0 ) (x x 0 ) + O( x x 0 3 2) unconstrained quadratic problem Newton s algorithm: 1 min x 2 xt H(x 0 ) x + T f(x 0 ) x x opt = (x x 0 ) opt = H 1 (x 0 ) f(x 0 ) so x opt = x 0 H 1 (x 0 ) f(x 0 ) x k+1 = x k H 1 (x k ) f(x k ) Nonlinear Optimization without Constraints 3 / 23

4 Newton s algorithm (continued) f(x 0 )+ T f(x 0 ) (x x 0 )+ 1 2 (x x 0) T H(x 0 ) (x x 0 ) f f(x 0 ) x opt x 0 d d = x x 0 min d f(x 0 )+ T f(x 0 )d dt H(x 0 )d d = H 1 (x 0 ) f(x 0 ) x opt = x 0 +d = x 0 H 1 (x 0 ) f(x 0 ) Nonlinear Optimization without Constraints 4 / 23

5 Levenberg-Marquardt and quasi-newton algorithms Hessian matrix H(x k ) computation is time-consuming problems when close to singularity Solution: choose approximate Ĥ k Levenberg-Marquardt algorithm Broyden-Fletcher-Goldfarb-Shanno quasi-newton method Davidon-Fletcher-Powell quasi-newton method Modified Newton algorithm: x k+1 = x k Ĥ 1 k f(x k ) Nonlinear Optimization without Constraints 5 / 23

6 Modified Newton algorithm: x k+1 = x k Ĥ 1 k f(x k ) Levenberg-Marquardt algorithm: Ĥ k = λi +H(x k ) Broyden-Fletcher-Goldfarb-Shanno quasi-newton method: Ĥ k = Ĥ k 1 + q kq T k q T k s k Ĥ T k 1 s ks T k Ĥk 1 s T k Ĥk 1s k where s k = x k x k 1 q k = f(x k ) f(x k 1 ) Davidon-Fletcher-Powell quasi-newton method: ˆD k = ˆD k 1 + s ks T k q T k s k ˆD k 1 q k q T k ˆD T k 1 q T k ˆD k 1 q k where s k = x k x k 1 q k = f(x k ) f(x k 1 ) x k+1 = x k ˆD k f(x k ) no inverse! Nonlinear Optimization without Constraints 6 / 23

7 Nonlinear least squares problems e(x) = [ e 1 (x) e 2 (x)... e N (x) ] T (N components) f(x) = e(x) 2 2 = e T (x)e(x) f(x) = 2 e(x)e(x) N H(x) = 2 e(x) T e(x)+ 2 2 e i (x)e i (x) i=1 with e: Jacobian of e and 2 e i : Hessian of e i e(x) 0 Ĥ(x) = 2 e(x) T e(x) Gauss-Newton method: x k+1 = x k ( e(x k ) T e(x k )) 1 e(xk )e(x k ) Levenberg-Marquardt method: ( ) λi 1 x k+1 = x k 2 + e(x k) T e(x k ) e(x k )e(x k ) Nonlinear Optimization without Constraints 7 / 23

8 Direction determination & Line minimization Minimization along search direction Direction determination n-dimensional minimization: Choose a search direction d k at x k Minimize f(x) over the line One-dimensional minimization: x = argmin x f(x) x = x k +d k s, s R x k+1 = x k +d k s k with s k = argmin s f(x k +d k s) Nonlinear Optimization without Constraints 8 / 23

9 Direction determination & Line minimization (continued) f f k (s)= f(x k +d k s) x k +d k s x d k k s = 0 x k s Nonlinear Optimization without Constraints 9 / 23

10 Line minimization Initial point x k Search direction d k Line minimization min s f(x k +d k s ) = min s f k (s ) Fixed / Variable step method Parabolic / Cubic interpolation Golden section / Fibonacci method Nonlinear Optimization without Constraints 10 / 23

11 Parabolic interpolation f k f k (s 3 ) p k f k (s 1 ) f k (s 2 ) s 1 s 4 s 2 s 3 (a) using three function values f k pk f k (s 2 ) f k (s 1 ) s 1 s 4 s 2 (b) using two function values and 1 derivative Nonlinear Optimization without Constraints 11 / 23

12 Golden section method Suppose minimum in [a l,d l ], f k unimodal in [a l,d l ] f k Construct: b l = λa l +(1 λ)d l c l = (1 λ)a l +λd l a l b l c l d l Golden section method: λ = 1 2 ( 5 1) only one function evaluation per iteration f k a l+1 b l+1 c l+1d l+1 Nonlinear Optimization without Constraints 12 / 23

13 Fibonacci method: Fibonacci sequence {µ k } = 0, 1, 1, 2, 3, 5, 8, 13, 21,... µ k = µ k 1 +µ k 2 µ 0 = 0, µ 1 = 1 Select n such that Next use 1 µ n (b 0 a 0 ) ε λ l = µ n 2 l µ n 1 l Also allows to reuse points from one iteration to next Fibonacci method gives optimal interval reduction for given number of function evaluations Nonlinear Optimization without Constraints 13 / 23

14 Determination of search direction Gradient methods and conjugate-gradient methods Perpendicular search methods Perpendicular method Powell s perpendicular method Nonlinear Optimization without Constraints 14 / 23

15 Gradient and conjugate-gradient methods Steepest descent: d k = f(x k ) Conjugate gradient methods: d k = Ĥ 1 k f(x k ) Levenberg-Marquardt direction Broyden-Fletcher-Goldfarb-Shanno direction Davidon-Fletcher-Powell direction Fletcher-Reeves direction: d k = f(x k )+µ k d k 1 where µ k = T f(x k ) f(x k ) T f(x k 1 ) f(x k 1 ) Nonlinear Optimization without Constraints 15 / 23

16 Perpendicular search method Perpendicular set of search directions: d 0 = [ ] T d 1 = [ ] T d n 1 = [ ] T x2 x3 0.5 x0 x Nonlinear Optimization without Constraints 16 / 23

17 Powell s perpendicular method Initial point: x 0 := x 0 First set of search directions: results in x 1,..., x n S 1 = (d 0,d 1,...,d n 1 ) Perform search in direction x n x 0 x n New set of search directions: drop d 0 and add x n x 0 : results in x n+1,..., x 2n S 2 = (d 1,d 2,...,d n 1,x n x 0 ) Perform search in direction x 2n x n x 2n New set of search directions: drop d 1 and add x 2n x n :... S 3 = (d 2,d 3,...,d n 1,x n x 0,x 2n x n ) Nonlinear Optimization without Constraints 17 / 23

18 Powell s perpendicular method (continued) x x 3 x x 2 1 x x 0 = x 0 x Nonlinear Optimization without Constraints 18 / 23

19 Nelder-Mead method Vertices of a simplex: (x 0,x 1,x 2 ) Let f(x 0 ) > f(x 1 ) and f(x 0 ) > f(x 2 ) x 3 = x 1 +x 2 x 0 point reflection around x c = (x 1 +x 2 )/2 x 1 x 0 x c C R x 3 E C = Contraction x 2 R = Reflection E = Expansion Nelder-Mead method does not use gradient Method is less efficient than previous methods if more than 3 4 variables Nonlinear Optimization without Constraints 19 / 23

20 4.5 x x3 1 x1 0.5 x2 0 x Reflection in the Nelder-Mead algorithm Nonlinear Optimization without Constraints 20 / 23

21 Summary Nonlinear programming without constraints: Standard form min x f(x) Three main classes of algorithms: 1 Newton and quasi-newton methods 2 Methods with direction determination and line optimization 3 Nelder-Mead Method Nonlinear Optimization without Constraints 21 / 23

22 Test: Classification of optimization problems I max exp(x 1 x 2 ) x R 3 s.t. 2x 1 +3x 2 5x 3 1 This problem is/can be recast as (check most restrictive answer): linear programming problem quadratic programming problem nonlinear programming problem Nonlinear Optimization without Constraints 22 / 23

23 Test: Classification of optimization problems II max x R 3 x 1x 2 +x 2 x 3 s.t. x 2 1 +x 2 2 +x This problem is/can be recast as (check most restrictive answer): linear programming problem quadratic programming problem nonlinear programming problem Nonlinear Optimization without Constraints 23 / 23

Lecture 7 Unconstrained nonlinear programming

Lecture 7 Unconstrained nonlinear programming Lecture 7 Unconstrained nonlinear programming Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University,

More information

Chapter 4. Unconstrained optimization

Chapter 4. Unconstrained optimization Chapter 4. Unconstrained optimization Version: 28-10-2012 Material: (for details see) Chapter 11 in [FKS] (pp.251-276) A reference e.g. L.11.2 refers to the corresponding Lemma in the book [FKS] PDF-file

More information

Statistics 580 Optimization Methods

Statistics 580 Optimization Methods Statistics 580 Optimization Methods Introduction Let fx be a given real-valued function on R p. The general optimization problem is to find an x ɛ R p at which fx attain a maximum or a minimum. It is of

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 3. Gradient Method

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 3. Gradient Method Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 3 Gradient Method Shiqian Ma, MAT-258A: Numerical Optimization 2 3.1. Gradient method Classical gradient method: to minimize a differentiable convex

More information

Introduction to unconstrained optimization - direct search methods

Introduction to unconstrained optimization - direct search methods Introduction to unconstrained optimization - direct search methods Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Structure of optimization methods Typically Constraint handling converts the

More information

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Multidimensional Unconstrained Optimization Suppose we have a function f() of more than one

More information

1 Numerical optimization

1 Numerical optimization Contents 1 Numerical optimization 5 1.1 Optimization of single-variable functions............ 5 1.1.1 Golden Section Search................... 6 1.1. Fibonacci Search...................... 8 1. Algorithms

More information

Methods that avoid calculating the Hessian. Nonlinear Optimization; Steepest Descent, Quasi-Newton. Steepest Descent

Methods that avoid calculating the Hessian. Nonlinear Optimization; Steepest Descent, Quasi-Newton. Steepest Descent Nonlinear Optimization Steepest Descent and Niclas Börlin Department of Computing Science Umeå University niclas.borlin@cs.umu.se A disadvantage with the Newton method is that the Hessian has to be derived

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Quasi Newton Methods Barnabás Póczos & Ryan Tibshirani Quasi Newton Methods 2 Outline Modified Newton Method Rank one correction of the inverse Rank two correction of the

More information

NonlinearOptimization

NonlinearOptimization 1/35 NonlinearOptimization Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Jiří Kašpar, Pavel Tvrdík, 2011 Unconstrained nonlinear optimization,

More information

1 Numerical optimization

1 Numerical optimization Contents Numerical optimization 5. Optimization of single-variable functions.............................. 5.. Golden Section Search..................................... 6.. Fibonacci Search........................................

More information

5 Quasi-Newton Methods

5 Quasi-Newton Methods Unconstrained Convex Optimization 26 5 Quasi-Newton Methods If the Hessian is unavailable... Notation: H = Hessian matrix. B is the approximation of H. C is the approximation of H 1. Problem: Solve min

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-3: Unconstrained optimization II Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428

More information

Optimization Methods

Optimization Methods Optimization Methods Decision making Examples: determining which ingredients and in what quantities to add to a mixture being made so that it will meet specifications on its composition allocating available

More information

Lecture V. Numerical Optimization

Lecture V. Numerical Optimization Lecture V Numerical Optimization Gianluca Violante New York University Quantitative Macroeconomics G. Violante, Numerical Optimization p. 1 /19 Isomorphism I We describe minimization problems: to maximize

More information

Optimization and Root Finding. Kurt Hornik

Optimization and Root Finding. Kurt Hornik Optimization and Root Finding Kurt Hornik Basics Root finding and unconstrained smooth optimization are closely related: Solving ƒ () = 0 can be accomplished via minimizing ƒ () 2 Slide 2 Basics Root finding

More information

Optimization. Totally not complete this is...don't use it yet...

Optimization. Totally not complete this is...don't use it yet... Optimization Totally not complete this is...don't use it yet... Bisection? Doing a root method is akin to doing a optimization method, but bi-section would not be an effective method - can detect sign

More information

Quasi-Newton Methods

Quasi-Newton Methods Newton s Method Pros and Cons Quasi-Newton Methods MA 348 Kurt Bryan Newton s method has some very nice properties: It s extremely fast, at least once it gets near the minimum, and with the simple modifications

More information

Quasi-Newton methods: Symmetric rank 1 (SR1) Broyden Fletcher Goldfarb Shanno February 6, / 25 (BFG. Limited memory BFGS (L-BFGS)

Quasi-Newton methods: Symmetric rank 1 (SR1) Broyden Fletcher Goldfarb Shanno February 6, / 25 (BFG. Limited memory BFGS (L-BFGS) Quasi-Newton methods: Symmetric rank 1 (SR1) Broyden Fletcher Goldfarb Shanno (BFGS) Limited memory BFGS (L-BFGS) February 6, 2014 Quasi-Newton methods: Symmetric rank 1 (SR1) Broyden Fletcher Goldfarb

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming Kees Roos e-mail: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos LNMB Course De Uithof, Utrecht February 6 - May 8, A.D. 2006 Optimization Group 1 Outline for week

More information

Optimization Methods

Optimization Methods Optimization Methods Categorization of Optimization Problems Continuous Optimization Discrete Optimization Combinatorial Optimization Variational Optimization Common Optimization Concepts in Computer Vision

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

2. Quasi-Newton methods

2. Quasi-Newton methods L. Vandenberghe EE236C (Spring 2016) 2. Quasi-Newton methods variable metric methods quasi-newton methods BFGS update limited-memory quasi-newton methods 2-1 Newton method for unconstrained minimization

More information

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

More information

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09 Numerical Optimization 1 Working Horse in Computer Vision Variational Methods Shape Analysis Machine Learning Markov Random Fields Geometry Common denominator: optimization problems 2 Overview of Methods

More information

Contents. Preface. 1 Introduction Optimization view on mathematical models NLP models, black-box versus explicit expression 3

Contents. Preface. 1 Introduction Optimization view on mathematical models NLP models, black-box versus explicit expression 3 Contents Preface ix 1 Introduction 1 1.1 Optimization view on mathematical models 1 1.2 NLP models, black-box versus explicit expression 3 2 Mathematical modeling, cases 7 2.1 Introduction 7 2.2 Enclosing

More information

Multivariate Newton Minimanization

Multivariate Newton Minimanization Multivariate Newton Minimanization Optymalizacja syntezy biosurfaktantu Rhamnolipid Rhamnolipids are naturally occuring glycolipid produced commercially by the Pseudomonas aeruginosa species of bacteria.

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

Optimization Methods for Circuit Design

Optimization Methods for Circuit Design Technische Universität München Department of Electrical Engineering and Information Technology Institute for Electronic Design Automation Optimization Methods for Circuit Design Compendium H. Graeb Version

More information

Outline. Scientific Computing: An Introductory Survey. Optimization. Optimization Problems. Examples: Optimization Problems

Outline. Scientific Computing: An Introductory Survey. Optimization. Optimization Problems. Examples: Optimization Problems Outline Scientific Computing: An Introductory Survey Chapter 6 Optimization 1 Prof. Michael. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng

Optimization 2. CS5240 Theoretical Foundations in Multimedia. Leow Wee Kheng Optimization 2 CS5240 Theoretical Foundations in Multimedia Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (NUS) Optimization 2 1 / 38

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

(One Dimension) Problem: for a function f(x), find x 0 such that f(x 0 ) = 0. f(x)

(One Dimension) Problem: for a function f(x), find x 0 such that f(x 0 ) = 0. f(x) Solving Nonlinear Equations & Optimization One Dimension Problem: or a unction, ind 0 such that 0 = 0. 0 One Root: The Bisection Method This one s guaranteed to converge at least to a singularity, i not

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maximum Likelihood Estimation Prof. C. F. Jeff Wu ISyE 8813 Section 1 Motivation What is parameter estimation? A modeler proposes a model M(θ) for explaining some observed phenomenon θ are the parameters

More information

Static unconstrained optimization

Static unconstrained optimization Static unconstrained optimization 2 In unconstrained optimization an objective function is minimized without any additional restriction on the decision variables, i.e. min f(x) x X ad (2.) with X ad R

More information

Lecture 14: October 17

Lecture 14: October 17 1-725/36-725: Convex Optimization Fall 218 Lecture 14: October 17 Lecturer: Lecturer: Ryan Tibshirani Scribes: Pengsheng Guo, Xian Zhou Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Unconstrained optimization

Unconstrained optimization Chapter 4 Unconstrained optimization An unconstrained optimization problem takes the form min x Rnf(x) (4.1) for a target functional (also called objective function) f : R n R. In this chapter and throughout

More information

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method.

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method. Optimization Unconstrained optimization One-dimensional Multi-dimensional Newton s method Basic Newton Gauss- Newton Quasi- Newton Descent methods Gradient descent Conjugate gradient Constrained optimization

More information

Convex Optimization. Problem set 2. Due Monday April 26th

Convex Optimization. Problem set 2. Due Monday April 26th Convex Optimization Problem set 2 Due Monday April 26th 1 Gradient Decent without Line-search In this problem we will consider gradient descent with predetermined step sizes. That is, instead of determining

More information

Optimization II: Unconstrained Multivariable

Optimization II: Unconstrained Multivariable Optimization II: Unconstrained Multivariable CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Optimization II: Unconstrained Multivariable 1

More information

Practical Optimization: Basic Multidimensional Gradient Methods

Practical Optimization: Basic Multidimensional Gradient Methods Practical Optimization: Basic Multidimensional Gradient Methods László Kozma Lkozma@cis.hut.fi Helsinki University of Technology S-88.4221 Postgraduate Seminar on Signal Processing 22. 10. 2008 Contents

More information

Motivation: We have already seen an example of a system of nonlinear equations when we studied Gaussian integration (p.8 of integration notes)

Motivation: We have already seen an example of a system of nonlinear equations when we studied Gaussian integration (p.8 of integration notes) AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 5: Nonlinear Equations Dianne P. O Leary c 2001, 2002, 2007 Solving Nonlinear Equations and Optimization Problems Read Chapter 8. Skip Section 8.1.1.

More information

Comparative study of Optimization methods for Unconstrained Multivariable Nonlinear Programming Problems

Comparative study of Optimization methods for Unconstrained Multivariable Nonlinear Programming Problems International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 013 1 ISSN 50-3153 Comparative study of Optimization methods for Unconstrained Multivariable Nonlinear Programming

More information

Newton s Method. Ryan Tibshirani Convex Optimization /36-725

Newton s Method. Ryan Tibshirani Convex Optimization /36-725 Newton s Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, Properties and examples: f (y) = max x

More information

8 Numerical methods for unconstrained problems

8 Numerical methods for unconstrained problems 8 Numerical methods for unconstrained problems Optimization is one of the important fields in numerical computation, beside solving differential equations and linear systems. We can see that these fields

More information

Algorithms for Constrained Optimization

Algorithms for Constrained Optimization 1 / 42 Algorithms for Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University April 19, 2015 2 / 42 Outline 1. Convergence 2. Sequential quadratic

More information

Numerical solutions of nonlinear systems of equations

Numerical solutions of nonlinear systems of equations Numerical solutions of nonlinear systems of equations Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan E-mail: min@math.ntnu.edu.tw August 28, 2011 Outline 1 Fixed points

More information

Lecture 7: Optimization methods for non linear estimation or function estimation

Lecture 7: Optimization methods for non linear estimation or function estimation Lecture 7: Optimization methods for non linear estimation or function estimation Y. Favennec 1, P. Le Masson 2 and Y. Jarny 1 1 LTN UMR CNRS 6607 Polytetch Nantes 44306 Nantes France 2 LIMATB Université

More information

MATH 4211/6211 Optimization Quasi-Newton Method

MATH 4211/6211 Optimization Quasi-Newton Method MATH 4211/6211 Optimization Quasi-Newton Method Xiaojing Ye Department of Mathematics & Statistics Georgia State University Xiaojing Ye, Math & Stat, Georgia State University 0 Quasi-Newton Method Motivation:

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Spring 2010 Emo Todorov (UW) AMATH/CSE 579, Spring 2010 Lecture 9 1 / 8 Gradient descent

More information

ECS550NFB Introduction to Numerical Methods using Matlab Day 2

ECS550NFB Introduction to Numerical Methods using Matlab Day 2 ECS550NFB Introduction to Numerical Methods using Matlab Day 2 Lukas Laffers lukas.laffers@umb.sk Department of Mathematics, University of Matej Bel June 9, 2015 Today Root-finding: find x that solves

More information

Optimization. Next: Curve Fitting Up: Numerical Analysis for Chemical Previous: Linear Algebraic and Equations. Subsections

Optimization. Next: Curve Fitting Up: Numerical Analysis for Chemical Previous: Linear Algebraic and Equations. Subsections Next: Curve Fitting Up: Numerical Analysis for Chemical Previous: Linear Algebraic and Equations Subsections One-dimensional Unconstrained Optimization Golden-Section Search Quadratic Interpolation Newton's

More information

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by:

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by: Newton s Method Suppose we want to solve: (P:) min f (x) At x = x, f (x) can be approximated by: n x R. f (x) h(x) := f ( x)+ f ( x) T (x x)+ (x x) t H ( x)(x x), 2 which is the quadratic Taylor expansion

More information

Optimization Concepts and Applications in Engineering

Optimization Concepts and Applications in Engineering Optimization Concepts and Applications in Engineering Ashok D. Belegundu, Ph.D. Department of Mechanical Engineering The Pennsylvania State University University Park, Pennsylvania Tirupathi R. Chandrupatia,

More information

Linear and Nonlinear Optimization

Linear and Nonlinear Optimization Linear and Nonlinear Optimization German University in Cairo October 10, 2016 Outline Introduction Gradient descent method Gauss-Newton method Levenberg-Marquardt method Case study: Straight lines have

More information

4 Newton Method. Unconstrained Convex Optimization 21. H(x)p = f(x). Newton direction. Why? Recall second-order staylor series expansion:

4 Newton Method. Unconstrained Convex Optimization 21. H(x)p = f(x). Newton direction. Why? Recall second-order staylor series expansion: Unconstrained Convex Optimization 21 4 Newton Method H(x)p = f(x). Newton direction. Why? Recall second-order staylor series expansion: f(x + p) f(x)+p T f(x)+ 1 2 pt H(x)p ˆf(p) In general, ˆf(p) won

More information

Optimization II: Unconstrained Multivariable

Optimization II: Unconstrained Multivariable Optimization II: Unconstrained Multivariable CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Optimization II: Unconstrained

More information

j=1 r 1 x 1 x n. r m r j (x) r j r j (x) r j (x). r j x k

j=1 r 1 x 1 x n. r m r j (x) r j r j (x) r j (x). r j x k Maria Cameron Nonlinear Least Squares Problem The nonlinear least squares problem arises when one needs to find optimal set of parameters for a nonlinear model given a large set of data The variables x,,

More information

FALL 2018 MATH 4211/6211 Optimization Homework 4

FALL 2018 MATH 4211/6211 Optimization Homework 4 FALL 2018 MATH 4211/6211 Optimization Homework 4 This homework assignment is open to textbook, reference books, slides, and online resources, excluding any direct solution to the problem (such as solution

More information

Determination of Feasible Directions by Successive Quadratic Programming and Zoutendijk Algorithms: A Comparative Study

Determination of Feasible Directions by Successive Quadratic Programming and Zoutendijk Algorithms: A Comparative Study International Journal of Mathematics And Its Applications Vol.2 No.4 (2014), pp.47-56. ISSN: 2347-1557(online) Determination of Feasible Directions by Successive Quadratic Programming and Zoutendijk Algorithms:

More information

Higher-Order Methods

Higher-Order Methods Higher-Order Methods Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. PCMI, July 2016 Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 1 / 25 Smooth

More information

Applied Numerical Analysis

Applied Numerical Analysis Applied Numerical Analysis Using MATLAB Second Edition Laurene V. Fausett Texas A&M University-Commerce PEARSON Prentice Hall Upper Saddle River, NJ 07458 Contents Preface xi 1 Foundations 1 1.1 Introductory

More information

Review of Classical Optimization

Review of Classical Optimization Part II Review of Classical Optimization Multidisciplinary Design Optimization of Aircrafts 51 2 Deterministic Methods 2.1 One-Dimensional Unconstrained Minimization 2.1.1 Motivation Most practical optimization

More information

Numerical Analysis of Electromagnetic Fields

Numerical Analysis of Electromagnetic Fields Pei-bai Zhou Numerical Analysis of Electromagnetic Fields With 157 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents Part 1 Universal Concepts

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 15: Nonlinear optimization Prof. John Gunnar Carlsson November 1, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I November 1, 2010 1 / 24

More information

Matrix Derivatives and Descent Optimization Methods

Matrix Derivatives and Descent Optimization Methods Matrix Derivatives and Descent Optimization Methods 1 Qiang Ning Department of Electrical and Computer Engineering Beckman Institute for Advanced Science and Techonology University of Illinois at Urbana-Champaign

More information

Quasi-Newton methods for minimization

Quasi-Newton methods for minimization Quasi-Newton methods for minimization Lectures for PHD course on Numerical optimization Enrico Bertolazzi DIMS Universitá di Trento November 21 December 14, 2011 Quasi-Newton methods for minimization 1

More information

Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2

Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2 Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2 Coralia Cartis, University of Oxford INFOMM CDT: Modelling, Analysis and Computation of Continuous Real-World Problems Methods

More information

Mathematical optimization

Mathematical optimization Optimization Mathematical optimization Determine the best solutions to certain mathematically defined problems that are under constrained determine optimality criteria determine the convergence of the

More information

Trajectory-based optimization

Trajectory-based optimization Trajectory-based optimization Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2012 Emo Todorov (UW) AMATH/CSE 579, Winter 2012 Lecture 6 1 / 13 Using

More information

Gradient-Based Optimization

Gradient-Based Optimization Multidisciplinary Design Optimization 48 Chapter 3 Gradient-Based Optimization 3. Introduction In Chapter we described methods to minimize (or at least decrease) a function of one variable. While problems

More information

Improving the Convergence of Back-Propogation Learning with Second Order Methods

Improving the Convergence of Back-Propogation Learning with Second Order Methods the of Back-Propogation Learning with Second Order Methods Sue Becker and Yann le Cun, Sept 1988 Kasey Bray, October 2017 Table of Contents 1 with Back-Propagation 2 the of BP 3 A Computationally Feasible

More information

University of Houston, Department of Mathematics Numerical Analysis, Fall 2005

University of Houston, Department of Mathematics Numerical Analysis, Fall 2005 3 Numerical Solution of Nonlinear Equations and Systems 3.1 Fixed point iteration Reamrk 3.1 Problem Given a function F : lr n lr n, compute x lr n such that ( ) F(x ) = 0. In this chapter, we consider

More information

Numerical Optimization of Partial Differential Equations

Numerical Optimization of Partial Differential Equations Numerical Optimization of Partial Differential Equations Part I: basic optimization concepts in R n Bartosz Protas Department of Mathematics & Statistics McMaster University, Hamilton, Ontario, Canada

More information

Image restoration. An example in astronomy

Image restoration. An example in astronomy Image restoration Convex approaches: penalties and constraints An example in astronomy Jean-François Giovannelli Groupe Signal Image Laboratoire de l Intégration du Matériau au Système Univ. Bordeaux CNRS

More information

Data Mining (Mineria de Dades)

Data Mining (Mineria de Dades) Data Mining (Mineria de Dades) Lluís A. Belanche belanche@lsi.upc.edu Soft Computing Research Group Dept. de Llenguatges i Sistemes Informàtics (Software department) Universitat Politècnica de Catalunya

More information

Notes on Numerical Optimization

Notes on Numerical Optimization Notes on Numerical Optimization University of Chicago, 2014 Viva Patel October 18, 2014 1 Contents Contents 2 List of Algorithms 4 I Fundamentals of Optimization 5 1 Overview of Numerical Optimization

More information

Two improved classes of Broyden s methods for solving nonlinear systems of equations

Two improved classes of Broyden s methods for solving nonlinear systems of equations Available online at www.isr-publications.com/jmcs J. Math. Computer Sci., 17 (2017), 22 31 Research Article Journal Homepage: www.tjmcs.com - www.isr-publications.com/jmcs Two improved classes of Broyden

More information

nonrobust estimation The n measurement vectors taken together give the vector X R N. The unknown parameter vector is P R M.

nonrobust estimation The n measurement vectors taken together give the vector X R N. The unknown parameter vector is P R M. Introduction to nonlinear LS estimation R. I. Hartley and A. Zisserman: Multiple View Geometry in Computer Vision. Cambridge University Press, 2ed., 2004. After Chapter 5 and Appendix 6. We will use x

More information

EECS260 Optimization Lecture notes

EECS260 Optimization Lecture notes EECS260 Optimization Lecture notes Based on Numerical Optimization (Nocedal & Wright, Springer, 2nd ed., 2006) Miguel Á. Carreira-Perpiñán EECS, University of California, Merced May 2, 2010 1 Introduction

More information

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods Optimality Conditions: Equality Constrained Case As another example of equality

More information

Numerical computation II. Reprojection error Bundle adjustment Family of Newtonʼs methods Statistical background Maximum likelihood estimation

Numerical computation II. Reprojection error Bundle adjustment Family of Newtonʼs methods Statistical background Maximum likelihood estimation Numerical computation II Reprojection error Bundle adjustment Family of Newtonʼs methods Statistical background Maximum likelihood estimation Reprojection error Reprojection error = Distance between the

More information

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Taylor s Theorem Can often approximate a function by a polynomial The error in the approximation

More information

Unconstrained Multivariate Optimization

Unconstrained Multivariate Optimization Unconstrained Multivariate Optimization Multivariate optimization means optimization of a scalar function of a several variables: and has the general form: y = () min ( ) where () is a nonlinear scalar-valued

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Lecture 5, Continuous Optimisation Oxford University Computing Laboratory, HT 2006 Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The notion of complexity (per iteration)

More information

13. Nonlinear least squares

13. Nonlinear least squares L. Vandenberghe ECE133A (Fall 2018) 13. Nonlinear least squares definition and examples derivatives and optimality condition Gauss Newton method Levenberg Marquardt method 13.1 Nonlinear least squares

More information

Scientific Computing: Optimization

Scientific Computing: Optimization Scientific Computing: Optimization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 March 8th, 2011 A. Donev (Courant Institute) Lecture

More information

Krzysztof Tesch. Continuous optimisation algorithms

Krzysztof Tesch. Continuous optimisation algorithms Krzysztof Tesch Continuous optimisation algorithms Gdańsk 16 GDAŃSK UNIVERSITY OF TECHNOLOGY PUBLISHERS CHAIRMAN OF EDITORIAL BOARD Janusz T. Cieśliński REVIEWER Krzysztof Kosowski COVER DESIGN Katarzyna

More information

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained

More information

Math 273a: Optimization Netwon s methods

Math 273a: Optimization Netwon s methods Math 273a: Optimization Netwon s methods Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 some material taken from Chong-Zak, 4th Ed. Main features of Newton s method Uses both first derivatives

More information

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods Quasi-Newton Methods General form of quasi-newton methods: x k+1 = x k α

More information

GRADIENT = STEEPEST DESCENT

GRADIENT = STEEPEST DESCENT GRADIENT METHODS GRADIENT = STEEPEST DESCENT Convex Function Iso-contours gradient 0.5 0.4 4 2 0 8 0.3 0.2 0. 0 0. negative gradient 6 0.2 4 0.3 2.5 0.5 0 0.5 0.5 0 0.5 0.4 0.5.5 0.5 0 0.5 GRADIENT DESCENT

More information

NUMERICAL MATHEMATICS AND COMPUTING

NUMERICAL MATHEMATICS AND COMPUTING NUMERICAL MATHEMATICS AND COMPUTING Fourth Edition Ward Cheney David Kincaid The University of Texas at Austin 9 Brooks/Cole Publishing Company I(T)P An International Thomson Publishing Company Pacific

More information

Global Convergence of Perry-Shanno Memoryless Quasi-Newton-type Method. 1 Introduction

Global Convergence of Perry-Shanno Memoryless Quasi-Newton-type Method. 1 Introduction ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.11(2011) No.2,pp.153-158 Global Convergence of Perry-Shanno Memoryless Quasi-Newton-type Method Yigui Ou, Jun Zhang

More information

Optimization Methods. Lecture 19: Line Searches and Newton s Method

Optimization Methods. Lecture 19: Line Searches and Newton s Method 15.93 Optimization Methods Lecture 19: Line Searches and Newton s Method 1 Last Lecture Necessary Conditions for Optimality (identifies candidates) x local min f(x ) =, f(x ) PSD Slide 1 Sufficient Conditions

More information

Inverse Problems and Optimal Design in Electricity and Magnetism

Inverse Problems and Optimal Design in Electricity and Magnetism Inverse Problems and Optimal Design in Electricity and Magnetism P. Neittaanmäki Department of Mathematics, University of Jyväskylä M. Rudnicki Institute of Electrical Engineering, Warsaw and A. Savini

More information

Nonlinear programming

Nonlinear programming 08-04- htt://staff.chemeng.lth.se/~berntn/courses/otimps.htm Otimization of Process Systems Nonlinear rogramming PhD course 08 Bernt Nilsson, Det of Chemical Engineering, Lund University Content Unconstraint

More information

OPTIMIZATION TECHNIQUES AND THEIR APPLICATION

OPTIMIZATION TECHNIQUES AND THEIR APPLICATION OPTIMIZATION TECHNIQUES AND THEIR APPLICATION J.T. He n d e r s o n THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF Ph il o s o p h y i n t h e Un i v e r s i t y o f L e i c e s t e r APRIL 1978 UMI Number:

More information

Numerical Optimization Techniques

Numerical Optimization Techniques Numerical Optimization Techniques Léon Bottou NEC Labs America COS 424 3/2/2010 Today s Agenda Goals Representation Capacity Control Operational Considerations Computational Considerations Classification,

More information