using Low-Depth Quantum Circuits Guillaume Verdon Co-Founder & Chief Scientific Officer

Size: px
Start display at page:

Download "using Low-Depth Quantum Circuits Guillaume Verdon Co-Founder & Chief Scientific Officer"

Transcription

1 Training Neural Networks using Low-Depth Quantum Circuits QC Guillaume Verdon Co-Founder & Chief Scientific Officer

2 Overview

3 Classical Boltzmann machines? Energy-based model X X E(z) = J jk z j z k B j z j hjki j visibles hiddens Use thermal equilibrium statistics to mimic data P (z) = e E(z) P z e E(z)

4 Classical Boltzmann machines? Goal: reduce visibles relative entropy to data X Pvis (x) P data (x) log P data (x) x2data {z } D KL (P data P vis ) Need to sample from thermal (Gibbs) distribution for training Use Monte Carlo techniques Or... quantum computers! Restricted Boltzmann Machine (RBM)

5 Quantum Boltzmann machines? Energy function à Hamiltonian operator X Ĥ = J jk Ẑ j Ẑ k B j Ẑ j X hjki j visibles hiddens For Gibbs sampling: need to simulate quantum thermalization Quantum Analog Quantum Digital Quantum Approximate H = j H j, H j = C 2

6 Quantum analog Gibbs sampling Quantum Annealers Physical system enacting thermalization Physics of chip are direct analogy of algorithm Caveats: Physical temperature Connectivity issues Low-quality (flux) qubits Less flexible/embedding problems Quantum Analog: physical evolution governed by the physics of the chip

7 Quantum simulated thermalization with circuits Theoretically: Quantum simulated to arbitrary accuracy, given enough gates No connectivity problems (virtualized physics) Caveats: Would need full fault-tolerance >10 9 gates Near-term? Could we do something similar but tailored to Noisy Intermediate Scale Quantum Devices? Yes. Quantum Simulation: evolution decomposed into small pulses approximating evolution path

8 Quantum-classical hybrid thermalization Hybrid Variational approach Fixed number of quantum pulses Classically optimize pulse lengths CPU+QPU share optimization load Quantum Approximate Optimization Algorithm (QAOA) inspired from Adiabatic QC Proven quantum supremacy Near-term implementable Quantum-Classical Hybrid: fixed number of pulses, classically variationally optimized to mimimize distance to target state

9 Technical Background

10 Training quantum Boltzmann machines e H H = X hjki J jk Z j Z k X j B j Z j Network Hamiltonian D( data k vis ) Network parameters Want to minimize Gradient descent? D( data V x = k log vis xihx ) v Too hard. Minimize upper bound instead

11 Bound-based update rule H = X hjki J jk Z j Z k X B j Z j j Minimize KL Minimize upper-bound 1 via update rule: Positive phase Gibbs sampling needed for each term Negative phase V x = log xihx v [1] Amin, M. H., Andriyash, E., Rolfe, J., Kulchytskyy, B., & Melko, R., Quantum Boltzmann Machine, [arxiv: ]

12 Example: updating weights J jk j k Jjk H = Z jz k Z = "ih" #ih# D = {0010, 1100,...} = {""#", ""##,...} J jk = 1 D Measure clamped & unclamped thermal correlations X x2d hz j Z k i clamped, x hz j Z k i unclamped V x = log xihx v

13 Example: updating weights J Jjk H = Z j Z k Dataset D = {0010, 1100,...} ( = {""#", ""##,...} " k " j # k " j + " k " j Pos. phase # Neg. phase # + J jk = 1 D Clamped Gibbs. ( Unclamped Gibbs

14 Classical Alternatives to Clamped Sampling For RBM s: Feedforward data points For more general BM s Markov Chain Monte Carlo sampling Other sampling methods (QMC etc.) V x = log xihx v

15 Quantum-Classical Variational Algorithms Goal: find minimizing Parameterize a family of ansatz circuits U( 1 ) U( 2 ) U( 3 ) U( 4 ) U( 5 ) U( 6 ) Loop: CPU QPU until min reached hhi ~ V x = log xihx v

16 Quantum Approximate Optimization Algorithm Hybrid variational algo inspired from Adiabatic QC Mixer: H M = P j X j Cost: H C = P hjki J jkz j Z k CPU QPU Analog adiabatic Trotterized Simulation QAOA

17 Our algorithm

18 Quantum Approximate Thermalization Say we want to sample from BM Gibbs state e H bm where H bm = P hjki J jkz j Z k Pj B jz j Initiate system in easy thermal state or hh C i Use QAOA to min with Cost: H C H bm Mixer: H M = P j X j Brings our state closer to thermal (Gibbs) state Free energy F = hh C i 1 S = D( k ) Relative entr.

19 Quantum Approximate Boltzmann Machines QABoM Train (semi-)restricted BM using bound-based rule X J jk = 1 D hz j Z k i clamped, x hz j Z k i unclamped x2d Use Quantum Approximate Thermalization for Unclamped + clamped Gibbs sampling Clamping can be regular or quantum randomized j J jk k For RBM case Can do positive phase + inference classically

20 ( Quantum Randomized Clamping QRC for QABoM J jk = 1 D Randomize clamping during QAOA faster training AND better performance ( P x2d hz jz k i clamped, x hz j Z k i unclamped 1 D ( " " j # " + " " j # # +. k k j k ( " " " " + D # # " # = 1 1 D +. P x2d xihx j k j k

21 QABoM paper results [arxiv: ] Training an RBM with noisy(depolarizing) circuits using Rigetti Forest QVM

22 It s coding time!

23 Code walkthrough.com/michaelbroughton/qabom

24 Importing dependencies Setting up pyquil Importing both QAOA and VQE

25 Setting up the qrbm class Network setup Temp and QAOA steps

26 Setting up the qrbm class Use VQE for expect. values Setting up random initial network parameters

27 Setting up the unclamped QAOA sampling Define hidden/visible indices

28 Setting up the unclamped QAOA sampling Mixer Hamiltonian H M = P j X j Cost Hamiltonian H C = P hjki J jkz j Z k Pj B jz j

29 Setting up the unclamped QAOA sampling Prep thermal state using entanglement (for faster sim) Want: e P j Z j O j X e z j z j ihz j Prep each qubit as: z j 2{±1} p 2 cosh( ) X e z zi S zi E R x ( ) z2{1, 1} +

30 Setting up the unclamped QAOA sampling Put QAOA ingredients together Set optimal QAOA angles output Use pyquil parametric program

31 Setting up the network training Option to mix quantum and classical RBM weight updates Find optimal QAOA given current weights

32 Setting up the network training Thermal correlation exp. value J jk = 1 D X x2d hz j Z k i clamped, x We compute only unclamped (neg phase) quantumly for demo hz j Z k i unclamped j J jk k

33 Setting up the network training Setting up classical positive phase via feedforward

34 Updating weights

35 Inference

36 Simple example: Hidden bit subspace Encode a random bit redundantly into 4 bits Let our qbm find the needle in the haystack Random coin flip Encdoding QABoM RBM decoding? Can it identify this hidden variable?

37 To Jupyter and beyond!

38 A brief intermission

39 About Everettian The Quantum Artificial Intelligence company. Advancing and democratizing bleeding-edge Quantum Machine Learning

40 The Quantum Valley Waterloo: the perfect place to build the quantum future Entanglement with Toronto s classical AI ecosystem

41 Join the team! Tom Lubowe CEO, Co-Founder - Experience in FinTech Product Management - Worked in Forex Execution, and Hedge Fund side of Finance Industry Guillaume Verdon CSO, Co-Founder - PhD student in Quantum Machine Learning at IQC & Perimeter Institute - MMath from IQC on Quantum Algorithms & Quantum Field Theory Mike Broughton CTO, Co-Founder - Computer Science at UWaterloo and Institute for Quantum Computing (IQC) - Early employee at Piinpoint, a Velocity & Y Combinator alumni company

42 Now back to the code

43 Outlook/Future work Hybrid quantum computers can train neural networks! Time to implement on a chip Possible improvements Variationally optimize temp/entropy Further achieve lower Free energy Extensions Apply to general BM Apply to deep BM Integrate into classical BM network

44 Thanks! Reach out:

Learning to Disentangle Factors of Variation with Manifold Learning

Learning to Disentangle Factors of Variation with Manifold Learning Learning to Disentangle Factors of Variation with Manifold Learning Scott Reed Kihyuk Sohn Yuting Zhang Honglak Lee University of Michigan, Department of Electrical Engineering and Computer Science 08

More information

Quantum Computing: Great Expectations

Quantum Computing: Great Expectations Quantum Computing: Great Expectations Quantum Computing for Nuclear Physics Workshop Dave Bacon dabacon@google.com In a Galaxy Seven Years Ago... 0.88 fidelity 0.78 fidelity (2010) fidelities: 14 qubits:

More information

Kyle Reing University of Southern California April 18, 2018

Kyle Reing University of Southern California April 18, 2018 Renormalization Group and Information Theory Kyle Reing University of Southern California April 18, 2018 Overview Renormalization Group Overview Information Theoretic Preliminaries Real Space Mutual Information

More information

Representational Power of Restricted Boltzmann Machines and Deep Belief Networks. Nicolas Le Roux and Yoshua Bengio Presented by Colin Graber

Representational Power of Restricted Boltzmann Machines and Deep Belief Networks. Nicolas Le Roux and Yoshua Bengio Presented by Colin Graber Representational Power of Restricted Boltzmann Machines and Deep Belief Networks Nicolas Le Roux and Yoshua Bengio Presented by Colin Graber Introduction Representational abilities of functions with some

More information

Unsupervised Machine Learning on a Hybrid Quantum Computer Johannes Otterbach. Bay Area Quantum Computing Meetup - YCombinator February 1, 2018

Unsupervised Machine Learning on a Hybrid Quantum Computer Johannes Otterbach. Bay Area Quantum Computing Meetup - YCombinator February 1, 2018 Unsupervised Machine Learning on a Hybrid Quantum Computer Johannes Otterbach Bay Area Quantum Computing Meetup - YCombinator February 1, 2018 Full Stack Quantum Computing Quantum Processor Hardware Cloud

More information

The Quantum Supremacy Experiment

The Quantum Supremacy Experiment The Quantum Supremacy Experiment John Martinis, Google & UCSB New tests of QM: Does QM work for 10 15 Hilbert space? Does digitized error model also work? Demonstrate exponential computing power: Check

More information

Accelerated Monte Carlo simulations with restricted Boltzmann machines

Accelerated Monte Carlo simulations with restricted Boltzmann machines Accelerated simulations with restricted Boltzmann machines Li Huang 1 Lei Wang 2 1 China Academy of Engineering Physics 2 Institute of Physics, Chinese Academy of Sciences July 6, 2017 Machine Learning

More information

Quantum Algorithm Survey: Cont d

Quantum Algorithm Survey: Cont d Quantum Algorithm Survey: Cont d Xiaodi Wu CS, UMIACS, and QuICS, University of Maryland Quantum Algorithms for Linear Algebraic Problems Linear equation systems A x = b, given oracle access to A, b, generate

More information

Quantum computing with superconducting qubits Towards useful applications

Quantum computing with superconducting qubits Towards useful applications Quantum computing with superconducting qubits Towards useful applications Stefan Filipp IBM Research Zurich Switzerland Forum Teratec 2018 June 20, 2018 Palaiseau, France Why Quantum Computing? Why now?

More information

Algorithms other than SGD. CS6787 Lecture 10 Fall 2017

Algorithms other than SGD. CS6787 Lecture 10 Fall 2017 Algorithms other than SGD CS6787 Lecture 10 Fall 2017 Machine learning is not just SGD Once a model is trained, we need to use it to classify new examples This inference task is not computed with SGD There

More information

Overview of adiabatic quantum computation. Andrew Childs

Overview of adiabatic quantum computation. Andrew Childs Overview of adiabatic quantum computation Andrew Childs Adiabatic optimization Quantum adiabatic optimization is a class of procedures for solving optimization problems using a quantum computer. Basic

More information

Bias-Variance Trade-Off in Hierarchical Probabilistic Models Using Higher-Order Feature Interactions

Bias-Variance Trade-Off in Hierarchical Probabilistic Models Using Higher-Order Feature Interactions - Trade-Off in Hierarchical Probabilistic Models Using Higher-Order Feature Interactions Simon Luo The University of Sydney Data61, CSIRO simon.luo@data61.csiro.au Mahito Sugiyama National Institute of

More information

Noise-resilient quantum circuits

Noise-resilient quantum circuits Noise-resilient quantum circuits Isaac H. Kim IBM T. J. Watson Research Center Yorktown Heights, NY Oct 10th, 2017 arxiv:1703.02093, arxiv:1703.00032, arxiv:17??.?????(w. Brian Swingle) Why don t we have

More information

Opportunities and challenges in quantum-enhanced machine learning in near-term quantum computers

Opportunities and challenges in quantum-enhanced machine learning in near-term quantum computers Opportunities and challenges in quantum-enhanced machine learning in near-term quantum computers Alejandro Perdomo-Ortiz Senior Research Scientist, Quantum AI Lab. at NASA Ames Research Center and at the

More information

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight)

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight) CSCE 636 Neural Networks Instructor: Yoonsuck Choe Deep Learning What Is Deep Learning? Learning higher level abstractions/representations from data. Motivation: how the brain represents sensory information

More information

Machine Learning with Quantum-Inspired Tensor Networks

Machine Learning with Quantum-Inspired Tensor Networks Machine Learning with Quantum-Inspired Tensor Networks E.M. Stoudenmire and David J. Schwab Advances in Neural Information Processing 29 arxiv:1605.05775 RIKEN AICS - Mar 2017 Collaboration with David

More information

arxiv: v1 [quant-ph] 25 Jun 2018

arxiv: v1 [quant-ph] 25 Jun 2018 A Universal Training Algorithm for Quantum Deep Learning Guillaume Verdon, 1, 2, 4 Jason Pye, 1, 2, 4 and Michael Broughton 3 1 Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario,

More information

The Origin of Deep Learning. Lili Mou Jan, 2015

The Origin of Deep Learning. Lili Mou Jan, 2015 The Origin of Deep Learning Lili Mou Jan, 2015 Acknowledgment Most of the materials come from G. E. Hinton s online course. Outline Introduction Preliminary Boltzmann Machines and RBMs Deep Belief Nets

More information

Learning Deep Architectures for AI. Part II - Vijay Chakilam

Learning Deep Architectures for AI. Part II - Vijay Chakilam Learning Deep Architectures for AI - Yoshua Bengio Part II - Vijay Chakilam Limitations of Perceptron x1 W, b 0,1 1,1 y x2 weight plane output =1 output =0 There is no value for W and b such that the model

More information

IBM Systems for Cognitive Solutions

IBM Systems for Cognitive Solutions IBM Q Quantum Computing IBM Systems for Cognitive Solutions Ehningen 12 th of July 2017 Albert Frisch, PhD - albert.frisch@de.ibm.com 2017 IBM 1 st wave of Quantum Revolution lasers atomic clocks GPS sensors

More information

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto Quantum error correction on a hybrid spin system Christoph Fischer, Andrea Rocchetto Christoph Fischer, Andrea Rocchetto 17/05/14 1 Outline Error correction: why we need it, how it works Experimental realization

More information

Opportunities and challenges in near-term quantum computers

Opportunities and challenges in near-term quantum computers Opportunities and challenges in near-term quantum computers Alejandro Perdomo-Ortiz Senior Research Scientist, Quantum AI Lab. at NASA Ames Research Center and at the University Space Research Association,

More information

A Video from Google DeepMind.

A Video from Google DeepMind. A Video from Google DeepMind http://www.nature.com/nature/journal/v518/n7540/fig_tab/nature14236_sv2.html Can machine learning teach us cluster updates? Lei Wang Institute of Physics, CAS https://wangleiphy.github.io

More information

Sample questions for Fundamentals of Machine Learning 2018

Sample questions for Fundamentals of Machine Learning 2018 Sample questions for Fundamentals of Machine Learning 2018 Teacher: Mohammad Emtiyaz Khan A few important informations: In the final exam, no electronic devices are allowed except a calculator. Make sure

More information

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight)

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight) CSCE 636 Neural Networks Instructor: Yoonsuck Choe Deep Learning What Is Deep Learning? Learning higher level abstractions/representations from data. Motivation: how the brain represents sensory information

More information

Quantum Artificial Intelligence and Machine Learning: The Path to Enterprise Deployments. Randall Correll. +1 (703) Palo Alto, CA

Quantum Artificial Intelligence and Machine Learning: The Path to Enterprise Deployments. Randall Correll. +1 (703) Palo Alto, CA Quantum Artificial Intelligence and Machine : The Path to Enterprise Deployments Randall Correll randall.correll@qcware.com +1 (703) 867-2395 Palo Alto, CA 1 Bundled software and services Professional

More information

Adiabatic quantum computation a tutorial for computer scientists

Adiabatic quantum computation a tutorial for computer scientists Adiabatic quantum computation a tutorial for computer scientists Itay Hen Dept. of Physics, UCSC Advanced Machine Learning class UCSC June 6 th 2012 Outline introduction I: what is a quantum computer?

More information

Deep unsupervised learning

Deep unsupervised learning Deep unsupervised learning Advanced data-mining Yongdai Kim Department of Statistics, Seoul National University, South Korea Unsupervised learning In machine learning, there are 3 kinds of learning paradigm.

More information

Supervised quantum gate teaching for quantum hardware design

Supervised quantum gate teaching for quantum hardware design Supervised quantum gate teaching for quantum hardware design Leonardo Banchi1, Nicola Pancotti2 and Sougato Bose1 1- Department of Physics and Astronomy, University College London, Gower Street, London

More information

Parallel Tempering is Efficient for Learning Restricted Boltzmann Machines

Parallel Tempering is Efficient for Learning Restricted Boltzmann Machines Parallel Tempering is Efficient for Learning Restricted Boltzmann Machines KyungHyun Cho, Tapani Raiko, Alexander Ilin Abstract A new interest towards restricted Boltzmann machines (RBMs) has risen due

More information

Quantum Convolutional Neural Networks

Quantum Convolutional Neural Networks Quantum Convolutional Neural Networks Iris Cong Soonwon Choi Mikhail D. Lukin arxiv:1810.03787 Berkeley Quantum Information Seminar October 16 th, 2018 Why quantum machine learning? Machine learning: interpret

More information

Deep Belief Networks are compact universal approximators

Deep Belief Networks are compact universal approximators 1 Deep Belief Networks are compact universal approximators Nicolas Le Roux 1, Yoshua Bengio 2 1 Microsoft Research Cambridge 2 University of Montreal Keywords: Deep Belief Networks, Universal Approximation

More information

Introduction to Restricted Boltzmann Machines

Introduction to Restricted Boltzmann Machines Introduction to Restricted Boltzmann Machines Ilija Bogunovic and Edo Collins EPFL {ilija.bogunovic,edo.collins}@epfl.ch October 13, 2014 Introduction Ingredients: 1. Probabilistic graphical models (undirected,

More information

Lecture 16 Deep Neural Generative Models

Lecture 16 Deep Neural Generative Models Lecture 16 Deep Neural Generative Models CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 22, 2017 Approach so far: We have considered simple models and then constructed

More information

Deep Boltzmann Machines

Deep Boltzmann Machines Deep Boltzmann Machines Ruslan Salakutdinov and Geoffrey E. Hinton Amish Goel University of Illinois Urbana Champaign agoel10@illinois.edu December 2, 2016 Ruslan Salakutdinov and Geoffrey E. Hinton Amish

More information

Connections between score matching, contrastive divergence, and pseudolikelihood for continuous-valued variables. Revised submission to IEEE TNN

Connections between score matching, contrastive divergence, and pseudolikelihood for continuous-valued variables. Revised submission to IEEE TNN Connections between score matching, contrastive divergence, and pseudolikelihood for continuous-valued variables Revised submission to IEEE TNN Aapo Hyvärinen Dept of Computer Science and HIIT University

More information

CS 6501: Deep Learning for Computer Graphics. Basics of Neural Networks. Connelly Barnes

CS 6501: Deep Learning for Computer Graphics. Basics of Neural Networks. Connelly Barnes CS 6501: Deep Learning for Computer Graphics Basics of Neural Networks Connelly Barnes Overview Simple neural networks Perceptron Feedforward neural networks Multilayer perceptron and properties Autoencoders

More information

The Quantum Landscape

The Quantum Landscape The Quantum Landscape Computational drug discovery employing machine learning and quantum computing Contact us! lucas@proteinqure.com Or visit our blog to learn more @ www.proteinqure.com 2 Applications

More information

arxiv: v1 [quant-ph] 16 Aug 2017

arxiv: v1 [quant-ph] 16 Aug 2017 Noname manuscript No. (will be inserted by the editor) Combinatorial Optimization on Gate Model Quantum Computers: A Survey Ehsan Zahedinejad Arman Zaribafiyan arxiv:1708.05294v1 [quant-ph] 16 Aug 2017

More information

Restricted Boltzmann Machines for Collaborative Filtering

Restricted Boltzmann Machines for Collaborative Filtering Restricted Boltzmann Machines for Collaborative Filtering Authors: Ruslan Salakhutdinov Andriy Mnih Geoffrey Hinton Benjamin Schwehn Presentation by: Ioan Stanculescu 1 Overview The Netflix prize problem

More information

Robust Classification using Boltzmann machines by Vasileios Vasilakakis

Robust Classification using Boltzmann machines by Vasileios Vasilakakis Robust Classification using Boltzmann machines by Vasileios Vasilakakis The scope of this report is to propose an architecture of Boltzmann machines that could be used in the context of classification,

More information

Neural Network Representation of Tensor Network and Chiral States

Neural Network Representation of Tensor Network and Chiral States Neural Network Representation of Tensor Network and Chiral States Yichen Huang ( 黄溢辰 ) 1 and Joel E. Moore 2 1 Institute for Quantum Information and Matter California Institute of Technology 2 Department

More information

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, 2017 Spis treści Website Acknowledgments Notation xiii xv xix 1 Introduction 1 1.1 Who Should Read This Book?

More information

WORKSHOP ON QUANTUM ALGORITHMS AND DEVICES FRIDAY JULY 15, 2016 MICROSOFT RESEARCH

WORKSHOP ON QUANTUM ALGORITHMS AND DEVICES FRIDAY JULY 15, 2016 MICROSOFT RESEARCH Workshop on Quantum Algorithms and Devices Friday, July 15, 2016 - Microsoft Research Building 33 In 1981, Richard Feynman proposed a device called a quantum computer that would take advantage of methods

More information

LOCKHEED MARTIN SITE UPDATE 11 APRIL 2018 MUNICH, GERMANY Kristen Pudenz Senior Quantum Applications Engineer

LOCKHEED MARTIN SITE UPDATE 11 APRIL 2018 MUNICH, GERMANY Kristen Pudenz Senior Quantum Applications Engineer LOCKHEED MARTIN SITE UPDATE 11 APRIL 2018 MUNICH, GERMANY Kristen Pudenz Senior Quantum Applications Engineer THE USC-LM QUANTUM COMPUTING CENTER Dr. Edward H. Ned Allen Chief Scientist and LM Senior Fellow

More information

Chapter 20. Deep Generative Models

Chapter 20. Deep Generative Models Peng et al.: Deep Learning and Practice 1 Chapter 20 Deep Generative Models Peng et al.: Deep Learning and Practice 2 Generative Models Models that are able to Provide an estimate of the probability distribution

More information

Quantum computing and the entanglement frontier. John Preskill NAS Annual Meeting 29 April 2018

Quantum computing and the entanglement frontier. John Preskill NAS Annual Meeting 29 April 2018 Quantum computing and the entanglement frontier John Preskill NAS Annual Meeting 29 April 2018 Quantum Information Science Planck quantum theory + computer science + information theory Turing quantum information

More information

Chapter 11. Stochastic Methods Rooted in Statistical Mechanics

Chapter 11. Stochastic Methods Rooted in Statistical Mechanics Chapter 11. Stochastic Methods Rooted in Statistical Mechanics Neural Networks and Learning Machines (Haykin) Lecture Notes on Self-learning Neural Algorithms Byoung-Tak Zhang School of Computer Science

More information

Entanglement creation and characterization in a trapped-ion quantum simulator

Entanglement creation and characterization in a trapped-ion quantum simulator Time Entanglement creation and characterization in a trapped-ion quantum simulator Christian Roos Institute for Quantum Optics and Quantum Information Innsbruck, Austria Outline: Highly entangled state

More information

Latent Variable Models

Latent Variable Models Latent Variable Models Stefano Ermon, Aditya Grover Stanford University Lecture 5 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 1 / 31 Recap of last lecture 1 Autoregressive models:

More information

Inductive Principles for Restricted Boltzmann Machine Learning

Inductive Principles for Restricted Boltzmann Machine Learning Inductive Principles for Restricted Boltzmann Machine Learning Benjamin Marlin Department of Computer Science University of British Columbia Joint work with Kevin Swersky, Bo Chen and Nando de Freitas

More information

Knowledge Extraction from DBNs for Images

Knowledge Extraction from DBNs for Images Knowledge Extraction from DBNs for Images Son N. Tran and Artur d Avila Garcez Department of Computer Science City University London Contents 1 Introduction 2 Knowledge Extraction from DBNs 3 Experimental

More information

Methodology for the digital simulation of open quantum systems

Methodology for the digital simulation of open quantum systems Methodology for the digital simulation of open quantum systems R B Sweke 1, I Sinayskiy 1,2 and F Petruccione 1,2 1 Quantum Research Group, School of Physics and Chemistry, University of KwaZulu-Natal,

More information

Artificial Neural Networks. MGS Lecture 2

Artificial Neural Networks. MGS Lecture 2 Artificial Neural Networks MGS 2018 - Lecture 2 OVERVIEW Biological Neural Networks Cell Topology: Input, Output, and Hidden Layers Functional description Cost functions Training ANNs Back-Propagation

More information

arxiv: v1 [cs.ne] 6 May 2014

arxiv: v1 [cs.ne] 6 May 2014 Training Restricted Boltzmann Machine by Perturbation arxiv:1405.1436v1 [cs.ne] 6 May 2014 Siamak Ravanbakhsh, Russell Greiner Department of Computing Science University of Alberta {mravanba,rgreiner@ualberta.ca}

More information

Quantum Effect or HPC without FLOPS. Lugano March 23, 2016

Quantum Effect or HPC without FLOPS. Lugano March 23, 2016 Quantum Effect or HPC without FLOPS Lugano March 23, 2016 Electronics April 19, 1965 2016 D-Wave Systems Inc. All Rights Reserved 2 Moore s Law 2016 D-Wave Systems Inc. All Rights Reserved 3 www.economist.com/technology-quarterly/2016-03-12/aftermoores-law

More information

Annealing Between Distributions by Averaging Moments

Annealing Between Distributions by Averaging Moments Annealing Between Distributions by Averaging Moments Chris J. Maddison Dept. of Comp. Sci. University of Toronto Roger Grosse CSAIL MIT Ruslan Salakhutdinov University of Toronto Partition Functions We

More information

COMP9444 Neural Networks and Deep Learning 11. Boltzmann Machines. COMP9444 c Alan Blair, 2017

COMP9444 Neural Networks and Deep Learning 11. Boltzmann Machines. COMP9444 c Alan Blair, 2017 COMP9444 Neural Networks and Deep Learning 11. Boltzmann Machines COMP9444 17s2 Boltzmann Machines 1 Outline Content Addressable Memory Hopfield Network Generative Models Boltzmann Machine Restricted Boltzmann

More information

Simon Trebst. Quantitative Modeling of Complex Systems

Simon Trebst. Quantitative Modeling of Complex Systems Quantitative Modeling of Complex Systems Machine learning In computer science, machine learning is concerned with algorithms that allow for data analytics, most prominently dimensional reduction and feature

More information

How to do backpropagation in a brain

How to do backpropagation in a brain How to do backpropagation in a brain Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto & Google Inc. Prelude I will start with three slides explaining a popular type of deep

More information

Developing a commercial superconducting quantum annealing processor

Developing a commercial superconducting quantum annealing processor Developing a commercial superconducting quantum annealing processor 30th nternational Symposium on Superconductivity SS 2017 Mark W Johnson D-Wave Systems nc. December 14, 2017 ED4-1 Overview ntroduction

More information

*WILEY- Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co.

*WILEY- Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. Joachim Stolze and Dieter Suter Quantum Computing A Short Course from Theory to Experiment Second, Updated and Enlarged Edition *WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XIII 1 Introduction

More information

Hopfield Networks and Boltzmann Machines. Christian Borgelt Artificial Neural Networks and Deep Learning 296

Hopfield Networks and Boltzmann Machines. Christian Borgelt Artificial Neural Networks and Deep Learning 296 Hopfield Networks and Boltzmann Machines Christian Borgelt Artificial Neural Networks and Deep Learning 296 Hopfield Networks A Hopfield network is a neural network with a graph G = (U,C) that satisfies

More information

Administration. Registration Hw3 is out. Lecture Captioning (Extra-Credit) Scribing lectures. Questions. Due on Thursday 10/6

Administration. Registration Hw3 is out. Lecture Captioning (Extra-Credit) Scribing lectures. Questions. Due on Thursday 10/6 Administration Registration Hw3 is out Due on Thursday 10/6 Questions Lecture Captioning (Extra-Credit) Look at Piazza for details Scribing lectures With pay; come talk to me/send email. 1 Projects Projects

More information

Building a Multi-FPGA Virtualized Restricted Boltzmann Machine Architecture Using Embedded MPI

Building a Multi-FPGA Virtualized Restricted Boltzmann Machine Architecture Using Embedded MPI Building a Multi-FPGA Virtualized Restricted Boltzmann Machine Architecture Using Embedded MPI Charles Lo and Paul Chow {locharl1, pc}@eecg.toronto.edu Department of Electrical and Computer Engineering

More information

Replicated Softmax: an Undirected Topic Model. Stephen Turner

Replicated Softmax: an Undirected Topic Model. Stephen Turner Replicated Softmax: an Undirected Topic Model Stephen Turner 1. Introduction 2. Replicated Softmax: A Generative Model of Word Counts 3. Evaluating Replicated Softmax as a Generative Model 4. Experimental

More information

Exploring reverse annealing as a tool for hybrid quantum/classical computing

Exploring reverse annealing as a tool for hybrid quantum/classical computing Exploring reverse annealing as a tool for hybrid quantum/classical computing University of Zagreb QuantiXLie Seminar Nicholas Chancellor October 12, 2018 Talk structure 1. Background Quantum computing:

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

Neural Networks. Mark van Rossum. January 15, School of Informatics, University of Edinburgh 1 / 28

Neural Networks. Mark van Rossum. January 15, School of Informatics, University of Edinburgh 1 / 28 1 / 28 Neural Networks Mark van Rossum School of Informatics, University of Edinburgh January 15, 2018 2 / 28 Goals: Understand how (recurrent) networks behave Find a way to teach networks to do a certain

More information

Mind the gap Solving optimization problems with a quantum computer

Mind the gap Solving optimization problems with a quantum computer Mind the gap Solving optimization problems with a quantum computer A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at Saarbrücken University, November 5, 2012 Collaborators: I. Hen, E.

More information

Does the Wake-sleep Algorithm Produce Good Density Estimators?

Does the Wake-sleep Algorithm Produce Good Density Estimators? Does the Wake-sleep Algorithm Produce Good Density Estimators? Brendan J. Frey, Geoffrey E. Hinton Peter Dayan Department of Computer Science Department of Brain and Cognitive Sciences University of Toronto

More information

Neural Networks and the Back-propagation Algorithm

Neural Networks and the Back-propagation Algorithm Neural Networks and the Back-propagation Algorithm Francisco S. Melo In these notes, we provide a brief overview of the main concepts concerning neural networks and the back-propagation algorithm. We closely

More information

Lecture 4 Towards Deep Learning

Lecture 4 Towards Deep Learning Lecture 4 Towards Deep Learning (January 30, 2015) Mu Zhu University of Waterloo Deep Network Fields Institute, Toronto, Canada 2015 by Mu Zhu 2 Boltzmann Distribution probability distribution for a complex

More information

Bagging During Markov Chain Monte Carlo for Smoother Predictions

Bagging During Markov Chain Monte Carlo for Smoother Predictions Bagging During Markov Chain Monte Carlo for Smoother Predictions Herbert K. H. Lee University of California, Santa Cruz Abstract: Making good predictions from noisy data is a challenging problem. Methods

More information

A quantum alternating operator ansatz with hard and soft constraints for lattice protein folding

A quantum alternating operator ansatz with hard and soft constraints for lattice protein folding A quantum alternating operator ansatz with hard and soft constraints for lattice protein folding Tomas Babej, Mark Fingerhuth, and Christopher Ing ProteinQure Inc., Toronto, Canada (Dated: April 24, 2018)

More information

Multilayer Perceptron

Multilayer Perceptron Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Single Perceptron 3 Boolean Function Learning 4

More information

Jim Held, Ph.D., Intel Fellow & Director Emerging Technology Research, Intel Labs. HPC User Forum April 18, 2018

Jim Held, Ph.D., Intel Fellow & Director Emerging Technology Research, Intel Labs. HPC User Forum April 18, 2018 Jim Held, Ph.D., Intel Fellow & Director Emerging Technology Research, Intel Labs HPC User Forum April 18, 2018 Quantum Computing: Key Concepts Superposition Classical Physics Quantum Physics v Entanglement

More information

Deep Learning Srihari. Deep Belief Nets. Sargur N. Srihari

Deep Learning Srihari. Deep Belief Nets. Sargur N. Srihari Deep Belief Nets Sargur N. Srihari srihari@cedar.buffalo.edu Topics 1. Boltzmann machines 2. Restricted Boltzmann machines 3. Deep Belief Networks 4. Deep Boltzmann machines 5. Boltzmann machines for continuous

More information

Post Von Neumann Computing

Post Von Neumann Computing Post Von Neumann Computing Matthias Kaiserswerth Hasler Stiftung (formerly IBM Research) 1 2014 IBM Corporation Foundation Purpose Support information and communication technologies (ICT) to advance Switzerland

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. KGaA

Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. KGaA Joachim Stolze and Dieter Suter Quantum Computing A Short Course from Theory to Experiment Second, Updated and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Preface XIII 1 Introduction and

More information

Synaptic Devices and Neuron Circuits for Neuron-Inspired NanoElectronics

Synaptic Devices and Neuron Circuits for Neuron-Inspired NanoElectronics Synaptic Devices and Neuron Circuits for Neuron-Inspired NanoElectronics Byung-Gook Park Inter-university Semiconductor Research Center & Department of Electrical and Computer Engineering Seoul National

More information

Course Structure. Psychology 452 Week 12: Deep Learning. Chapter 8 Discussion. Part I: Deep Learning: What and Why? Rufus. Rufus Processed By Fetch

Course Structure. Psychology 452 Week 12: Deep Learning. Chapter 8 Discussion. Part I: Deep Learning: What and Why? Rufus. Rufus Processed By Fetch Psychology 452 Week 12: Deep Learning What Is Deep Learning? Preliminary Ideas (that we already know!) The Restricted Boltzmann Machine (RBM) Many Layers of RBMs Pros and Cons of Deep Learning Course Structure

More information

Learning Dexterity Matthias Plappert SEPTEMBER 6, 2018

Learning Dexterity Matthias Plappert SEPTEMBER 6, 2018 Learning Dexterity Matthias Plappert SEPTEMBER 6, 2018 OpenAI OpenAI is a non-profit AI research company, discovering and enacting the path to safe artificial general intelligence. OpenAI OpenAI is a non-profit

More information

Undirected Graphical Models: Markov Random Fields

Undirected Graphical Models: Markov Random Fields Undirected Graphical Models: Markov Random Fields 40-956 Advanced Topics in AI: Probabilistic Graphical Models Sharif University of Technology Soleymani Spring 2015 Markov Random Field Structure: undirected

More information

ECE521 Lectures 9 Fully Connected Neural Networks

ECE521 Lectures 9 Fully Connected Neural Networks ECE521 Lectures 9 Fully Connected Neural Networks Outline Multi-class classification Learning multi-layer neural networks 2 Measuring distance in probability space We learnt that the squared L2 distance

More information

Classical Monte Carlo Simulations

Classical Monte Carlo Simulations Classical Monte Carlo Simulations Hyejin Ju April 17, 2012 1 Introduction Why do we need numerics? One of the main goals of condensed matter is to compute expectation values O = 1 Z Tr{O e βĥ} (1) and

More information

Greedy Layer-Wise Training of Deep Networks

Greedy Layer-Wise Training of Deep Networks Greedy Layer-Wise Training of Deep Networks Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle NIPS 2007 Presented by Ahmed Hefny Story so far Deep neural nets are more expressive: Can learn

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

System Roadmap. Qubits 2018 D-Wave Users Conference Knoxville. Jed Whittaker D-Wave Systems Inc. September 25, 2018

System Roadmap. Qubits 2018 D-Wave Users Conference Knoxville. Jed Whittaker D-Wave Systems Inc. September 25, 2018 System Roadmap Qubits 2018 D-Wave Users Conference Knoxville Jed Whittaker D-Wave Systems Inc. September 25, 2018 Overview Where are we today? annealing options reverse annealing quantum materials simulation

More information

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit with Ultracold Trapped Atoms at the Quantum Speed Limit Michael Goerz May 31, 2011 with Ultracold Trapped Atoms Prologue: with Ultracold Trapped Atoms Classical Computing: 4-Bit Full Adder Inside the CPU:

More information

Restricted Boltzmann Machines

Restricted Boltzmann Machines Restricted Boltzmann Machines Boltzmann Machine(BM) A Boltzmann machine extends a stochastic Hopfield network to include hidden units. It has binary (0 or 1) visible vector unit x and hidden (latent) vector

More information

Artificial Intelligence (AI) Common AI Methods. Training. Signals to Perceptrons. Artificial Neural Networks (ANN) Artificial Intelligence

Artificial Intelligence (AI) Common AI Methods. Training. Signals to Perceptrons. Artificial Neural Networks (ANN) Artificial Intelligence Artificial Intelligence (AI) Artificial Intelligence AI is an attempt to reproduce intelligent reasoning using machines * * H. M. Cartwright, Applications of Artificial Intelligence in Chemistry, 1993,

More information

Implementation of a Restricted Boltzmann Machine in a Spiking Neural Network

Implementation of a Restricted Boltzmann Machine in a Spiking Neural Network Implementation of a Restricted Boltzmann Machine in a Spiking Neural Network Srinjoy Das Department of Electrical and Computer Engineering University of California, San Diego srinjoyd@gmail.com Bruno Umbria

More information

Variational Inference via Stochastic Backpropagation

Variational Inference via Stochastic Backpropagation Variational Inference via Stochastic Backpropagation Kai Fan February 27, 2016 Preliminaries Stochastic Backpropagation Variational Auto-Encoding Related Work Summary Outline Preliminaries Stochastic Backpropagation

More information

A Brief Review of Probability, Bayesian Statistics, and Information Theory

A Brief Review of Probability, Bayesian Statistics, and Information Theory A Brief Review of Probability, Bayesian Statistics, and Information Theory Brendan Frey Electrical and Computer Engineering University of Toronto frey@psi.toronto.edu http://www.psi.toronto.edu A system

More information

Learning Energy-Based Models of High-Dimensional Data

Learning Energy-Based Models of High-Dimensional Data Learning Energy-Based Models of High-Dimensional Data Geoffrey Hinton Max Welling Yee-Whye Teh Simon Osindero www.cs.toronto.edu/~hinton/energybasedmodelsweb.htm Discovering causal structure as a goal

More information

Deep Learning. Basics and Intuition. Constantin Gonzalez Principal Solutions Architect, Amazon Web Services

Deep Learning. Basics and Intuition. Constantin Gonzalez Principal Solutions Architect, Amazon Web Services Deep Learning Basics and Intuition Constantin Gonzalez Principal Solutions Architect, Amazon Web Services glez@amazon.de September 2017 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

More information

Deep Generative Models. (Unsupervised Learning)

Deep Generative Models. (Unsupervised Learning) Deep Generative Models (Unsupervised Learning) CEng 783 Deep Learning Fall 2017 Emre Akbaş Reminders Next week: project progress demos in class Describe your problem/goal What you have done so far What

More information