*WILEY- Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co.

Size: px
Start display at page:

Download "*WILEY- Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co."

Transcription

1 Joachim Stolze and Dieter Suter Quantum Computing A Short Course from Theory to Experiment Second, Updated and Enlarged Edition *WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA

2 Contents Preface XIII 1 Introduction and Survey Information, Computers, and Quantum Mechanics Digital Information Moore's Law Emergence of Quantum Behavior Energy Dissipation in Computers Quantum Computer Basics Quantum Information Quantum Communication Basics of Quantum Information Processing Dec oherence Implementation History of Quantum Information Processing Initial Ideas Quantum Algorithms Implementations Physics of Computation Physical Laws and Information Processing Hardware Representation Quantum vs. Classical Information Processing Limitations on Computer Performance Switching Energy Entropy Generation and Maxwell's Demon Reversible Logic Reversible Gates for Universal Computers Processing Speed Storage Density The Ultimate Laptop Processing Speed Maximum Storage Density... 24

3 VI Contents 3 Elements of Classical Computer Science Bits of History Boolean Algebra and Logic Gates Bits and Gates Bit Logic Gates Minimum Set of Irreversible Gates Minimum Set of Reversible Gates The CNOT Gate The Toffoli Gate The Fredkin Gate Universal Computers The Turing Machine The Church Turing Hypothesis Complexity and Algorithms Complexity Classes Hard and Impossible Problems Quantum Mechanics General Structure Spectral Lines and Stationary States Vectors in Hüben Space Operators in Hilbert Space Dynamics and the Hamiltonian Operator Measurements Quantum States The Two-Dimensional Hilbert Space: Qubits, Spins, and Photons Hamiltonian and Evolution Coupling to Environment Density Operator Entanglement and Mixing Quantification of Entanglement Bloch Sphere EPR Correlations Bell's Theorem Violation of Bell's Inequality The No-Cloning Theorem Measurement Revisited Quantum Mechanical Projection Postulate The Copenhagen Interpretation Von Neumann's Model Quantum Bits and Quantum Gates Single-Qubit Gates Introduction Rotations Around Coordinate Axes... 65

4 Contents VII General Rotations Composite Rotations... Two-Qubit Gates Controlled Gates Composite Gates... Universal Sets of Gates Choice of Set Unitary Operations Two-Qubit Operations Approximating Single-Qubit Gates Feynman's Contribution Simulating Physics with Computers Discrete System Representations Probabilistic Simulations Quantum Mechanical Computers Simple Gates Adder Circuits Qubit Raising and Lowering Operators Adder Hamiltonian Errors and Decoherence Motivation Sources of Error A Counterstrategy Decoherence Phenomenology Semiclassical Description Quantum Mechanical Model Entanglement and Mixing Error Correction Basics Classical Error Correction Quantum Error Correction Single Spin-Flip Error Continuous Phase Errors General Single Qubit Errors The Quantum Zeno Effect Stabilizer Codes Fault-Tolerant Computing Avoiding Errors Basics Decoherence-Free Subspaces NMR in Liquids Scaling Considerations

5 VIII Contents 8 Tasks for Quantum Computers Quantum Versus Classical Algorithms Why Quantum? Classes of Quantum Algorithms The Deutsch Algorithm: Looking at Both Sides of a Coin at the Same Time Functions and Their Properties Example: One-Qubit Functions Evaluation Many Qubits Extensions and Generalizations The Shor Algorithm: It's Prime Time Some Number Theory Factoring Strategy The Core of Shor's Algorithm The Quantum Fourier Transform Gates for the QFT The Grover Algorithm: Looking for a Needle in a Haystack Oracle Functions The Search Algorithm Geometrical Analysis Quantum Counting Phase Estimation Quantum Simulations Potential and Limitations Simulated Evolution Implementations How to Build a Quantum Computer Components The Network Model Some Existing and Proposed Implementations Requirements for Quantum Information Processing Hardware Qubits Initialization Decoherence Time Quantum Gates Readout Converting Quantum to Classical Information Principle and Strategies Example: Deutsch Jozsa Algorithm Effect of Correlations Repeated Measurements Alternatives to the Network Model '14.1 Linear Outics and Measurements

6 Contents IX Quantum Cellular Automata One-Way Quantum Computer Liquid State NMR Quantum Computer Basics of NMR System and Interactions Radio Frequency Field Rotating Frame Equation of Motion Evolution NMR Signals Refocusing NMR as a Molecular Quantum Computer Spins as Qubits Coupled Spin Systems Pseudo/Effective Pure States Single-Qubit Gates Two-Qubit Gates Readout Readout in Multispin Systems Quantum State Tomography DiVincenzo's Criteria NMR Implementation of Shor's Algorithm Qubit Implementation Initialization Computation Readout Decoherence Trapped Ions and Atoms Trapping Ions Ions, Traps, and Light Linear Traps Interaction with Light Optical Transitions Motional Effects Basics of Laser Cooling Quantum Information Processing with Trapped Ions Qubits Single-Qubit Gates Two-Qubit Gates Readout Experimental Implementations I Systems Some Results Challenges

7 X Contents 11.5 Neutral Atoms Trapping Neutral Particles Manipulating Neutral Particles Gate Operations Interacting Atoms in Optical Lattices Interacting Particles in a Periodic Potential: The Hubbard Model (Observing) The Mott Hubbard Transition Universal Optical Lattice Quantum Computing? Solid-State Quantum Computers Solid State NMR/EPR Scaling Behavior of NMR Quantum Information Processors in Silicon Other Proposals Single-Spin Readout Superconducting Systems Charge Qubits Flux Qubits Gate Operations Readout Semiconductor Qubits Materials Excitons in Quantum Dots Electron Spin Qubits Photons for Quantum Information "Quantum Only" Tasks Quantum Teleportation (Super-) Dense Coding Quantum Key Distribution A Few Bits of Classical Information Theory Measuring Information Information Content and Entropy Mutual Information and the Data Processing Inequality Data Compression and Shannon's Noiseless Channel Coding Theorem The Binary Symmetric Channel and Shannon's Noisy Channel Coding Theorem A Few Bits of Quantum Information Theory The von Neumann Entropy The Accessible Information and Holevo's Bound Schumacher's Noiseless Channel Coding Theorem Classical Information over Noisy Quantum Channels

8 Contents XI Appendix A Two Spins-1/2: Singlet and Triplet States 237 Bibliography 239 Index 261

Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. KGaA

Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. KGaA Joachim Stolze and Dieter Suter Quantum Computing A Short Course from Theory to Experiment Second, Updated and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Preface XIII 1 Introduction and

More information

)j > Riley Tipton Perry University of New South Wales, Australia. World Scientific CHENNAI

)j > Riley Tipton Perry University of New South Wales, Australia. World Scientific CHENNAI Riley Tipton Perry University of New South Wales, Australia )j > World Scientific NEW JERSEY LONDON. SINGAPORE BEIJING SHANSHAI HONG K0N6 TAIPEI» CHENNAI Contents Acknowledgments xi 1. Introduction 1 1.1

More information

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005 Semiconductors: Applications in spintronics and quantum computation Advanced Summer School 1 I. Background II. Spintronics Spin generation (magnetic semiconductors) Spin detection III. Spintronics - electron

More information

IBM quantum experience: Experimental implementations, scope, and limitations

IBM quantum experience: Experimental implementations, scope, and limitations IBM quantum experience: Experimental implementations, scope, and limitations Plan of the talk IBM Quantum Experience Introduction IBM GUI Building blocks for IBM quantum computing Implementations of various

More information

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical physics fails

More information

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation QSIT09.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical

More information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information QSIT09.L03 Page 1 2.0 Basic Elements of a Quantum Information Processor 2.1 Classical information processing 2.1.1 The carrier of information - binary representation of information as bits (Binary digits).

More information

Seminar 1. Introduction to Quantum Computing

Seminar 1. Introduction to Quantum Computing Seminar 1 Introduction to Quantum Computing Before going in I am also a beginner in this field If you are interested, you can search more using: Quantum Computing since Democritus (Scott Aaronson) Quantum

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

ARTiFiCiAL intelligence

ARTiFiCiAL intelligence PRiNCiPLES OF QUANTUM ARTiFiCiAL intelligence This page intentionally left blank PRiNCiPLES OF QUANTUM ARTiFiCiAL intelligence Andreas Wichert Instituto Superior Técnico - Universidade de Lisboa, Portugal

More information

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles Quantum Computation 650 Spring 2009 Lectures 1-21 The World of Quantum Information Marianna Safronova Department of Physics and Astronomy February 10, 2009 Outline Quantum Information: fundamental principles

More information

Quantum Information Science (QIS)

Quantum Information Science (QIS) Quantum Information Science (QIS) combination of three different fields: Quantum Physics QIS Computer Science Information Theory Lecture 1 - Outline 1. Quantum Mechanics 2. Computer Science History 3.

More information

Quantum Computer. Jaewan Kim School of Computational Sciences Korea Institute for Advanced Study

Quantum Computer. Jaewan Kim School of Computational Sciences Korea Institute for Advanced Study Quantum Computer Jaewan Kim jaewan@kias.re.kr School of Computational Sciences Korea Institute for Advanced Study KIAS (Korea Institute for Advanced Study) Established in 1996 Located in Seoul, Korea Pure

More information

Quantum Computing. Thorsten Altenkirch

Quantum Computing. Thorsten Altenkirch Quantum Computing Thorsten Altenkirch Is Computation universal? Alonzo Church - calculus Alan Turing Turing machines computable functions The Church-Turing thesis All computational formalisms define the

More information

Quantum computing and mathematical research. Chi-Kwong Li The College of William and Mary

Quantum computing and mathematical research. Chi-Kwong Li The College of William and Mary and mathematical research The College of William and Mary Classical computing Classical computing Hardware - Beads and bars. Classical computing Hardware - Beads and bars. Input - Using finger skill to

More information

What is a quantum computer? Quantum Architecture. Quantum Mechanics. Quantum Superposition. Quantum Entanglement. What is a Quantum Computer (contd.

What is a quantum computer? Quantum Architecture. Quantum Mechanics. Quantum Superposition. Quantum Entanglement. What is a Quantum Computer (contd. What is a quantum computer? Quantum Architecture by Murat Birben A quantum computer is a device designed to take advantage of distincly quantum phenomena in carrying out a computational task. A quantum

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

Challenges in Quantum Information Science. Umesh V. Vazirani U. C. Berkeley

Challenges in Quantum Information Science. Umesh V. Vazirani U. C. Berkeley Challenges in Quantum Information Science Umesh V. Vazirani U. C. Berkeley 1 st quantum revolution - Understanding physical world: periodic table, chemical reactions electronic wavefunctions underlying

More information

Quantum Information Processing and Diagrams of States

Quantum Information Processing and Diagrams of States Quantum Information and Diagrams of States September 17th 2009, AFSecurity Sara Felloni sara@unik.no / sara.felloni@iet.ntnu.no Quantum Hacking Group: http://www.iet.ntnu.no/groups/optics/qcr/ UNIK University

More information

A SHORT INTRODUCTION TO QUANTUM INFORMATION AND QUANTUM COMPUTATION

A SHORT INTRODUCTION TO QUANTUM INFORMATION AND QUANTUM COMPUTATION A SHORT INTRODUCTION TO QUANTUM INFORMATION AND QUANTUM COMPUTATION Quantum information and computation is a rapidly expanding and cross-disciplinary subject. This book gives a self-contained introduction

More information

Single qubit + CNOT gates

Single qubit + CNOT gates Lecture 6 Universal quantum gates Single qubit + CNOT gates Single qubit and CNOT gates together can be used to implement an arbitrary twolevel unitary operation on the state space of n qubits. Suppose

More information

Introduction to Quantum Algorithms Part I: Quantum Gates and Simon s Algorithm

Introduction to Quantum Algorithms Part I: Quantum Gates and Simon s Algorithm Part I: Quantum Gates and Simon s Algorithm Martin Rötteler NEC Laboratories America, Inc. 4 Independence Way, Suite 00 Princeton, NJ 08540, U.S.A. International Summer School on Quantum Information, Max-Planck-Institut

More information

ROM-BASED COMPUTATION: QUANTUM VERSUS CLASSICAL

ROM-BASED COMPUTATION: QUANTUM VERSUS CLASSICAL arxiv:quant-ph/0109016v2 2 Jul 2002 ROM-BASED COMPUTATION: QUANTUM VERSUS CLASSICAL B. C. Travaglione, M. A. Nielsen Centre for Quantum Computer Technology, University of Queensland St Lucia, Queensland,

More information

Quantum Computers. Todd A. Brun Communication Sciences Institute USC

Quantum Computers. Todd A. Brun Communication Sciences Institute USC Quantum Computers Todd A. Brun Communication Sciences Institute USC Quantum computers are in the news Quantum computers represent a new paradigm for computing devices: computers whose components are individual

More information

Quantum Information Processing

Quantum Information Processing Quantum Information Processing Jonathan Jones http://nmr.physics.ox.ac.uk/teaching The Information Age Communication Shannon Computation Turing Current approaches are essentially classical which is wrong

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Part I Emma Strubell http://cs.umaine.edu/~ema/quantum_tutorial.pdf April 12, 2011 Overview Outline What is quantum computing? Background Caveats Fundamental differences

More information

Introduction to Quantum Computation

Introduction to Quantum Computation Chapter 1 Introduction to Quantum Computation 1.1 Motivations The main task in this course is to discuss application of quantum mechanics to information processing (or computation). Why? Education:Asingleq-bitisthesmallestpossiblequantummechanical

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Symbolical artificial intelligence is a field of computer science that is highly related to quantum computation. At first glance, this statement appears to be a contradiction. However,

More information

Introduction to Quantum Information, Quantum Computation, and Its Application to Cryptography. D. J. Guan

Introduction to Quantum Information, Quantum Computation, and Its Application to Cryptography. D. J. Guan Introduction to Quantum Information, Quantum Computation, and Its Application to Cryptography D. J. Guan Abstract The development of quantum algorithms and quantum information theory, as well as the design

More information

Introduction to Quantum Computing for Folks

Introduction to Quantum Computing for Folks Introduction to Quantum Computing for Folks Joint Advanced Student School 2009 Ing. Javier Enciso encisomo@in.tum.de Technische Universität München April 2, 2009 Table of Contents 1 Introduction 2 Quantum

More information

Gates for Adiabatic Quantum Computing

Gates for Adiabatic Quantum Computing Gates for Adiabatic Quantum Computing Richard H. Warren Abstract. The goal of this paper is to introduce building blocks for adiabatic quantum algorithms. Adiabatic quantum computing uses the principle

More information

Quantum Information Processing with Liquid-State NMR

Quantum Information Processing with Liquid-State NMR Quantum Information Processing with Liquid-State NMR Pranjal Vachaspati, Sabrina Pasterski MIT Department of Physics (Dated: May 8, 23) We demonstrate the use of a Bruker Avance 2 NMR Spectrometer for

More information

Projects about Quantum adder circuits Final examination June 2018 Quirk Simulator

Projects about Quantum adder circuits Final examination June 2018 Quirk Simulator Projects about Quantum adder circuits Final examination June 2018 Quirk Simulator http://algassert.com/2016/05/22/quirk.html PROBLEM TO SOLVE 1. The HNG gate is described in reference: Haghparast M. and

More information

Errata list, Nielsen & Chuang. rrata/errata.html

Errata list, Nielsen & Chuang.  rrata/errata.html Errata list, Nielsen & Chuang http://www.michaelnielsen.org/qcqi/errata/e rrata/errata.html Part II, Nielsen & Chuang Quantum circuits (Ch 4) SK Quantum algorithms (Ch 5 & 6) Göran Johansson Physical realisation

More information

Quantum Computation. Dr Austin Fowler Centre for Quantum Computer Technology. New Scientist, 10/11/07

Quantum Computation. Dr Austin Fowler Centre for Quantum Computer Technology. New Scientist, 10/11/07 Quantum Computation Dr Austin Fowler Centre for Quantum Computer Technology New Scientist, 10/11/07 Overview what is a quantum computer? bits vs qubits superpositions and measurement implementations why

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Petros Wallden Lecture 1: Introduction 18th September 2017 School of Informatics, University of Edinburgh Resources 1. Quantum Computation and Quantum Information by Michael

More information

6.2 Introduction to quantum information processing

6.2 Introduction to quantum information processing AS-Chap. 6. - 1 6. Introduction to quantum information processing 6. Introduction to information processing AS-Chap. 6. - Information General concept (similar to energy) Many forms: Mechanical, thermal,

More information

Quantum Computation: From Quantum Teleportation to the Shor s Algorithm

Quantum Computation: From Quantum Teleportation to the Shor s Algorithm Quantum Computation: From Quantum Teleportation to the Shor s Algorithm J. J. Ruiz-Lorenzo Dep. Física, Universidad de Extremadura Instituto de Computación Científica Avanzada de Extremadura (ICCAEx) http://www.eweb.unex.es/eweb/fisteor/juan

More information

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance.

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance. 9. Distance measures 9.1 Classical information measures How similar/close are two probability distributions? Trace distance Fidelity Example: Flipping two coins, one fair one biased Head Tail Trace distance

More information

Chapter 10. Superconducting Quantum Circuits

Chapter 10. Superconducting Quantum Circuits Chapter 10 Superconducting Quantum Circuits 10.1 Motivation AS-Chap. 10-2 Repetition: current-phase and voltage-phase relation are classical, but have quantum origin (macroscopic quantum model) primary

More information

10.2 Introduction to quantum information processing

10.2 Introduction to quantum information processing AS-Chap. 10-1 10. Introduction to quantum information processing AS-Chap. 10-10. Introduction to Information Processing Information General concept (similar to energy) Many forms: Mechanical, thermal,

More information

QOT - Quantum Optical Technologies

QOT - Quantum Optical Technologies Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 230 - ETSETB - Barcelona School of Telecommunications Engineering 739 - TSC - Department of Signal Theory and Communications

More information

5. Communication resources

5. Communication resources 5. Communication resources Classical channel Quantum channel Entanglement How does the state evolve under LOCC? Properties of maximally entangled states Bell basis Quantum dense coding Quantum teleportation

More information

Introduction into Quantum Computations Alexei Ashikhmin Bell Labs

Introduction into Quantum Computations Alexei Ashikhmin Bell Labs Introduction into Quantum Computations Alexei Ashikhmin Bell Labs Workshop on Quantum Computing and its Application March 16, 2017 Qubits Unitary transformations Quantum Circuits Quantum Measurements Quantum

More information

Quantum gate. Contents. Commonly used gates

Quantum gate. Contents. Commonly used gates Quantum gate From Wikipedia, the free encyclopedia In quantum computing and specifically the quantum circuit model of computation, a quantum gate (or quantum logic gate) is a basic quantum circuit operating

More information

Information Theory Meets Quantum Physics

Information Theory Meets Quantum Physics Information Theory Meets Quantum Physics The magic of wave dynamics Apoorva Patel Centre for High Energy Physics Indian Institute of Science, Bangalore 30 April 2016 (Commemorating the 100th birthday of

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Introduction to Quantum Computing. Lecture 1

Introduction to Quantum Computing. Lecture 1 Introduction to Quantum Computing Lecture 1 1 OUTLINE Why Quantum Computing? What is Quantum Computing? History Quantum Weirdness Quantum Properties Quantum Computation 2 Why Quantum Computing? 3 Transistors

More information

10.2 Introduction to quantum information processing

10.2 Introduction to quantum information processing AS-Chap. 10-1 10. Introduction to quantum information processing 10. Introduction to information processing AS-Chap. 10 - Information General concept (similar to energy) Many forms: Mechanical, thermal,

More information

An Introduction to Quantum Information and Applications

An Introduction to Quantum Information and Applications An Introduction to Quantum Information and Applications Iordanis Kerenidis CNRS LIAFA-Univ Paris-Diderot Quantum information and computation Quantum information and computation How is information encoded

More information

QUANTUM COMPUTING. Part II. Jean V. Bellissard. Georgia Institute of Technology & Institut Universitaire de France

QUANTUM COMPUTING. Part II. Jean V. Bellissard. Georgia Institute of Technology & Institut Universitaire de France QUANTUM COMPUTING Part II Jean V. Bellissard Georgia Institute of Technology & Institut Universitaire de France QUANTUM GATES: a reminder Quantum gates: 1-qubit gates x> U U x> U is unitary in M 2 ( C

More information

An Introduction to Quantum Computation and Quantum Information

An Introduction to Quantum Computation and Quantum Information An to and Graduate Group in Applied Math University of California, Davis March 13, 009 A bit of history Benioff 198 : First paper published mentioning quantum computing Feynman 198 : Use a quantum computer

More information

Secrets of Quantum Information Science

Secrets of Quantum Information Science Secrets of Quantum Information Science Todd A. Brun Communication Sciences Institute USC Quantum computers are in the news Quantum computers represent a new paradigm for computing devices: computers whose

More information

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations.

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations. QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING Philippe Grangier, Institut d'optique, Orsay 1. Quantum cryptography : from basic principles to practical realizations. 2. Quantum computing : a conceptual revolution

More information

The Deutsch-Josza Algorithm in NMR

The Deutsch-Josza Algorithm in NMR December 20, 2010 Matteo Biondi, Thomas Hasler Introduction Algorithm presented in 1992 by Deutsch and Josza First implementation in 1998 on NMR system: - Jones, JA; Mosca M; et al. of a quantum algorithm

More information

A Guide to Experiments in Quantum Optics

A Guide to Experiments in Quantum Optics Hans-A. Bachor and Timothy C. Ralph A Guide to Experiments in Quantum Optics Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag CmbH Co. KGaA Contents Preface 1 Introduction 1.1 Historical

More information

Logical error rate in the Pauli twirling approximation

Logical error rate in the Pauli twirling approximation Logical error rate in the Pauli twirling approximation Amara Katabarwa and Michael R. Geller Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA (Dated: April 10, 2015)

More information

MAA509: Quantum Computing and Information Introduction

MAA509: Quantum Computing and Information Introduction MAA509: Quantum Computing and Information Introduction November 7, 2016 November 7, 2016 1 / 19 Why make computers? Computation by hand is difficult and not very stimulating. Why not make a machine do

More information

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay 400 nm Solid State Qubits (1) S D Daniel Esteve QUAN UM ELECT RONICS GROUP SPEC, CEA-Saclay From the Copenhagen school (1937) Max Planck front row, L to R : Bohr, Heisenberg, Pauli,Stern, Meitner, Ladenburg,

More information

IBM Systems for Cognitive Solutions

IBM Systems for Cognitive Solutions IBM Q Quantum Computing IBM Systems for Cognitive Solutions Ehningen 12 th of July 2017 Albert Frisch, PhD - albert.frisch@de.ibm.com 2017 IBM 1 st wave of Quantum Revolution lasers atomic clocks GPS sensors

More information

Large-Scale Quantum Architectures

Large-Scale Quantum Architectures Large-Scale Quantum Architectures Fred Chong Director of Computer Engineering Professor of Computer Science University of California at Santa Barbara With Daniel Kudrow, Tzvetan Metodi, Darshan Thaker,

More information

Short introduction to Quantum Computing

Short introduction to Quantum Computing November 7, 2017 Short introduction to Quantum Computing Joris Kattemölle QuSoft, CWI, Science Park 123, Amsterdam, The Netherlands Institute for Theoretical Physics, University of Amsterdam, Science Park

More information

Compute the Fourier transform on the first register to get x {0,1} n x 0.

Compute the Fourier transform on the first register to get x {0,1} n x 0. CS 94 Recursive Fourier Sampling, Simon s Algorithm /5/009 Spring 009 Lecture 3 1 Review Recall that we can write any classical circuit x f(x) as a reversible circuit R f. We can view R f as a unitary

More information

Introduction to Quantum Information Processing

Introduction to Quantum Information Processing Introduction to Quantum Information Processing Lecture 6 Richard Cleve Overview of Lecture 6 Continuation of teleportation Computation and some basic complexity classes Simple quantum algorithms in the

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0 (two-qubit gate): tools: optical dipole force P 3/2 P 1/2 F = -1.5 F n=3 n=3 n=0 S 1/2 n=0 optical dipole force is state dependent tools: optical dipole force (e.g two qubits) ω 2 k1 d ω 1 optical dipole

More information

Teleportation-based approaches to universal quantum computation with single-qubit measurements

Teleportation-based approaches to universal quantum computation with single-qubit measurements Teleportation-based approaches to universal quantum computation with single-qubit measurements Andrew Childs MIT Center for Theoretical Physics joint work with Debbie Leung and Michael Nielsen Resource

More information

Reversible and Quantum computing. Fisica dell Energia - a.a. 2015/2016

Reversible and Quantum computing. Fisica dell Energia - a.a. 2015/2016 Reversible and Quantum computing Fisica dell Energia - a.a. 2015/2016 Reversible computing A process is said to be logically reversible if the transition function that maps old computational states to

More information

MEASUREMENT THEORY QUANTUM AND ITS APPLICATIONS KURT JACOBS. University of Massachusetts at Boston. fg Cambridge WW UNIVERSITY PRESS

MEASUREMENT THEORY QUANTUM AND ITS APPLICATIONS KURT JACOBS. University of Massachusetts at Boston. fg Cambridge WW UNIVERSITY PRESS QUANTUM MEASUREMENT THEORY AND ITS APPLICATIONS KURT JACOBS University of Massachusetts at Boston fg Cambridge WW UNIVERSITY PRESS Contents Preface page xi 1 Quantum measurement theory 1 1.1 Introduction

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Petros Wallden Lecture 7: Complexity & Algorithms I 13th October 016 School of Informatics, University of Edinburgh Complexity - Computational Complexity: Classification

More information

Requirements for scaleable QIP

Requirements for scaleable QIP p. 1/25 Requirements for scaleable QIP These requirements were presented in a very influential paper by David Divincenzo, and are widely used to determine if a particular physical system could potentially

More information

Discrete Quantum Theories

Discrete Quantum Theories Discrete Quantum Theories Andrew J. Hanson 1 Gerardo Ortiz 2 Amr Sabry 1 Yu-Tsung Tai 3 (1) School of Informatics and Computing (2) Department of Physics (3) Mathematics Department Indiana University July

More information

Quantum computing! quantum gates! Fisica dell Energia!

Quantum computing! quantum gates! Fisica dell Energia! Quantum computing! quantum gates! Fisica dell Energia! What is Quantum Computing?! Calculation based on the laws of Quantum Mechanics.! Uses Quantum Mechanical Phenomena to perform operations on data.!

More information

Lectures on Quantum Information

Lectures on Quantum Information Lectures on Quantum Information Edited by Dagmar Bruß and Gerd Leuchs BICENTENNIAL BICENTEN NIAL WILEY-VCH Verlag GmbH & Co. KGaA Preface List of Contributors XVII XIX I Classical Information Theory 1

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Stephen Casey NASA Slide template creator Krysta Svore Bloch Sphere Hadamard basis θ φ Quantum Hardware Technologies Quantum dots Superconductors Ion traps Nitrogen

More information

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139 Quantum Error Correcting Codes and Quantum Cryptography Peter Shor M.I.T. Cambridge, MA 02139 1 We start out with two processes which are fundamentally quantum: superdense coding and teleportation. Superdense

More information

Some Introductory Notes on Quantum Computing

Some Introductory Notes on Quantum Computing Some Introductory Notes on Quantum Computing Markus G. Kuhn http://www.cl.cam.ac.uk/~mgk25/ Computer Laboratory University of Cambridge 2000-04-07 1 Quantum Computing Notation Quantum Computing is best

More information

Quantum Logic for Quantum Computers

Quantum Logic for Quantum Computers International Journal of Theoretical Physics, 39, 813 825 (2000) Quantum Logic for Quantum Computers Mladen Pavičić,1 Department of Mathematics, University of Zagreb, GF, Kačićeva 26, POB-217, HR-10001

More information

Michael Mehring Physikalisches Institut, Univ. Stuttgart, Germany. Coworkers. A. Heidebrecht, J. Mende, W. Scherer

Michael Mehring Physikalisches Institut, Univ. Stuttgart, Germany. Coworkers. A. Heidebrecht, J. Mende, W. Scherer Decoherence and Entanglement Tomography in Solids Michael Mehring Physikalisches Institut, Univ. Stuttgart, Germany Coworkers A. Heidebrecht, J. Mende, W. Scherer 5 N@C 60 and 3 P@C 60 Cooperation Boris

More information

Quantum Computing. 6. Quantum Computer Architecture 7. Quantum Computers and Complexity

Quantum Computing. 6. Quantum Computer Architecture 7. Quantum Computers and Complexity Quantum Computing 1. Quantum States and Quantum Gates 2. Multiple Qubits and Entangled States 3. Quantum Gate Arrays 4. Quantum Parallelism 5. Examples of Quantum Algorithms 1. Grover s Unstructured Search

More information

Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters)

Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters) Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters) Rahul Jain U. Waterloo and Institute for Quantum Computing, rjain@cs.uwaterloo.ca entry editor: Andris Ambainis

More information

Quantum Information Theory and Cryptography

Quantum Information Theory and Cryptography Quantum Information Theory and Cryptography John Smolin, IBM Research IPAM Information Theory A Mathematical Theory of Communication, C.E. Shannon, 1948 Lies at the intersection of Electrical Engineering,

More information

Quantum Computer Architecture

Quantum Computer Architecture Quantum Computer Architecture Scalable and Reliable Quantum Computers Greg Byrd (ECE) CSC 801 - Feb 13, 2018 Overview 1 Sources 2 Key Concepts Quantum Computer 3 Outline 4 Ion Trap Operation The ion can

More information

Quantum Computing. The Future of Advanced (Secure) Computing. Dr. Eric Dauler. MIT Lincoln Laboratory 5 March 2018

Quantum Computing. The Future of Advanced (Secure) Computing. Dr. Eric Dauler. MIT Lincoln Laboratory 5 March 2018 The Future of Advanced (Secure) Computing Quantum Computing This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering and the Office of the Director

More information

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling Quantum Science & Technologies Group Hearne Institute for Theoretical Physics Louisiana State University http://quantum.phys.lsu.edu

More information

Entanglement creation and characterization in a trapped-ion quantum simulator

Entanglement creation and characterization in a trapped-ion quantum simulator Time Entanglement creation and characterization in a trapped-ion quantum simulator Christian Roos Institute for Quantum Optics and Quantum Information Innsbruck, Austria Outline: Highly entangled state

More information

Basic Logic Gate Realization using Quantum Dot Cellular Automata based Reversible Universal Gate

Basic Logic Gate Realization using Quantum Dot Cellular Automata based Reversible Universal Gate Basic Logic Gate Realization using Quantum Dot Cellular Automata based Reversible Universal Gate Saroj Kumar Chandra Department Of Computer Science & Engineering, Chouksey Engineering College, Bilaspur

More information

Einführung in die Quanteninformation

Einführung in die Quanteninformation Einführung in die Quanteninformation Hans J. Briegel Theoretical Physics, U Innsbruck Department of Philosophy, U Konstanz* *MWK Baden-Württemberg Quanteninformationsverarbeitung Untersuchung grundlegender

More information

Quantum Circuits and Algorithms

Quantum Circuits and Algorithms Quantum Circuits and Algorithms Modular Arithmetic, XOR Reversible Computation revisited Quantum Gates revisited A taste of quantum algorithms: Deutsch algorithm Other algorithms, general overviews Measurements

More information

CS257 Discrete Quantum Computation

CS257 Discrete Quantum Computation CS57 Discrete Quantum Computation John E Savage April 30, 007 Lect 11 Quantum Computing c John E Savage Classical Computation State is a vector of reals; e.g. Booleans, positions, velocities, or momenta.

More information

Quantum Optics and Quantum Informatics FKA173

Quantum Optics and Quantum Informatics FKA173 Quantum Optics and Quantum Informatics FKA173 Date and time: Tuesday, 7 October 015, 08:30-1:30. Examiners: Jonas Bylander (070-53 44 39) and Thilo Bauch (0733-66 13 79). Visits around 09:30 and 11:30.

More information

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA Shigeji Fujita and Salvador V Godoy Mathematical Physics WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XIII Table of Contents and Categories XV Constants, Signs, Symbols, and General Remarks

More information

ION TRAPS STATE OF THE ART QUANTUM GATES

ION TRAPS STATE OF THE ART QUANTUM GATES ION TRAPS STATE OF THE ART QUANTUM GATES Silvio Marx & Tristan Petit ION TRAPS STATE OF THE ART QUANTUM GATES I. Fault-tolerant computing & the Mølmer- Sørensen gate with ion traps II. Quantum Toffoli

More information

Lecture Notes on QUANTUM COMPUTING STEFANO OLIVARES. Dipartimento di Fisica - Università degli Studi di Milano. Ver. 2.0

Lecture Notes on QUANTUM COMPUTING STEFANO OLIVARES. Dipartimento di Fisica - Università degli Studi di Milano. Ver. 2.0 Lecture Notes on QUANTUM COMPUTING STEFANO OLIVARES Dipartimento di Fisica - Università degli Studi di Milano Ver..0 Lecture Notes on Quantum Computing 014, S. Olivares - University of Milan Italy) December,

More information

Quantum Computation. Michael A. Nielsen. University of Queensland

Quantum Computation. Michael A. Nielsen. University of Queensland Quantum Computation Michael A. Nielsen University of Queensland Goals: 1. To eplain the quantum circuit model of computation. 2. To eplain Deutsch s algorithm. 3. To eplain an alternate model of quantum

More information

Quantum Computers. Peter Shor MIT

Quantum Computers. Peter Shor MIT Quantum Computers Peter Shor MIT 1 What is the difference between a computer and a physics experiment? 2 One answer: A computer answers mathematical questions. A physics experiment answers physical questions.

More information

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto Quantum error correction on a hybrid spin system Christoph Fischer, Andrea Rocchetto Christoph Fischer, Andrea Rocchetto 17/05/14 1 Outline Error correction: why we need it, how it works Experimental realization

More information

Physics is becoming too difficult for physicists. David Hilbert (mathematician)

Physics is becoming too difficult for physicists. David Hilbert (mathematician) Physics is becoming too difficult for physicists. David Hilbert (mathematician) Simple Harmonic Oscillator Credit: R. Nave (HyperPhysics) Particle 2 X 2-Particle wave functions 2 Particles, each moving

More information

CHAPTER 2 AN ALGORITHM FOR OPTIMIZATION OF QUANTUM COST. 2.1 Introduction

CHAPTER 2 AN ALGORITHM FOR OPTIMIZATION OF QUANTUM COST. 2.1 Introduction CHAPTER 2 AN ALGORITHM FOR OPTIMIZATION OF QUANTUM COST Quantum cost is already introduced in Subsection 1.3.3. It is an important measure of quality of reversible and quantum circuits. This cost metric

More information