Lecture 4 Towards Deep Learning

Size: px
Start display at page:

Download "Lecture 4 Towards Deep Learning"

Transcription

1 Lecture 4 Towards Deep Learning (January 30, 2015) Mu Zhu University of Waterloo

2 Deep Network Fields Institute, Toronto, Canada 2015 by Mu Zhu 2

3 Boltzmann Distribution probability distribution for a complex system p(x) = 1 Z ef(x;θ) with Z x e f(x;θ) [or ] e f(x;θ) dx often, where f(x;θ) = u(x;ϑ), kt u(x; ϑ) = energy function; k T = Boltzmann constant; = thermodynamic temperature e.g., lattice of particles, protein molecule Fields Institute, Toronto, Canada 2015 by Mu Zhu 3

4 Boltzmann Distribution [ ] log[p(x;θ)] = f(x;θ) log e f(x;θ) x d dθ log[p(x;θ)] = d dθ f(x;θ) 1 x = d dθ f(x;θ) x = d dθ f(x;θ) x = d dθ f(x;θ) E e f(x;θ) e f(x;θ) Z p(x) [ e f(x;θ) [ d dθ f(x;θ) x d dθ f(x;θ) d dθ f(x;θ) ] ] d dθ f(x;θ) Fields Institute, Toronto, Canada 2015 by Mu Zhu 4

5 Boltzmann Distribution given x 1,x 2,...,x i iid p(x;θ) log-likelihood is l(θ) = 1 n n log[p(x i ;θ)] i=1 its first derivative is d dθ l(θ) = 1 n Ê n { d dθ f(x i;θ) E i=1 [ ] d dθ f(x;θ) E [ ]} d dθ f(x i;θ) ] [ d dθ f(x;θ) Fields Institute, Toronto, Canada 2015 by Mu Zhu 5

6 Restricted Boltzmann Machine h 1 h 2 h 3 h 4 v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 bottom nodes v = (v 1,v 2,...) T ; top nodes h = (h 1,h 2,...) T Fields Institute, Toronto, Canada 2015 by Mu Zhu 6

7 Restricted Boltzmann Machine bottom nodes v = (v 1,v 2,...) T top nodes h = (h 1,h 2,...) T Boltzmann distribution p(v,h;θ) = 1 Z ef(v,h;θ) with f(v,h;θ) = h T Wv +α T h+β T v = h t w T t v + α t h t +β T v t t i.e., θ = {W,α,β} Fields Institute, Toronto, Canada 2015 by Mu Zhu 7

8 Restricted Boltzmann Machine if just one binary top node h {0,1} get p(v,h = 1) = 1 Z ewt v+α+β Tv, p(v,h = 0) = 1 Z eβt v so p(v,h = 1) p(v,h = 0) = P(h = 1 v)f(v) P(h = 0 v)f(v) log P(h = 1 v) P(h = 0 v) = wt v +α hence, model for h v is usual logistic regression Fields Institute, Toronto, Canada 2015 by Mu Zhu 8

9 Restricted Boltzmann Machine if more than one binary top nodes h 1,h 2,... {0,1} get f(v,h;θ) = h t w T t v +α t h t + s t h s w T s v + s tα s h s +β T v so log P(h t = 1 v,h t ) P(h t = 0 v,h t ) = wt t v +α t in general, model for h t v,h t is usual logistic regression notice conditional independence between h t and h t given v Fields Institute, Toronto, Canada 2015 by Mu Zhu 9

10 Fitting RBM given (v i,h i ), i = 1,2,...,n, MLE by gradient ascent, [ ] dl W new = W old +ε dw and likewise for α, β θ old, gradients: f(v,h;θ) = h T Wv +α T h+β T v dl dw = Ê[ hv T] E [ hv T] dl dα = Ê[h] E[h], dl dβ = Ê[v] E[v] Fields Institute, Toronto, Canada 2015 by Mu Zhu 10

11 Fitting RBM given {(v i,h i )} n i=1, Ê[hvT ],Ê[h],Ê[v] are easy to compute just take empirical averages [definition of Ê( )] but E[hv T ],E[h],E[v] are hard to compute estimate by drawing an MCMC sample from p(v,h) in particular, do Gibbs Sampling for just a few iterations Gibbs Sampling Repeat given v, sample h from the conditional distribution of h v; given h, sample v from the conditional distribution of v h; until convergence ( burn-in ). Fields Institute, Toronto, Canada 2015 by Mu Zhu 11

12 Gibbs Sampling recall: model for h t v,h t is usual logistic regression, so h t v,h t Bernoulli [ σ ( α t +w T t v )] if v 1,v 2,... also binary, then symmetry gives v b h,v b Bernoulli [ σ ( β b +h T w b )] Gibbs sampling amounts to back-and-forth coin flips note: σ( ) above denotes the sigmoid function Fields Institute, Toronto, Canada 2015 by Mu Zhu 12

13 Towards Deep Learning stack many RBMs on top of each other top nodes for layer l becomes bottom nodes for layer l+1, i.e., v (l+1) = h (l) fit the whole thing layer by layer note intermediate layers are latent (hidden, not visible) so for things like Ê(h), can use Ê( h) where h i E(h v i ) kind of an EM procedure Fields Institute, Toronto, Canada 2015 by Mu Zhu 13

14 Towards Deep Learning repeat with current parameters θ = {α,β,w} (a) estimate h i E(h v i ) Ê( ) (b) draw h i p(h v i ) and v i p(v h i ) [or repeat] E( ) move along the gradient (a crude estimate of it) ] θ θ +ε [Ê( ) E( ) until some stopping criterion proceed to next layer Fields Institute, Toronto, Canada 2015 by Mu Zhu 14

15 On v 1,v 2,... Being Binary not as restrictive as it appears can already handle image data and text data to some extent [examples next two slides] can generalize to other inputs make some changes to the model f(v,h) p(v h) no longer logistic model [obviously] ideally, want p(v h) nice to sample from Fields Institute, Toronto, Canada 2015 by Mu Zhu 15

16 Example: Image Data each v 1,v 2,... a binary pixel Fields Institute, Toronto, Canada 2015 by Mu Zhu 16

17 Example: Text Data Word 1 Word 2 Word 3 "hate" "I" "love" "math" "you" each v 1,v 2,... an indicator for a particular word Fields Institute, Toronto, Canada 2015 by Mu Zhu 17

18 The Gaussian-Bernoulli RBM v 1,v 2,... {0,1}: v 1,v 2,... R: f(v,h;θ) = h T Wv +α T h+β T v = [ ] h T w b vb +α T h+ β b v b b b f(v,h;θ) = b [ ] [ ] v h T b w b τ b +α T h b (v b β b ) 2 2τ 2 b Exercise Let ṽ = (v 1 /τ 1,v 2 /τ 2,...) T. Show that T (a) p(h t v,h t ) Bernoulli[σ(α t +wt ṽ)]; (easy) (b) p(v b h,v b ) N(β b +τ b (h T w b ),τ 2 b ). (slightly harder) Fields Institute, Toronto, Canada 2015 by Mu Zhu 18

19 Iterative Optimization consider an iterative rule, x t+1 = m(x t ), for minimizing f(x) Newton s method: gradient descent: m(x t ) = x t f (x t ) f (x t ) m(x t ) = x t f (x t ) multivariate case... same idea, with gradient and Hessian, i.e., x t+1 = x t εh 1 t g t, x t+1 = x t εg t ; will explain extra ε later Fields Institute, Toronto, Canada 2015 by Mu Zhu 19

20 Iterative Optimization suppose iteration converges to a local minimum x must have m(x ) = x [i.e., a fixed point] then, in neighborhood near x, e t+1 x t+1 x = m(x t ) m(x ) [ = m(x )+m (x )(x t x )+ m (ξ) (x t x ) ] m(x 2 ) 2 = m (x )e t + m (ξ) 2 thus, a basic requirement is m (x ) < 1 (and nearby x ) e t 2 Fields Institute, Toronto, Canada 2015 by Mu Zhu 20

21 Gradient Descent m(x t ) = x t f (x t ) m (x ) = 1 f (x ) x local mimimum f (x ) > 0 so, need f (x ) < 1 (and nearby x ) ensure by letting m(x t ) = x t εf (x t ) Fields Institute, Toronto, Canada 2015 by Mu Zhu 21

22 Newton s Method m(x t ) = x t f (x t ) f (x t ) m (x ) = 1 f (x )f (x ) f (x )f (x ) [f (x )] 2 = f (x )f (x ) [f (x )] 2 = 0 get e t+1 O(e 2 t), much faster local convergence but second derivative H d d is not easy for large d Fields Institute, Toronto, Canada 2015 by Mu Zhu 22

23 Quasi-Newton use local curvature information fast local convergence want to do some of this without computing H t key idea: construct a sequence B t to mimic H t example [symmetric rank-1 (SR1)]: construct B t+1 so that (a) g t+1 = g t +B t+1 (x t+1 x t ) [B t+1 like a Hessian ] (b) B t+1 = B t +uv T [update just a little ] (c) u v [ensures symmetry] many variations... Fields Institute, Toronto, Canada 2015 by Mu Zhu 23

24 Some Details of SR1 ( Bt +uv T) (x t+1 x t ) }{{} x t = g t+1 g t }{{} g t u [ v T ( x t ) ] }{{} scalar = ( g t ) B t ( x t ) u = ( g t) B t ( x t ) v T ( x t ) taking u = v = γ[( g t ) B t ( x t )] leads to B t+1 = B t + [( g t) B t ( x t )][( g t ) B t ( x t )] T [( g t ) B t ( x t )] T ( x t ) Fields Institute, Toronto, Canada 2015 by Mu Zhu 24

25 Summary key ideas: RBMs (building block for deep learning) gradient descent; Gibbs sampling local convergence behavior (gradient vs Newton) specific techniques: quasi-newton (SR1) Gaussian-Bernoulli RBM Fields Institute, Toronto, Canada 2015 by Mu Zhu 25

26 Next... a short, 10-minute break lecture by Dr. R. Grosse on some current work about RBMs Fields Institute, Toronto, Canada 2015 by Mu Zhu 26

Restricted Boltzmann Machines

Restricted Boltzmann Machines Restricted Boltzmann Machines Boltzmann Machine(BM) A Boltzmann machine extends a stochastic Hopfield network to include hidden units. It has binary (0 or 1) visible vector unit x and hidden (latent) vector

More information

Training an RBM: Contrastive Divergence. Sargur N. Srihari

Training an RBM: Contrastive Divergence. Sargur N. Srihari Training an RBM: Contrastive Divergence Sargur N. srihari@cedar.buffalo.edu Topics in Partition Function Definition of Partition Function 1. The log-likelihood gradient 2. Stochastic axiu likelihood and

More information

Iterative Reweighted Least Squares

Iterative Reweighted Least Squares Iterative Reweighted Least Squares Sargur. University at Buffalo, State University of ew York USA Topics in Linear Classification using Probabilistic Discriminative Models Generative vs Discriminative

More information

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu Logistic Regression Review 10-601 Fall 2012 Recitation September 25, 2012 TA: Selen Uguroglu!1 Outline Decision Theory Logistic regression Goal Loss function Inference Gradient Descent!2 Training Data

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

Lecture 16 Deep Neural Generative Models

Lecture 16 Deep Neural Generative Models Lecture 16 Deep Neural Generative Models CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 22, 2017 Approach so far: We have considered simple models and then constructed

More information

Introduction to Restricted Boltzmann Machines

Introduction to Restricted Boltzmann Machines Introduction to Restricted Boltzmann Machines Ilija Bogunovic and Edo Collins EPFL {ilija.bogunovic,edo.collins}@epfl.ch October 13, 2014 Introduction Ingredients: 1. Probabilistic graphical models (undirected,

More information

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning Lecture 0 Neural networks and optimization Machine Learning and Data Mining November 2009 UBC Gradient Searching for a good solution can be interpreted as looking for a minimum of some error (loss) function

More information

Lecture 4: Types of errors. Bayesian regression models. Logistic regression

Lecture 4: Types of errors. Bayesian regression models. Logistic regression Lecture 4: Types of errors. Bayesian regression models. Logistic regression A Bayesian interpretation of regularization Bayesian vs maximum likelihood fitting more generally COMP-652 and ECSE-68, Lecture

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

Deep Boltzmann Machines

Deep Boltzmann Machines Deep Boltzmann Machines Ruslan Salakutdinov and Geoffrey E. Hinton Amish Goel University of Illinois Urbana Champaign agoel10@illinois.edu December 2, 2016 Ruslan Salakutdinov and Geoffrey E. Hinton Amish

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

Logistic Regression. Seungjin Choi

Logistic Regression. Seungjin Choi Logistic Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Deep Neural Networks

Deep Neural Networks Deep Neural Networks DT2118 Speech and Speaker Recognition Giampiero Salvi KTH/CSC/TMH giampi@kth.se VT 2015 1 / 45 Outline State-to-Output Probability Model Artificial Neural Networks Perceptron Multi

More information

Logistic Regression. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, / 48

Logistic Regression. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, / 48 Logistic Regression Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms January 25, 2017 1 / 48 Outline 1 Administration 2 Review of last lecture 3 Logistic regression

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

Greedy Layer-Wise Training of Deep Networks

Greedy Layer-Wise Training of Deep Networks Greedy Layer-Wise Training of Deep Networks Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle NIPS 2007 Presented by Ahmed Hefny Story so far Deep neural nets are more expressive: Can learn

More information

Logistic Regression. Will Monroe CS 109. Lecture Notes #22 August 14, 2017

Logistic Regression. Will Monroe CS 109. Lecture Notes #22 August 14, 2017 1 Will Monroe CS 109 Logistic Regression Lecture Notes #22 August 14, 2017 Based on a chapter by Chris Piech Logistic regression is a classification algorithm1 that works by trying to learn a function

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Lior Wolf 2014-15 We know that X ~ B(n,p), but we do not know p. We get a random sample from X, a

More information

Contrastive Divergence

Contrastive Divergence Contrastive Divergence Training Products of Experts by Minimizing CD Hinton, 2002 Helmut Puhr Institute for Theoretical Computer Science TU Graz June 9, 2010 Contents 1 Theory 2 Argument 3 Contrastive

More information

The classifier. Theorem. where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know

The classifier. Theorem. where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know The Bayes classifier Theorem The classifier satisfies where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know Alternatively, since the maximum it is

More information

The classifier. Linear discriminant analysis (LDA) Example. Challenges for LDA

The classifier. Linear discriminant analysis (LDA) Example. Challenges for LDA The Bayes classifier Linear discriminant analysis (LDA) Theorem The classifier satisfies In linear discriminant analysis (LDA), we make the (strong) assumption that where the min is over all possible classifiers.

More information

The Origin of Deep Learning. Lili Mou Jan, 2015

The Origin of Deep Learning. Lili Mou Jan, 2015 The Origin of Deep Learning Lili Mou Jan, 2015 Acknowledgment Most of the materials come from G. E. Hinton s online course. Outline Introduction Preliminary Boltzmann Machines and RBMs Deep Belief Nets

More information

Deep Generative Models. (Unsupervised Learning)

Deep Generative Models. (Unsupervised Learning) Deep Generative Models (Unsupervised Learning) CEng 783 Deep Learning Fall 2017 Emre Akbaş Reminders Next week: project progress demos in class Describe your problem/goal What you have done so far What

More information

Learning to Disentangle Factors of Variation with Manifold Learning

Learning to Disentangle Factors of Variation with Manifold Learning Learning to Disentangle Factors of Variation with Manifold Learning Scott Reed Kihyuk Sohn Yuting Zhang Honglak Lee University of Michigan, Department of Electrical Engineering and Computer Science 08

More information

Intractable Likelihood Functions

Intractable Likelihood Functions Intractable Likelihood Functions Michael Gutmann Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, University of Edinburgh Spring semester 2018 Recap p(x y o ) = z p(x,y o,z) x,z

More information

Vasil Khalidov & Miles Hansard. C.M. Bishop s PRML: Chapter 5; Neural Networks

Vasil Khalidov & Miles Hansard. C.M. Bishop s PRML: Chapter 5; Neural Networks C.M. Bishop s PRML: Chapter 5; Neural Networks Introduction The aim is, as before, to find useful decompositions of the target variable; t(x) = y(x, w) + ɛ(x) (3.7) t(x n ) and x n are the observations,

More information

Lecture 2 Part 1 Optimization

Lecture 2 Part 1 Optimization Lecture 2 Part 1 Optimization (January 16, 2015) Mu Zhu University of Waterloo Need for Optimization E(y x), P(y x) want to go after them first, model some examples last week then, estimate didn t discuss

More information

Lecture 3 September 1

Lecture 3 September 1 STAT 383C: Statistical Modeling I Fall 2016 Lecture 3 September 1 Lecturer: Purnamrita Sarkar Scribe: Giorgio Paulon, Carlos Zanini Disclaimer: These scribe notes have been slightly proofread and may have

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Logistic Regression Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

Deep unsupervised learning

Deep unsupervised learning Deep unsupervised learning Advanced data-mining Yongdai Kim Department of Statistics, Seoul National University, South Korea Unsupervised learning In machine learning, there are 3 kinds of learning paradigm.

More information

Chapter 11. Stochastic Methods Rooted in Statistical Mechanics

Chapter 11. Stochastic Methods Rooted in Statistical Mechanics Chapter 11. Stochastic Methods Rooted in Statistical Mechanics Neural Networks and Learning Machines (Haykin) Lecture Notes on Self-learning Neural Algorithms Byoung-Tak Zhang School of Computer Science

More information

Learning Tetris. 1 Tetris. February 3, 2009

Learning Tetris. 1 Tetris. February 3, 2009 Learning Tetris Matt Zucker Andrew Maas February 3, 2009 1 Tetris The Tetris game has been used as a benchmark for Machine Learning tasks because its large state space (over 2 200 cell configurations are

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

Lecture 2: Logistic Regression and Neural Networks

Lecture 2: Logistic Regression and Neural Networks 1/23 Lecture 2: and Neural Networks Pedro Savarese TTI 2018 2/23 Table of Contents 1 2 3 4 3/23 Naive Bayes Learn p(x, y) = p(y)p(x y) Training: Maximum Likelihood Estimation Issues? Why learn p(x, y)

More information

Representational Power of Restricted Boltzmann Machines and Deep Belief Networks. Nicolas Le Roux and Yoshua Bengio Presented by Colin Graber

Representational Power of Restricted Boltzmann Machines and Deep Belief Networks. Nicolas Le Roux and Yoshua Bengio Presented by Colin Graber Representational Power of Restricted Boltzmann Machines and Deep Belief Networks Nicolas Le Roux and Yoshua Bengio Presented by Colin Graber Introduction Representational abilities of functions with some

More information

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods.

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Linear models for classification Logistic regression Gradient descent and second-order methods

More information

LECTURE 10: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING. The last equality is provided so this can look like a more familiar parametric test.

LECTURE 10: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING. The last equality is provided so this can look like a more familiar parametric test. Economics 52 Econometrics Professor N.M. Kiefer LECTURE 1: NEYMAN-PEARSON LEMMA AND ASYMPTOTIC TESTING NEYMAN-PEARSON LEMMA: Lesson: Good tests are based on the likelihood ratio. The proof is easy in the

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning More Approximate Inference Mark Schmidt University of British Columbia Winter 2018 Last Time: Approximate Inference We ve been discussing graphical models for density estimation,

More information

Chapter 16. Structured Probabilistic Models for Deep Learning

Chapter 16. Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 1 Chapter 16 Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 2 Structured Probabilistic Models way of using graphs to describe

More information

COMP9444 Neural Networks and Deep Learning 11. Boltzmann Machines. COMP9444 c Alan Blair, 2017

COMP9444 Neural Networks and Deep Learning 11. Boltzmann Machines. COMP9444 c Alan Blair, 2017 COMP9444 Neural Networks and Deep Learning 11. Boltzmann Machines COMP9444 17s2 Boltzmann Machines 1 Outline Content Addressable Memory Hopfield Network Generative Models Boltzmann Machine Restricted Boltzmann

More information

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015 Sequence Modelling with Features: Linear-Chain Conditional Random Fields COMP-599 Oct 6, 2015 Announcement A2 is out. Due Oct 20 at 1pm. 2 Outline Hidden Markov models: shortcomings Generative vs. discriminative

More information

Latent Variable Models and EM algorithm

Latent Variable Models and EM algorithm Latent Variable Models and EM algorithm SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic 3.1 Clustering and Mixture Modelling K-means and hierarchical clustering are non-probabilistic

More information

Robust Classification using Boltzmann machines by Vasileios Vasilakakis

Robust Classification using Boltzmann machines by Vasileios Vasilakakis Robust Classification using Boltzmann machines by Vasileios Vasilakakis The scope of this report is to propose an architecture of Boltzmann machines that could be used in the context of classification,

More information

Neural Networks Learning the network: Backprop , Fall 2018 Lecture 4

Neural Networks Learning the network: Backprop , Fall 2018 Lecture 4 Neural Networks Learning the network: Backprop 11-785, Fall 2018 Lecture 4 1 Recap: The MLP can represent any function The MLP can be constructed to represent anything But how do we construct it? 2 Recap:

More information

Multiclass Logistic Regression

Multiclass Logistic Regression Multiclass Logistic Regression Sargur. Srihari University at Buffalo, State University of ew York USA Machine Learning Srihari Topics in Linear Classification using Probabilistic Discriminative Models

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 7 Unsupervised Learning Statistical Perspective Probability Models Discrete & Continuous: Gaussian, Bernoulli, Multinomial Maimum Likelihood Logistic

More information

Reading Group on Deep Learning Session 1

Reading Group on Deep Learning Session 1 Reading Group on Deep Learning Session 1 Stephane Lathuiliere & Pablo Mesejo 2 June 2016 1/31 Contents Introduction to Artificial Neural Networks to understand, and to be able to efficiently use, the popular

More information

Linear and logistic regression

Linear and logistic regression Linear and logistic regression Guillaume Obozinski Ecole des Ponts - ParisTech Master MVA Linear and logistic regression 1/22 Outline 1 Linear regression 2 Logistic regression 3 Fisher discriminant analysis

More information

Machine Learning Basics Lecture 2: Linear Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 2: Linear Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 2: Linear Classification Princeton University COS 495 Instructor: Yingyu Liang Review: machine learning basics Math formulation Given training data x i, y i : 1 i n i.i.d.

More information

Machine Learning Basics III

Machine Learning Basics III Machine Learning Basics III Benjamin Roth CIS LMU München Benjamin Roth (CIS LMU München) Machine Learning Basics III 1 / 62 Outline 1 Classification Logistic Regression 2 Gradient Based Optimization Gradient

More information

Deep Feedforward Networks. Lecture slides for Chapter 6 of Deep Learning Ian Goodfellow Last updated

Deep Feedforward Networks. Lecture slides for Chapter 6 of Deep Learning  Ian Goodfellow Last updated Deep Feedforward Networks Lecture slides for Chapter 6 of Deep Learning www.deeplearningbook.org Ian Goodfellow Last updated 2016-10-04 Roadmap Example: Learning XOR Gradient-Based Learning Hidden Units

More information

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians Engineering Part IIB: Module F Statistical Pattern Processing University of Cambridge Engineering Part IIB Module F: Statistical Pattern Processing Handout : Multivariate Gaussians. Generative Model Decision

More information

Expectation Maximization (EM) Algorithm. Each has it s own probability of seeing H on any one flip. Let. p 1 = P ( H on Coin 1 )

Expectation Maximization (EM) Algorithm. Each has it s own probability of seeing H on any one flip. Let. p 1 = P ( H on Coin 1 ) Expectation Maximization (EM Algorithm Motivating Example: Have two coins: Coin 1 and Coin 2 Each has it s own probability of seeing H on any one flip. Let p 1 = P ( H on Coin 1 p 2 = P ( H on Coin 2 Select

More information

Linear Models in Machine Learning

Linear Models in Machine Learning CS540 Intro to AI Linear Models in Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu We briefly go over two linear models frequently used in machine learning: linear regression for, well, regression,

More information

Machine Learning. Lecture 3: Logistic Regression. Feng Li.

Machine Learning. Lecture 3: Logistic Regression. Feng Li. Machine Learning Lecture 3: Logistic Regression Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2016 Logistic Regression Classification

More information

Chapter 20. Deep Generative Models

Chapter 20. Deep Generative Models Peng et al.: Deep Learning and Practice 1 Chapter 20 Deep Generative Models Peng et al.: Deep Learning and Practice 2 Generative Models Models that are able to Provide an estimate of the probability distribution

More information

Reading Group on Deep Learning Session 4 Unsupervised Neural Networks

Reading Group on Deep Learning Session 4 Unsupervised Neural Networks Reading Group on Deep Learning Session 4 Unsupervised Neural Networks Jakob Verbeek & Daan Wynen 206-09-22 Jakob Verbeek & Daan Wynen Unsupervised Neural Networks Outline Autoencoders Restricted) Boltzmann

More information

UNSUPERVISED LEARNING

UNSUPERVISED LEARNING UNSUPERVISED LEARNING Topics Layer-wise (unsupervised) pre-training Restricted Boltzmann Machines Auto-encoders LAYER-WISE (UNSUPERVISED) PRE-TRAINING Breakthrough in 2006 Layer-wise (unsupervised) pre-training

More information

Maximum Likelihood, Logistic Regression, and Stochastic Gradient Training

Maximum Likelihood, Logistic Regression, and Stochastic Gradient Training Maximum Likelihood, Logistic Regression, and Stochastic Gradient Training Charles Elkan elkan@cs.ucsd.edu January 17, 2013 1 Principle of maximum likelihood Consider a family of probability distributions

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

Regression with Numerical Optimization. Logistic

Regression with Numerical Optimization. Logistic CSG220 Machine Learning Fall 2008 Regression with Numerical Optimization. Logistic regression Regression with Numerical Optimization. Logistic regression based on a document by Andrew Ng October 3, 204

More information

Generative v. Discriminative classifiers Intuition

Generative v. Discriminative classifiers Intuition Logistic Regression Machine Learning 070/578 Carlos Guestrin Carnegie Mellon University September 24 th, 2007 Generative v. Discriminative classifiers Intuition Want to Learn: h:x a Y X features Y target

More information

Lecture 5: Logistic Regression. Neural Networks

Lecture 5: Logistic Regression. Neural Networks Lecture 5: Logistic Regression. Neural Networks Logistic regression Comparison with generative models Feed-forward neural networks Backpropagation Tricks for training neural networks COMP-652, Lecture

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

Restricted Boltzmann Machines for Collaborative Filtering

Restricted Boltzmann Machines for Collaborative Filtering Restricted Boltzmann Machines for Collaborative Filtering Authors: Ruslan Salakhutdinov Andriy Mnih Geoffrey Hinton Benjamin Schwehn Presentation by: Ioan Stanculescu 1 Overview The Netflix prize problem

More information

FALL 2018 MATH 4211/6211 Optimization Homework 4

FALL 2018 MATH 4211/6211 Optimization Homework 4 FALL 2018 MATH 4211/6211 Optimization Homework 4 This homework assignment is open to textbook, reference books, slides, and online resources, excluding any direct solution to the problem (such as solution

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 2, 2015 Today: Logistic regression Generative/Discriminative classifiers Readings: (see class website)

More information

Comments. x > w = w > x. Clarification: this course is about getting you to be able to think as a machine learning expert

Comments. x > w = w > x. Clarification: this course is about getting you to be able to think as a machine learning expert Logistic regression Comments Mini-review and feedback These are equivalent: x > w = w > x Clarification: this course is about getting you to be able to think as a machine learning expert There has to be

More information

Logistic Regression. Machine Learning Fall 2018

Logistic Regression. Machine Learning Fall 2018 Logistic Regression Machine Learning Fall 2018 1 Where are e? We have seen the folloing ideas Linear models Learning as loss minimization Bayesian learning criteria (MAP and MLE estimation) The Naïve Bayes

More information

Lecture 3 - Linear and Logistic Regression

Lecture 3 - Linear and Logistic Regression 3 - Linear and Logistic Regression-1 Machine Learning Course Lecture 3 - Linear and Logistic Regression Lecturer: Haim Permuter Scribe: Ziv Aharoni Throughout this lecture we talk about how to use regression

More information

Name: Student number:

Name: Student number: UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL 2018 EXAMINATIONS CSC321H1S Duration 3 hours No Aids Allowed Name: Student number: This is a closed-book test. It is marked out of 35 marks. Please

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2016 Julien Berestycki (University of Oxford) SB2a MT 2016 1 / 32 Lecture 14 : Variational Bayes

More information

x k+1 = x k + α k p k (13.1)

x k+1 = x k + α k p k (13.1) 13 Gradient Descent Methods Lab Objective: Iterative optimization methods choose a search direction and a step size at each iteration One simple choice for the search direction is the negative gradient,

More information

Naive Bayes and Gaussian Bayes Classifier

Naive Bayes and Gaussian Bayes Classifier Naive Bayes and Gaussian Bayes Classifier Ladislav Rampasek slides by Mengye Ren and others February 22, 2016 Naive Bayes and Gaussian Bayes Classifier February 22, 2016 1 / 21 Naive Bayes Bayes Rule:

More information

Neural Networks. William Cohen [pilfered from: Ziv; Geoff Hinton; Yoshua Bengio; Yann LeCun; Hongkak Lee - NIPs 2010 tutorial ]

Neural Networks. William Cohen [pilfered from: Ziv; Geoff Hinton; Yoshua Bengio; Yann LeCun; Hongkak Lee - NIPs 2010 tutorial ] Neural Networks William Cohen 10-601 [pilfered from: Ziv; Geoff Hinton; Yoshua Bengio; Yann LeCun; Hongkak Lee - NIPs 2010 tutorial ] WHAT ARE NEURAL NETWORKS? William s notation Logis;c regression + 1

More information

Introduction to gradient descent

Introduction to gradient descent 6-1: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction to gradient descent Derivation and intuitions Hessian 6-2: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction Our

More information

Speaker Representation and Verification Part II. by Vasileios Vasilakakis

Speaker Representation and Verification Part II. by Vasileios Vasilakakis Speaker Representation and Verification Part II by Vasileios Vasilakakis Outline -Approaches of Neural Networks in Speaker/Speech Recognition -Feed-Forward Neural Networks -Training with Back-propagation

More information

MCV172, HW#3. Oren Freifeld May 6, 2017

MCV172, HW#3. Oren Freifeld May 6, 2017 MCV72, HW#3 Oren Freifeld May 6, 207 Contents Gibbs Sampling in the Ising Model. Estimation: Comparisons with the Nearly-exact Values...... 2.2 Image Restoration.......................... 4 Gibbs Sampling

More information

Self Supervised Boosting

Self Supervised Boosting Self Supervised Boosting Max Welling, Richard S. Zemel, and Geoffrey E. Hinton Department of omputer Science University of Toronto 1 King s ollege Road Toronto, M5S 3G5 anada Abstract Boosting algorithms

More information

Autoencoders and Score Matching. Based Models. Kevin Swersky Marc Aurelio Ranzato David Buchman Benjamin M. Marlin Nando de Freitas

Autoencoders and Score Matching. Based Models. Kevin Swersky Marc Aurelio Ranzato David Buchman Benjamin M. Marlin Nando de Freitas On for Energy Based Models Kevin Swersky Marc Aurelio Ranzato David Buchman Benjamin M. Marlin Nando de Freitas Toronto Machine Learning Group Meeting, 2011 Motivation Models Learning Goal: Unsupervised

More information

Probabilistic Graphical Models for Image Analysis - Lecture 4

Probabilistic Graphical Models for Image Analysis - Lecture 4 Probabilistic Graphical Models for Image Analysis - Lecture 4 Stefan Bauer 12 October 2018 Max Planck ETH Center for Learning Systems Overview 1. Repetition 2. α-divergence 3. Variational Inference 4.

More information

Gaussian and Linear Discriminant Analysis; Multiclass Classification

Gaussian and Linear Discriminant Analysis; Multiclass Classification Gaussian and Linear Discriminant Analysis; Multiclass Classification Professor Ameet Talwalkar Slide Credit: Professor Fei Sha Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 13, 2015

More information

Week 5: Logistic Regression & Neural Networks

Week 5: Logistic Regression & Neural Networks Week 5: Logistic Regression & Neural Networks Instructor: Sergey Levine 1 Summary: Logistic Regression In the previous lecture, we covered logistic regression. To recap, logistic regression models and

More information

STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method.

STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method. STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method. Rebecca Barter May 5, 2015 Linear Regression Review Linear Regression Review

More information

Logistisk regression T.K.

Logistisk regression T.K. Föreläsning 13: Logistisk regression T.K. 05.12.2017 Your Learning Outcomes Odds, Odds Ratio, Logit function, Logistic function Logistic regression definition likelihood function: maximum likelihood estimate

More information

Expectation maximization tutorial

Expectation maximization tutorial Expectation maximization tutorial Octavian Ganea November 18, 2016 1/1 Today Expectation - maximization algorithm Topic modelling 2/1 ML & MAP Observed data: X = {x 1, x 2... x N } 3/1 ML & MAP Observed

More information

Machine Learning, Fall 2012 Homework 2

Machine Learning, Fall 2012 Homework 2 0-60 Machine Learning, Fall 202 Homework 2 Instructors: Tom Mitchell, Ziv Bar-Joseph TA in charge: Selen Uguroglu email: sugurogl@cs.cmu.edu SOLUTIONS Naive Bayes, 20 points Problem. Basic concepts, 0

More information

Linear Classification. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Linear Classification. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Linear Classification CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 Example of Linear Classification Red points: patterns belonging

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Expectation Maximization Mark Schmidt University of British Columbia Winter 2018 Last Time: Learning with MAR Values We discussed learning with missing at random values in data:

More information

Deep Learning Basics Lecture 8: Autoencoder & DBM. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 8: Autoencoder & DBM. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 8: Autoencoder & DBM Princeton University COS 495 Instructor: Yingyu Liang Autoencoder Autoencoder Neural networks trained to attempt to copy its input to its output Contain

More information

Machine Learning. 7. Logistic and Linear Regression

Machine Learning. 7. Logistic and Linear Regression Sapienza University of Rome, Italy - Machine Learning (27/28) University of Rome La Sapienza Master in Artificial Intelligence and Robotics Machine Learning 7. Logistic and Linear Regression Luca Iocchi,

More information

Mark Gales October y (x) x 1. x 2 y (x) Inputs. Outputs. x d. y (x) Second Output layer layer. layer.

Mark Gales October y (x) x 1. x 2 y (x) Inputs. Outputs. x d. y (x) Second Output layer layer. layer. University of Cambridge Engineering Part IIB & EIST Part II Paper I0: Advanced Pattern Processing Handouts 4 & 5: Multi-Layer Perceptron: Introduction and Training x y (x) Inputs x 2 y (x) 2 Outputs x

More information

Introduction to Logistic Regression and Support Vector Machine

Introduction to Logistic Regression and Support Vector Machine Introduction to Logistic Regression and Support Vector Machine guest lecturer: Ming-Wei Chang CS 446 Fall, 2009 () / 25 Fall, 2009 / 25 Before we start () 2 / 25 Fall, 2009 2 / 25 Before we start Feel

More information

Large-Scale Feature Learning with Spike-and-Slab Sparse Coding

Large-Scale Feature Learning with Spike-and-Slab Sparse Coding Large-Scale Feature Learning with Spike-and-Slab Sparse Coding Ian J. Goodfellow, Aaron Courville, Yoshua Bengio ICML 2012 Presented by Xin Yuan January 17, 2013 1 Outline Contributions Spike-and-Slab

More information

Computational statistics

Computational statistics Computational statistics Lecture 3: Neural networks Thierry Denœux 5 March, 2016 Neural networks A class of learning methods that was developed separately in different fields statistics and artificial

More information

Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016

Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016 Ph.D. Qualifying Exam Monday Tuesday, January 4 5, 2016 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Find the maximum likelihood estimate of θ where θ is a parameter

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 2. Statistical Schools Adapted from slides by Ben Rubinstein Statistical Schools of Thought Remainder of lecture is to provide

More information

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Probabilistic classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Topics Probabilistic approach Bayes decision theory Generative models Gaussian Bayes classifier

More information