Adiabatic quantum computation a tutorial for computer scientists

Size: px
Start display at page:

Download "Adiabatic quantum computation a tutorial for computer scientists"

Transcription

1 Adiabatic quantum computation a tutorial for computer scientists Itay Hen Dept. of Physics, UCSC Advanced Machine Learning class UCSC June 6 th 2012

2 Outline introduction I: what is a quantum computer? introduction II: motivation for adiabatic quantum computing adiabatic quantum computing simulating adiabatic quantum computers future of adiabatic computing [AQC and machine learning(?)]

3 What is a Quantum Computer?

4 What is a quantum computer? computer input state computation output state both classical and quantum computers may be viewed as machines that perform computations on given inputs and produce outputs. Both inputs and outputs are strings of bits (0 s and 1 s). classical computers are based on manipulations of bits. at any given time the system is in a unique classical configuration (i.e., in a state that is a sequence of 0 s and 1 s).

5 What is a quantum computer? computer input state computation a classical algorithm (circuit) looks like this: output state input state computation output state at any given time the system is in a unique classical configuration (i.e., in a state that is a sequence of 0 s and 1 s).

6 What is a quantum computer? computer input state computation output state quantum computers on the other hand manipulate objects called quantum bits or qubits for short.

7 What is a quantum computer? computer input state computation output state quantum computers on the other hand manipulate objects called quantum bits or qubits for short. what are qubits?

8 What are qubits? a qubit is a generalization on the concept of bit. motivation / idea behind it: small particles, say electrons, obey different laws than big objects (such as, say, billiard balls). small particles obey the laws of Quantum Physics. big objects are classical entities they obey the laws of Classical Physics. (however, big objects are collections of small particles!) most notably: a quantum particle can be in a superposition of several classical configurations. classical world I m here or I m there quantum world I m here and I m there

9 What are qubits? while a bit can be either in the a 0 state or a 1 state (this is Dirac s ket notation). a qubit can be in a superposition of these two states, e.g., φ = imagine 0 and a 1 as being two orthogonal basis vectors. while a classical bit is either of the two, a qubit can be an arbitrary (yet normalized) linear combination of the two. in order to access the information stored in a qubit one must perform a measurement that collapses the qubit. extremely nonintuitive. important: only 1 bit of information is stored in a qubit.

10 What are qubits? take for example a system of 3 bits. Classically, we have 2 3 = 8 possible classical configurations : 000, 001, 010, 011, 100, 101, 110, 111, the corresponding quantum state of a 3-qubit system would be: 7 φ = i=0 this is a (normalized) 8-component vector over the complex numbers (8 complex coefficients). i enumerates the 8 classical configurations listed above. c i i

11 Encoding optimization problems suppose that we are given a function and are asked to find its minimum and the corresponding minimizing configuration. this is the same as having the diagonal matrix: f: {0,1} 3 R F = and asking which is the smallest eigenvalue (minimum of f ) and corresponding eigenvector (minimizing configuration). here, the basis vectors e i correspond to i and the elements on the diagonal are the evaluation of f on them.

12 Encoding optimization problems in matrix-form we can generalize classical optimization problems to quantum optimization problems by adding off-diagonal elements to the matrix. we still look for the smallest eigen-pair, i.e., min φ φ F φ = min φ φ t Fφ but problem now is much harder. (this is Dirac s bra notation). in quantum mechanics, the minimal (eigen)vector is called the ground state of the system and the corresponding minimal (eigen)value is called the ground state energy. also, the matrix F is called the Hamiltonian (usually denoted by H). quantum mechanics is just linear algebra in disguise.

13 What is a quantum computer? computer input state computation output state quantum computers manipulate quantum bits or qubits for short. a quantum algorithm (circuit) may look like this: input state computation output state

14 What is a quantum computer? computer input state computation space of possible quantum states is huge. output state range of operations on qubits is huge. capabilities are greater (name dropping: superposition, entanglement, tunneling, interference ). can solve problems faster. only problem with quantum computers: they do not exist! theory is very advanced but many technological unresolved challenges.

15 Motivation for adiabatic quantum computing

16 Motivation clearly, a quantum computer is a generalization of a classical computer in what ways quantum computers are more efficient than classical computers? what problems could be solved more efficiently on a quantum computer? these are two of the most basic and important questions in the field of quantum information/computation.

17 Motivation in what ways quantum computers are more efficient than classical computers? what problems could be solved more efficiently on a quantum computer? best-known examples are: Shor s algorithm for integer factorization. Solves the problem in polynomial time (exponential speedup). current quantum computers can factor all integers up to 21. Grover's algorithm is a quantum algorithm for searching an unsorted database with N entries in O N 1/2 time (quadratic speedup). importance is huge (cryptanalysis, etc.).

18 Motivation what other problems can quantum computers solve? people are considering hard satisfiability (SAT) and other optimization problems which are at least NP-complete. these are hard to solve classically; time needed is exponential in the input (exponential complexity). could a quantum computer solve these problems in an efficient manner? perhaps even in polynomial time? Adiabatic Quantum Computing is a general approach to solve a broad range of hard optimization problems using a quantum computer [Farhi et al.,2001]

19 Adiabatic quantum computation

20 The nature of physical systems adiabatic quantum computation is different that circuit-based computation (there are still other models of computation). adiabatic quantum computation is analog in nature (as opposed to 0/1 digital circuits). it is based on the fact that the state of a system will tend to reach a minimum configuration. this is the principle of least action.

21 Analog classical optimization we are given a landscape f(x) for which we need to find the minimum configuration, i.e., the stable state of the ball. if energy landscape is simple : the ball will eventually end up at the bottom of the hill. f x

22 Analog classical optimization we are given a landscape f(x) for which we need to find the minimum configuration, i.e., the stable state of the ball. if energy landscape is jagged : ball will eventually end up in a minimum but is likely to end up in a local minimum. this is no good. f x

23 Analog classical optimization we are given a landscape f(x) for which we need to find the minimum configuration, i.e., the stable state of the ball. if energy landscape is jagged : ball will eventually end up in a minimum but is likely to end up in a local minimum. this is no good. f probability of jumping over the barrier is exponentially small in the height of the barrier. x ball is unlikely to end up in the true minimum.

24 Analog quantum optimization we are given a landscape f(x) for which we need to find the minimum configuration, i.e., the stable state of the ball. if energy landscape is jagged : ball will eventually end up in a minimum but is likely to end up in a local minimum. this is no good. f quantum mechanically, the ball can tunnel through thin but high barriers! x sometimes more likely to end up in the true minimum. tunneling is a key feature of quantum mechanics.

25 The adiabatic theorem of QM the adiabatic theorem of QM tells us that a physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum.

26 The adiabatic theorem of QM the adiabatic theorem of QM tells us that a physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum.??

27 The adiabatic theorem of QM the adiabatic theorem of QM tells us that a physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum. rephrasing: if the ball is at the minimum (ground state) of some function (Hamiltonian), and the function is changes slowly enough, ball will stay close to the instantaneous global minimum throughout the evolution. here, initial function is easy to find the minimum of. final function is much harder. take advantage of adiabatic evolution to solve the problem!

28 The adiabatic theorem of QM the adiabatic theorem of QM tells us that a physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum. real QM example: change the strength of a harmonic potential of a system in the ground state: harmonic potential ψ(x, t) 2

29 The adiabatic theorem of QM the adiabatic theorem of QM tells us that a physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum. real QM example: change the strength of a harmonic potential of a system in the ground state: an abrupt change (a diabatic process): harmonic potential ψ(x, t) 2

30 The adiabatic theorem of QM the adiabatic theorem of QM tells us that a physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum. real QM example: change the strength of a harmonic potential of a system in the ground state: a gradual slow change (an adiabatic process): wave function can keep up with the change. harmonic potential ψ(x, t) 2

31 The quantum adiabatic algorithm (QAA) the mechanism proposed by Farhi et al., the QAA: 1. take a difficult (classical) optimization problem. 2. encode its solution in the ground state of a quantum problem Hamiltonian H p. 3. prepare the system in the ground state of another easily solvable driver Hamiltonian H d. H p, H d vary the Hamiltonian slowly and smoothly from H d to H p until ground state of H p is reached.

32 The quantum adiabatic algorithm (QAA) the interpolating Hamiltonian is this: H(t) = s(t)h p + 1 s(t) H d H p is the problem Hamiltonian whose ground state encodes the solution of the optimization problem H d is an easily solvable driver Hamiltonian, which does not commute with H p the parameter s obeys 0 s t 1, with s 0 = 0 and s T = 1. also: H 0 = H d and H T = H p. here, t stands for time and T is the running time, or complexity, of the algorithm.

33 The quantum adiabatic algorithm (QAA) the interpolating Hamiltonian is this: H(t) = s(t)h p + 1 s(t) H d the adiabatic theorem ensures that if the change in s t is made slowly enough, the system will stay close to the ground state of the instantaneous Hamiltonian throughout the evolution. one finally obtains a state close to the ground state of H p. measuring the state will give the solution of the original problem with high probability. how fast can the process be?

34 Quantum phase transition bottleneck is likely to be something called a Quantum Phase Transition happens when the energy differenece between the ground state and the first excited state (i.e., the gap) is small. there, the probability to get off track is maximal. gap E 1 a schematic picture of the gap to the first excited state as a function of the adiabatic parameter s. 0 QPT 1 s H = H d H = H p

35 Quantum phase transition Landau-Zener theory tells us that to stay in the ground state the running time needed is: T 1 2 ΔE min exponentially closing gap (as a function of problem size N) exponentially long running time exponential complexity.

36 Quantum phase transition Landau-Zener theory tells us that to stay in the ground state the running time needed is: T 1 2 ΔE min exponentially closing gap (as a function of problem size N) exponentially long running time exponential complexity. a two-level avoided crossing system remains in its instantaneous ground state

37 The quantum adiabatic algorithm most interesting unknown about QAA to date: could the QAA solve in polynomial time hard (NP-complete) problems? or for which hard problems is T polynomial in N?

38 Simulating Adiabatic Quantum Computers

39 Exact diagonalization quantum computers are currently unavailable. how does one study quantum computers? quantum systems are huge matrices. sizes of matrices for n qubits: N = 2 n. one method: diagonalization of the matrices. however, takes a lot of time and resources to do so. can t go beyond ~25 qubits. another method: Quantum Monte Carlo.

40 Quantum Monte Carlo methods quantum Monte Carlo (QMC) is a generic name for classical algorithms designed to study quantum systems (in equilibrium) on a classical computer by simulating them. in quantum Monte Carlo, one only samples the exponential number of configurations, where configurations with less energy are given more weight and are sampled more often. this is usually a stochastic Markov process (a Markovian chain). there are statistical errors. not all quantum physical systems can be simulated (sign problem). quantum systems have an additional extra dimension (called imaginary time and is periodic). for example a 3D classical system is similar to 2D quantum systems (with notable exceptions).

41 Method main goal: determine the complexity of the QAA for the various optimization problems study the dependence of the typical minimum gap ΔE min = min ΔE s 0,1 on the size (number of bits) of the problem. this is because: T 1 2 ΔE min polynomial dependence polynomial complexity!

42 Future of adiabatic Quantum Computing

43 Future of adiabatic QC so far, there is no clear-cut example for a problem that is solved efficiently using adiabatic quantum computation (still looking though). the first quantum adiabatic computer (quantum annealer) has been built. ~128 qubits. built by D-Wave (Vancouver). one piece has been sold to USC / Lockheed-Martin (~1M$). a strong candidate for future quantum computers. there are however a lot of technological challenges. people are looking for other possible uses for it.

44 Adiabatic QC and Machine Learning one of many possible avenues of research is Machine Learning. people are starting to look into it. supervised and unsupervised machine learning. could work if problem can be cast in the form of an optimization problem. Hartmut Neven s blog:

45 Adiabatic quantum computation a tutorial for computer scientists Itay Hen Dept. of Physics, UCSC Advanced Machine Learning class UCSC June 6 th 2012

Mind the gap Solving optimization problems with a quantum computer

Mind the gap Solving optimization problems with a quantum computer Mind the gap Solving optimization problems with a quantum computer A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at Saarbrücken University, November 5, 2012 Collaborators: I. Hen, E.

More information

Mind the gap Solving optimization problems with a quantum computer

Mind the gap Solving optimization problems with a quantum computer Mind the gap Solving optimization problems with a quantum computer A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at the London Centre for Nanotechnology, October 17, 2012 Collaborators:

More information

Numerical Studies of the Quantum Adiabatic Algorithm

Numerical Studies of the Quantum Adiabatic Algorithm Numerical Studies of the Quantum Adiabatic Algorithm A.P. Young Work supported by Colloquium at Universität Leipzig, November 4, 2014 Collaborators: I. Hen, M. Wittmann, E. Farhi, P. Shor, D. Gosset, A.

More information

Mind the gap Solving optimization problems with a quantum computer

Mind the gap Solving optimization problems with a quantum computer Mind the gap Solving optimization problems with a quantum computer A.P. Young http://physics.ucsc.edu/~peter Work supported by NASA future technologies conference, January 17-212, 2012 Collaborators: Itay

More information

Power of Adiabatic Quantum Computation

Power of Adiabatic Quantum Computation Power of Adiabatic Quantum Computation Itay Hen Information Sciences Institute, USC Physics Colloquium, USC February 10, 2014 arxiv preprints: 1207.1712, 1301.4956, 1307.6538, 1401.5172 Motivation in what

More information

Numerical Studies of Adiabatic Quantum Computation applied to Optimization and Graph Isomorphism

Numerical Studies of Adiabatic Quantum Computation applied to Optimization and Graph Isomorphism Numerical Studies of Adiabatic Quantum Computation applied to Optimization and Graph Isomorphism A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at AQC 2013, March 8, 2013 Collaborators:

More information

Complexity of the quantum adiabatic algorithm

Complexity of the quantum adiabatic algorithm Complexity of the quantum adiabatic algorithm Peter Young e-mail:peter@physics.ucsc.edu Collaborators: S. Knysh and V. N. Smelyanskiy Colloquium at Princeton, September 24, 2009 p.1 Introduction What is

More information

The Quantum Adiabatic Algorithm

The Quantum Adiabatic Algorithm The Quantum Adiabatic Algorithm A.P. Young http://physics.ucsc.edu/~peter Work supported by Talk at SMQS-IP2011, Jülich, October 18, 2011 The Quantum Adiabatic Algorithm A.P. Young http://physics.ucsc.edu/~peter

More information

Quantum Mechanics & Quantum Computation

Quantum Mechanics & Quantum Computation Quantum Mechanics & Quantum Computation Umesh V. Vazirani University of California, Berkeley Lecture 16: Adiabatic Quantum Optimization Intro http://www.scottaaronson.com/blog/?p=1400 Testing a quantum

More information

Introduction to Adiabatic Quantum Computation

Introduction to Adiabatic Quantum Computation Introduction to Adiabatic Quantum Computation Vicky Choi Department of Computer Science Virginia Tech April 6, 2 Outline Motivation: Maximum Independent Set(MIS) Problem vs Ising Problem 2 Basics: Quantum

More information

Overview of adiabatic quantum computation. Andrew Childs

Overview of adiabatic quantum computation. Andrew Childs Overview of adiabatic quantum computation Andrew Childs Adiabatic optimization Quantum adiabatic optimization is a class of procedures for solving optimization problems using a quantum computer. Basic

More information

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University PY502, Computational Physics, December 12, 2017 Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Advancing Research in Basic Science and Mathematics Example:

More information

Quantum Mechanics & Quantum Computation

Quantum Mechanics & Quantum Computation Quantum Mechanics & Quantum Computation Umesh V. Vazirani University of California, Berkeley Lecture 14: Quantum Complexity Theory Limits of quantum computers Quantum speedups for NP-Complete Problems?

More information

Some Introductory Notes on Quantum Computing

Some Introductory Notes on Quantum Computing Some Introductory Notes on Quantum Computing Markus G. Kuhn http://www.cl.cam.ac.uk/~mgk25/ Computer Laboratory University of Cambridge 2000-04-07 1 Quantum Computing Notation Quantum Computing is best

More information

Lecture 26, Tues April 25: Performance of the Adiabatic Algorithm

Lecture 26, Tues April 25: Performance of the Adiabatic Algorithm Lecture 26, Tues April 25: Performance of the Adiabatic Algorithm At the end of the last lecture, we saw that the following problem is NP -hard: Given as input an n -qubit Hamiltonian H of the special

More information

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University NATIONAL TAIWAN UNIVERSITY, COLLOQUIUM, MARCH 10, 2015 Quantum and classical annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Cheng-Wei Liu (BU) Anatoli Polkovnikov (BU)

More information

Quantum-Classical Hybrid Monte Carlo Algorithm with Applications to AQC

Quantum-Classical Hybrid Monte Carlo Algorithm with Applications to AQC Quantum-Classical Hybrid Monte Carlo Algorithm with Applications to AQC Itay Hen Information Sciences Institute, USC Workshop on Theory and Practice of AQC and Quantum Simulation Trieste, Italy August

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 1: Quantum circuits and the abelian QFT

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 1: Quantum circuits and the abelian QFT Quantum algorithms (CO 78, Winter 008) Prof. Andrew Childs, University of Waterloo LECTURE : Quantum circuits and the abelian QFT This is a course on quantum algorithms. It is intended for graduate students

More information

Adiabatic Quantum Computation An alternative approach to a quantum computer

Adiabatic Quantum Computation An alternative approach to a quantum computer An alternative approach to a quantum computer ETH Zürich May 2. 2014 Table of Contents 1 Introduction 2 3 4 Literature: Introduction E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda

More information

Short Course in Quantum Information Lecture 2

Short Course in Quantum Information Lecture 2 Short Course in Quantum Information Lecture Formal Structure of Quantum Mechanics Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

Quantum Complexity Theory and Adiabatic Computation

Quantum Complexity Theory and Adiabatic Computation Chapter 9 Quantum Complexity Theory and Adiabatic Computation 9.1 Defining Quantum Complexity We are familiar with complexity theory in classical computer science: how quickly can a computer (or Turing

More information

The Future. Currently state of the art chips have gates of length 35 nanometers.

The Future. Currently state of the art chips have gates of length 35 nanometers. Quantum Computing Moore s Law The Future Currently state of the art chips have gates of length 35 nanometers. The Future Currently state of the art chips have gates of length 35 nanometers. When gate lengths

More information

arxiv: v1 [quant-ph] 28 Jan 2014

arxiv: v1 [quant-ph] 28 Jan 2014 Different Strategies for Optimization Using the Quantum Adiabatic Algorithm Elizabeth Crosson,, 2 Edward Farhi, Cedric Yen-Yu Lin, Han-Hsuan Lin, and Peter Shor, 3 Center for Theoretical Physics, Massachusetts

More information

Reversible and Quantum computing. Fisica dell Energia - a.a. 2015/2016

Reversible and Quantum computing. Fisica dell Energia - a.a. 2015/2016 Reversible and Quantum computing Fisica dell Energia - a.a. 2015/2016 Reversible computing A process is said to be logically reversible if the transition function that maps old computational states to

More information

Quantum Effect or HPC without FLOPS. Lugano March 23, 2016

Quantum Effect or HPC without FLOPS. Lugano March 23, 2016 Quantum Effect or HPC without FLOPS Lugano March 23, 2016 Electronics April 19, 1965 2016 D-Wave Systems Inc. All Rights Reserved 2 Moore s Law 2016 D-Wave Systems Inc. All Rights Reserved 3 www.economist.com/technology-quarterly/2016-03-12/aftermoores-law

More information

Quantum search by local adiabatic evolution

Quantum search by local adiabatic evolution PHYSICAL REVIEW A, VOLUME 65, 042308 Quantum search by local adiabatic evolution Jérémie Roland 1 and Nicolas J. Cerf 1,2 1 Ecole Polytechnique, CP 165, Université Libre de Bruxelles, 1050 Brussels, Belgium

More information

Implementing Competitive Learning in a Quantum System

Implementing Competitive Learning in a Quantum System Implementing Competitive Learning in a Quantum System Dan Ventura fonix corporation dventura@fonix.com http://axon.cs.byu.edu/dan Abstract Ideas from quantum computation are applied to the field of neural

More information

How Powerful is Adiabatic Quantum Computation?

How Powerful is Adiabatic Quantum Computation? How Powerful is Adiabatic Quantum Computation? Wim van Dam Michele Mosca Umesh Vazirani Abstract We analyze the computational power limitations of the recently proposed quantum adiabatic evolution algorithm

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Part I Emma Strubell http://cs.umaine.edu/~ema/quantum_tutorial.pdf April 12, 2011 Overview Outline What is quantum computing? Background Caveats Fundamental differences

More information

Anatoli Polkovnikov Boston University

Anatoli Polkovnikov Boston University Anatoli Polkovnikov Boston University L. D Alessio BU M. Bukov BU C. De Grandi Yale V. Gritsev Amsterdam M. Kolodrubetz Berkeley C.-W. Liu BU P. Mehta BU M. Tomka BU D. Sels BU A. Sandvik BU T. Souza BU

More information

arxiv: v4 [quant-ph] 7 Dec 2016

arxiv: v4 [quant-ph] 7 Dec 2016 1 Notes on Adiabatic Quantum Computers arxiv:1512.07617v4 [quant-ph] 7 Dec 2016 Boaz Tamir 1, Eliahu Cohen 2 1 Faculty of Interdisciplinary Studies, Bar-Ilan University, Ramat-Gan, Israel 2 H.H. Wills

More information

arxiv: v1 [quant-ph] 16 Aug 2017

arxiv: v1 [quant-ph] 16 Aug 2017 Noname manuscript No. (will be inserted by the editor) Combinatorial Optimization on Gate Model Quantum Computers: A Survey Ehsan Zahedinejad Arman Zaribafiyan arxiv:1708.05294v1 [quant-ph] 16 Aug 2017

More information

Harmonic Oscillator I

Harmonic Oscillator I Physics 34 Lecture 7 Harmonic Oscillator I Lecture 7 Physics 34 Quantum Mechanics I Monday, February th, 008 We can manipulate operators, to a certain extent, as we would algebraic expressions. By considering

More information

Quantum Computing. Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September :00am PST, Teleplace

Quantum Computing. Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September :00am PST, Teleplace Quantum Computing Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September 2010 10:00am PST, Teleplace The Hope All computing is constrained by the laws of Physics and

More information

Quantum Computing. Richard Jozsa Centre for Quantum Information and Foundations DAMTP University of Cambridge

Quantum Computing. Richard Jozsa Centre for Quantum Information and Foundations DAMTP University of Cambridge Quantum Computing Richard Jozsa Centre for Quantum Information and Foundations DAMTP University of Cambridge Physics and Computation A key question: what is computation....fundamentally? What makes it

More information

Quantum Computing 101. ( Everything you wanted to know about quantum computers but were afraid to ask. )

Quantum Computing 101. ( Everything you wanted to know about quantum computers but were afraid to ask. ) Quantum Computing 101 ( Everything you wanted to know about quantum computers but were afraid to ask. ) Copyright Chris Lomont, 2004 2 67 1 = 193707721 761838257287 Took American Mathematician Frank Nelson

More information

1 Bernstein-Vazirani Algorithm

1 Bernstein-Vazirani Algorithm CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Yongshan Ding, Pranav Gokhale Scribe: Shankar G. Menon Lecture 08: More on Algorithms November 1, 018 1 Bernstein-Vazirani Algorithm

More information

- Why aren t there more quantum algorithms? - Quantum Programming Languages. By : Amanda Cieslak and Ahmana Tarin

- Why aren t there more quantum algorithms? - Quantum Programming Languages. By : Amanda Cieslak and Ahmana Tarin - Why aren t there more quantum algorithms? - Quantum Programming Languages By : Amanda Cieslak and Ahmana Tarin Why aren t there more quantum algorithms? there are only a few problems for which quantum

More information

Quantum Computers. Peter Shor MIT

Quantum Computers. Peter Shor MIT Quantum Computers Peter Shor MIT 1 What is the difference between a computer and a physics experiment? 2 One answer: A computer answers mathematical questions. A physics experiment answers physical questions.

More information

CS 126 Lecture T6: NP-Completeness

CS 126 Lecture T6: NP-Completeness CS 126 Lecture T6: NP-Completeness Outline Introduction: polynomial vs. exponential time P vs. NP: the holy grail NP-Completeness: Cook s Theorem NP-Completeness: Reduction Conclusions CS126 19-1 Randy

More information

Exponential algorithmic speedup by quantum walk

Exponential algorithmic speedup by quantum walk Exponential algorithmic speedup by quantum walk Andrew Childs MIT Center for Theoretical Physics joint work with Richard Cleve Enrico Deotto Eddie Farhi Sam Gutmann Dan Spielman quant-ph/0209131 Motivation

More information

Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum Computing University of Waterloo

Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum Computing University of Waterloo CS 497 Frontiers of Computer Science Introduction to Quantum Computing Lecture of http://www.cs.uwaterloo.ca/~cleve/cs497-f7 Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum

More information

Exploring reverse annealing as a tool for hybrid quantum/classical computing

Exploring reverse annealing as a tool for hybrid quantum/classical computing Exploring reverse annealing as a tool for hybrid quantum/classical computing University of Zagreb QuantiXLie Seminar Nicholas Chancellor October 12, 2018 Talk structure 1. Background Quantum computing:

More information

Introduction into Quantum Computations Alexei Ashikhmin Bell Labs

Introduction into Quantum Computations Alexei Ashikhmin Bell Labs Introduction into Quantum Computations Alexei Ashikhmin Bell Labs Workshop on Quantum Computing and its Application March 16, 2017 Qubits Unitary transformations Quantum Circuits Quantum Measurements Quantum

More information

Quantum NP - Cont. Classical and Quantum Computation A.Yu Kitaev, A. Shen, M. N. Vyalyi 2002

Quantum NP - Cont. Classical and Quantum Computation A.Yu Kitaev, A. Shen, M. N. Vyalyi 2002 Quantum NP - Cont. Classical and Quantum Computation A.Yu Kitaev, A. Shen, M. N. Vyalyi 2002 1 QMA - the quantum analog to MA (and NP). Definition 1 QMA. The complexity class QMA is the class of all languages

More information

COMPARATIVE ANALYSIS ON TURING MACHINE AND QUANTUM TURING MACHINE

COMPARATIVE ANALYSIS ON TURING MACHINE AND QUANTUM TURING MACHINE Volume 3, No. 5, May 2012 Journal of Global Research in Computer Science REVIEW ARTICLE Available Online at www.jgrcs.info COMPARATIVE ANALYSIS ON TURING MACHINE AND QUANTUM TURING MACHINE Tirtharaj Dash

More information

Quantum computing. Jan Černý, FIT, Czech Technical University in Prague. České vysoké učení technické v Praze. Fakulta informačních technologií

Quantum computing. Jan Černý, FIT, Czech Technical University in Prague. České vysoké učení technické v Praze. Fakulta informačních technologií České vysoké učení technické v Praze Fakulta informačních technologií Katedra teoretické informatiky Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-MVI Methods of Computational Intelligence(2010/2011)

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Part II Emma Strubell http://cs.umaine.edu/~ema/quantum_tutorial.pdf April 13, 2011 Overview Outline Grover s Algorithm Quantum search A worked example Simon s algorithm

More information

Quantum Computers. Todd A. Brun Communication Sciences Institute USC

Quantum Computers. Todd A. Brun Communication Sciences Institute USC Quantum Computers Todd A. Brun Communication Sciences Institute USC Quantum computers are in the news Quantum computers represent a new paradigm for computing devices: computers whose components are individual

More information

arxiv: v2 [quant-ph] 18 Apr 2012

arxiv: v2 [quant-ph] 18 Apr 2012 A Near-Term Quantum Computing Approach for Hard Computational Problems in Space Exploration Vadim N. Smelyanskiy, Eleanor G. Rieffel, and Sergey I. Knysh NASA Ames Research Center, Mail Stop 269-3, Moffett

More information

Prime Factorization by Quantum Adiabatic Computation

Prime Factorization by Quantum Adiabatic Computation Prime Factorization by Quantum Adiabatic Computation Daniel Eppens Department of Theoretical Physics, School of Engineering Sciences Royal Institute of Technology, SE-16 91 Stockholm, Sweden Stockholm,

More information

+E v(t) H(t) = v(t) E where v(t) is real and where v 0 for t ±.

+E v(t) H(t) = v(t) E where v(t) is real and where v 0 for t ±. . Brick in a Square Well REMEMBER: THIS PROBLEM AND THOSE BELOW SHOULD NOT BE HANDED IN. THEY WILL NOT BE GRADED. THEY ARE INTENDED AS A STUDY GUIDE TO HELP YOU UNDERSTAND TIME DEPENDENT PERTURBATION THEORY

More information

Secrets of Quantum Information Science

Secrets of Quantum Information Science Secrets of Quantum Information Science Todd A. Brun Communication Sciences Institute USC Quantum computers are in the news Quantum computers represent a new paradigm for computing devices: computers whose

More information

Statistics and Quantum Computing

Statistics and Quantum Computing Statistics and Quantum Computing Yazhen Wang Department of Statistics University of Wisconsin-Madison http://www.stat.wisc.edu/ yzwang Workshop on Quantum Computing and Its Application George Washington

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing The lecture notes were prepared according to Peter Shor s papers Quantum Computing and Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a

More information

Lecture: Local Spectral Methods (1 of 4)

Lecture: Local Spectral Methods (1 of 4) Stat260/CS294: Spectral Graph Methods Lecture 18-03/31/2015 Lecture: Local Spectral Methods (1 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Symbolical artificial intelligence is a field of computer science that is highly related to quantum computation. At first glance, this statement appears to be a contradiction. However,

More information

Quantum walk algorithms

Quantum walk algorithms Quantum walk algorithms Andrew Childs Institute for Quantum Computing University of Waterloo 28 September 2011 Randomized algorithms Randomness is an important tool in computer science Black-box problems

More information

Discrete quantum random walks

Discrete quantum random walks Quantum Information and Computation: Report Edin Husić edin.husic@ens-lyon.fr Discrete quantum random walks Abstract In this report, we present the ideas behind the notion of quantum random walks. We further

More information

Dimensionality Reduction

Dimensionality Reduction Dimensionality Reduction Le Song Machine Learning I CSE 674, Fall 23 Unsupervised learning Learning from raw (unlabeled, unannotated, etc) data, as opposed to supervised data where a classification of

More information

What to do with a small quantum computer? Aram Harrow (MIT Physics)

What to do with a small quantum computer? Aram Harrow (MIT Physics) What to do with a small quantum computer? Aram Harrow (MIT Physics) IPAM Dec 6, 2016 simulating quantum mechanics is hard! DOE (INCITE) supercomputer time by category 15% 14% 14% 14% 12% 10% 10% 9% 2%

More information

Lecture 2: From Classical to Quantum Model of Computation

Lecture 2: From Classical to Quantum Model of Computation CS 880: Quantum Information Processing 9/7/10 Lecture : From Classical to Quantum Model of Computation Instructor: Dieter van Melkebeek Scribe: Tyson Williams Last class we introduced two models for deterministic

More information

INTRODUCTION TO QUANTUM COMPUTING

INTRODUCTION TO QUANTUM COMPUTING INTRODUCTION TO QUANTUM COMPUTING Writen by: Eleanor Rieffel and Wolfgang Polak Presented by: Anthony Luaders OUTLINE: Introduction Notation Experiment Quantum Bit Quantum Key Distribution Multiple Qubits

More information

Quantum Computing Lecture 8. Quantum Automata and Complexity

Quantum Computing Lecture 8. Quantum Automata and Complexity Quantum Computing Lecture 8 Quantum Automata and Complexity Maris Ozols Computational models and complexity Shor s algorithm solves, in polynomial time, a problem for which no classical polynomial time

More information

A Simple Model of Quantum Trajectories. Todd A. Brun University of Southern California

A Simple Model of Quantum Trajectories. Todd A. Brun University of Southern California A Simple Model of Quantum Trajectories Todd A. Brun University of Southern California Outline 1. Review projective and generalized measurements. 2. A simple model of indirect measurement. 3. Weak measurements--jump-like

More information

2. Introduction to quantum mechanics

2. Introduction to quantum mechanics 2. Introduction to quantum mechanics 2.1 Linear algebra Dirac notation Complex conjugate Vector/ket Dual vector/bra Inner product/bracket Tensor product Complex conj. matrix Transpose of matrix Hermitian

More information

Open quantum systems

Open quantum systems Chapter 4 Open quantum systems 4. Quantum operations Let s go back for a second to the basic postulates of quantum mechanics. Recall that when we first establish the theory, we begin by postulating that

More information

arxiv: v1 [cond-mat.stat-mech] 25 Aug 2014

arxiv: v1 [cond-mat.stat-mech] 25 Aug 2014 EPJ manuscript No. (will be inserted by the editor) Quantum Annealing - Foundations and Frontiers arxiv:1408.5784v1 [cond-mat.stat-mech] 25 Aug 2014 Eliahu Cohen 1,a and Boaz Tamir 2 1 School of Physics

More information

Physics 215 Quantum Mechanics 1 Assignment 1

Physics 215 Quantum Mechanics 1 Assignment 1 Physics 5 Quantum Mechanics Assignment Logan A. Morrison January 9, 06 Problem Prove via the dual correspondence definition that the hermitian conjugate of α β is β α. By definition, the hermitian conjugate

More information

Determining a local Hamiltonian from a single eigenstate

Determining a local Hamiltonian from a single eigenstate Determining a local Hamiltonian from a single eigenstate Xiao-Liang Qi 1,2 and Daniel Ranard 1 arxiv:1712.01850v1 [quant-ph] 5 Dec 2017 1 Stanford Institute for Theoretical Physics, Stanford University,

More information

INTRODUCTORY NOTES ON QUANTUM COMPUTATION

INTRODUCTORY NOTES ON QUANTUM COMPUTATION INTRODUCTORY NOTES ON QUANTUM COMPUTATION Keith Hannabuss Balliol College, Oxford Hilary Term 2009 Notation. In these notes we shall often use the physicists bra-ket notation, writing ψ for a vector ψ

More information

The computational difficulty of finding MPS ground states

The computational difficulty of finding MPS ground states The computational difficulty of finding MPS ground states Norbert Schuch 1, Ignacio Cirac 1, and Frank Verstraete 2 1 Max-Planck-Institute for Quantum Optics, Garching, Germany 2 University of Vienna,

More information

A Review of Perturbation Theory

A Review of Perturbation Theory A Review of Perturbation Theory April 17, 2002 Most quantum mechanics problems are not solvable in closed form with analytical techniques. To extend our repetoire beyond just particle-in-a-box, a number

More information

Errata list, Nielsen & Chuang. rrata/errata.html

Errata list, Nielsen & Chuang.  rrata/errata.html Errata list, Nielsen & Chuang http://www.michaelnielsen.org/qcqi/errata/e rrata/errata.html Part II, Nielsen & Chuang Quantum circuits (Ch 4) SK Quantum algorithms (Ch 5 & 6) Göran Johansson Physical realisation

More information

Quantum Computers Is the Future Here?

Quantum Computers Is the Future Here? Quantum Computers Is the Future Here? Tal Mor CS.Technion ISCQI Feb. 2016 128?? [ 2011 ; sold to LM ] D-Wave Two :512?? [ 2013 ; sold to NASA + Google ] D-Wave Three: 1024?? [ 2015 ; also installed at

More information

Lecture 3: Constructing a Quantum Model

Lecture 3: Constructing a Quantum Model CS 880: Quantum Information Processing 9/9/010 Lecture 3: Constructing a Quantum Model Instructor: Dieter van Melkebeek Scribe: Brian Nixon This lecture focuses on quantum computation by contrasting it

More information

1 Mathematical preliminaries

1 Mathematical preliminaries 1 Mathematical preliminaries The mathematical language of quantum mechanics is that of vector spaces and linear algebra. In this preliminary section, we will collect the various definitions and mathematical

More information

D-Wave: real quantum computer?

D-Wave: real quantum computer? D-Wave: real quantum computer? M. Johnson et al., "Quantum annealing with manufactured spins", Nature 473, 194-198 (2011) S. Boixo et al., "Evidence for quantum annealing wiht more than one hundred qubits",

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

Quantum Computing Lecture 6. Quantum Search

Quantum Computing Lecture 6. Quantum Search Quantum Computing Lecture 6 Quantum Search Maris Ozols Grover s search problem One of the two most important algorithms in quantum computing is Grover s search algorithm (invented by Lov Grover in 1996)

More information

Quantum annealing. Matthias Troyer (ETH Zürich) John Martinis (UCSB) Dave Wecker (Microsoft)

Quantum annealing. Matthias Troyer (ETH Zürich) John Martinis (UCSB) Dave Wecker (Microsoft) Quantum annealing (ETH Zürich) John Martinis (UCSB) Dave Wecker (Microsoft) Troels Rønnow (ETH) Sergei Isakov (ETH Google) Lei Wang (ETH) Sergio Boixo (USC Google) Daniel Lidar (USC) Zhihui Wang (USC)

More information

Manipulating Causal Order of Unitary Operations using Adiabatic Quantum Computation

Manipulating Causal Order of Unitary Operations using Adiabatic Quantum Computation Manipulating Causal Order of Unitary Operations using Adiabatic Quantum Computation Kosuke Nakago, Quantum Information group, The University of Tokyo, Tokyo,Japan. Joint work with, Mio murao, Michal Hajdusek,

More information

arxiv:quant-ph/ Sep 2001

arxiv:quant-ph/ Sep 2001 From Schrödinger s Equation to the Quantum Search Algorithm Lov K. Grover (lkgrover@bell-labs.com) Abstract arxiv:quant-ph/0096 Sep 00 The quantum search algorithm is a technique for searching possibilities

More information

Shor s Quantum Factorization Algorithm

Shor s Quantum Factorization Algorithm Shor s Quantum Factorization Algorithm Tayeb Aïssiou Department of Mathematics and Statistics McGill University, Montreal, Quebec Canada H3A K6 e-mail: tayeb.aissiou@mail.mcgill.ca November, 5 Abstract

More information

The Quantum Landscape

The Quantum Landscape The Quantum Landscape Computational drug discovery employing machine learning and quantum computing Contact us! lucas@proteinqure.com Or visit our blog to learn more @ www.proteinqure.com 2 Applications

More information

Quantum wires, orthogonal polynomials and Diophantine approximation

Quantum wires, orthogonal polynomials and Diophantine approximation Quantum wires, orthogonal polynomials and Diophantine approximation Introduction Quantum Mechanics (QM) is a linear theory Main idea behind Quantum Information (QI): use the superposition principle of

More information

Lecture 1: Introduction to Quantum Computing

Lecture 1: Introduction to Quantum Computing Lecture 1: Introduction to Quantum Computing Rajat Mittal IIT Kanpur Whenever the word Quantum Computing is uttered in public, there are many reactions. The first one is of surprise, mostly pleasant, and

More information

BASICS OF QUANTUM MECHANICS. Reading: QM Course packet Ch 5

BASICS OF QUANTUM MECHANICS. Reading: QM Course packet Ch 5 BASICS OF QUANTUM MECHANICS 1 Reading: QM Course packet Ch 5 Interesting things happen when electrons are confined to small regions of space (few nm). For one thing, they can behave as if they are in an

More information

Finite-Horizon Statistics for Markov chains

Finite-Horizon Statistics for Markov chains Analyzing FSDT Markov chains Friday, September 30, 2011 2:03 PM Simulating FSDT Markov chains, as we have said is very straightforward, either by using probability transition matrix or stochastic update

More information

arxiv:quant-ph/ v1 28 Jan 2000

arxiv:quant-ph/ v1 28 Jan 2000 Quantum Computation by Adiabatic Evolution Edward Farhi, Jeffrey Goldstone Center for Theoretical Physics Massachusetts Institute of Technology Cambridge, MA 039 arxiv:quant-ph/00006 v 8 Jan 000 Sam Gutmann

More information

The Schrodinger Wave Equation (Engel 2.4) In QM, the behavior of a particle is described by its wave function Ψ(x,t) which we get by solving:

The Schrodinger Wave Equation (Engel 2.4) In QM, the behavior of a particle is described by its wave function Ψ(x,t) which we get by solving: When do we use Quantum Mechanics? (Engel 2.1) Basically, when λ is close in magnitude to the dimensions of the problem, and to the degree that the system has a discrete energy spectrum The Schrodinger

More information

Lecture 1: Introduction to Quantum Computing

Lecture 1: Introduction to Quantum Computing Lecture : Introduction to Quantum Computing Rajat Mittal IIT Kanpur What is quantum computing? This course is about the theory of quantum computation, i.e., to do computation using quantum systems. These

More information

15 Skepticism of quantum computing

15 Skepticism of quantum computing 15 Skepticism of quantum computing Last chapter, we talked about whether quantum states should be thought of as exponentially long vectors, and I brought up class BQP/qpoly and concepts like quantum advice.

More information

Introduction to Quantum Computation

Introduction to Quantum Computation Chapter 1 Introduction to Quantum Computation 1.1 Motivations The main task in this course is to discuss application of quantum mechanics to information processing (or computation). Why? Education:Asingleq-bitisthesmallestpossiblequantummechanical

More information

This is the important completeness relation,

This is the important completeness relation, Observable quantities are represented by linear, hermitian operators! Compatible observables correspond to commuting operators! In addition to what was written in eqn 2.1.1, the vector corresponding to

More information

arxiv: v1 [quant-ph] 3 Sep 2008

arxiv: v1 [quant-ph] 3 Sep 2008 A Non-Oracle Quantum Search Algorithm and Its Experimental Implementation Nanyang Xu, 1 Jin Zhu, 1 Xinhua Peng, 1 Xianyi Zhou, 1 Jiangfeng Du 1 1 Hefei National Laboratory for Physical Sciences at Microscale

More information

Computational Complexity

Computational Complexity p. 1/24 Computational Complexity The most sharp distinction in the theory of computation is between computable and noncomputable functions; that is, between possible and impossible. From the example of

More information

)j > Riley Tipton Perry University of New South Wales, Australia. World Scientific CHENNAI

)j > Riley Tipton Perry University of New South Wales, Australia. World Scientific CHENNAI Riley Tipton Perry University of New South Wales, Australia )j > World Scientific NEW JERSEY LONDON. SINGAPORE BEIJING SHANSHAI HONG K0N6 TAIPEI» CHENNAI Contents Acknowledgments xi 1. Introduction 1 1.1

More information

Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 21 Square-Integrable Functions

Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 21 Square-Integrable Functions Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Lecture - 21 Square-Integrable Functions (Refer Slide Time: 00:06) (Refer Slide Time: 00:14) We

More information