Periodic Dynamic Traffic Assignment Problem

Size: px
Start display at page:

Download "Periodic Dynamic Traffic Assignment Problem"

Transcription

1 Periodic Dynamic Traffic Assignment Problem Artyom Nahapetyan Center for Applied Optimization, ISE Department University of Florida Joint work with: Siriphong Lawphongpanich and Donald W. Hearn Periodic Dynamic Traffic Assignment Problem p. 1/?

2 Outline Dynamic traffic assignment problem. Traditional optimal control formulation. Basics of the periodic DTA. Continuous formulation of PDTA. Discrete formulation of PDTA. Approximation procedure. Computational results. Periodic Dynamic Traffic Assignment Problem p. 2/?

3 DTA Problem Data: Network - G(A, N). Set of OD pairs - C. Travel time - η a ( ). Demand - h k (t). Problem: Find traffic flows which minimize the total travel time of all vehicles during time period [0, T]. Periodic Dynamic Traffic Assignment Problem p. 3/?

4 OC Formulation x p a(t) - number of cars on arc a in path p at time t, u p a(t) - inflow into arc a in path p at time t, v p a(t) - outflow from arc a in path p at time t. Assumption: If a car enters an arc a at time t then it must leave the arc at t + η a (x a (t)). Typical constraints: ẋ p a(t) = u p a(t) v p a(t), u p a(t) = v p a(t + η a (x a (t))), v p (i,j) (t) = up (j,k) (t) Periodic Dynamic Traffic Assignment Problem p. 4/?

5 OC Formulation Disadvantage: Typically OC formulation requires the network to be empty at time 0 and T. If x a (0) > 0 then the times that these cars enter arc a unknown, thus the time that these cars leave the arc cannot be computed. Periodic Dynamic Traffic Assignment Problem p. 5/?

6 OC Formulation It is not necessarily valid to ignore x a (0) even when it is small. Periodic Dynamic Traffic Assignment Problem p. 6/?

7 Periodic DTA problem How to model DTA problem with positive x a (0) and x a (T)? versus Periodic Dynamic Traffic Assignment Problem p. 7/?

8 Periodic DTA problem How to model DTA problem with positive x a (0) and x a (T)? versus Periodic Dynamic Traffic Assignment Problem p. 7/?

9 Periodic DTA problem How to model DTA problem with positive x a (0) and x a (T)? versus Periodic Dynamic Traffic Assignment Problem p. 7/?

10 Set of Enter-Leave Times for Computing v a (t) L a (t) = {θ [0, T) θ + η a (x a (θ)) = t} {θ [0, T) θ + η a (x a (θ)) T = t} Periodic Dynamic Traffic Assignment Problem p. 8/?

11 Set of Enter-Remain Times for Computing x a (t) R a (t) = {ω [0, t) ω + η a (x a (ω)) t} {ω [t, T) ω + η a (x a (ω)) T t} Periodic Dynamic Traffic Assignment Problem p. 9/?

12 Periodic DTA problem (PDTA) In the model, time 0 and T are the same, planing horizon is [0, T), if an event occurs at time t, the same event must occur at the time t + αt, for all positive integer α, h k (0) = h k (T), and 0 < η a ( ) < T. Periodic Dynamic Traffic Assignment Problem p. 10/?

13 Periodic DTA Problem T min u,v 0 s.t. ([ ] a A p P δp au p a(t) ) η a (x a (t)) x p a(t) = R a (t) up a(z)dz valid (t, a, p) v p a(t) = θ L a (t) up a(θ) valid (t, a, p) v p (i,j) (t) = up (j,q)(t) valid (t, a, p) x a (t) = p P δp ax p a(t) valid (t, a, p) h k (t) = p P k δ p a 1 u p a 1 (t) valid (t, a, p) u p a(t) 0 valid (t, a, p) dt Periodic Dynamic Traffic Assignment Problem p. 11/?

14 PDTA: Theoretical Results 1. Any solution (u p a(t), v p a(t), x p a(t)) feasible to PDTA satisfies the periodicity condition. 2. Under mild condition, PDTA has a solution. Let p k P k and G( N, Â) be a subgraph of G(N, A) induced by the set of paths Φ = {p k : k C}. If there is a set Φ s.t. G( N, Â) is acyclic then PDTA has a feasible solution. Periodic Dynamic Traffic Assignment Problem p. 12/?

15 Discrete PDTA 1. Replace [0, T) by a set of discrete points {0, 1, 2,..., T 1}. 2. Assume that cars enter or leave the arc at discrete points {0, 1, 2,..., T 1}. 3. Assign h m k = m+1 m h k (z)dz. 4. Construct time-expanded network. Periodic Dynamic Traffic Assignment Problem p. 13/?

16 Time-Expanded (TE) Network Periodic Dynamic Traffic Assignment Problem p. 14/?

17 Discrete PDTA: Variables Arc flow on TE network: y j at = k C ykj at { z j 1 if the arc is used at = 0 o/w x a = Q a y a Periodic Dynamic Traffic Assignment Problem p. 15/?

18 Discrete PDTA (D-PDTA): Formulation s.t. min y,z t a A [ 4 j=2 yj at ] η a (x t a) Wy k = d k y j at = k C ykj at x a = Q a y a 4 j=2 (j 1)zj at < η a (x t a) 4 j=2 jzj at 4 j=2 zj at = 1 y j at Mz j at, y kj at 0, z j at {0, 1} Periodic Dynamic Traffic Assignment Problem p. 16/?

19 Discrete PDTA: Linearization Objective function t a A [ 4 j=2 yj at ] η a (x t a) t = t a A [ 4 j=2 yj at ] [ 4 a A 4 j=2 jyj at = c T y j=2 jzj at ] Periodic Dynamic Traffic Assignment Problem p. 17/?

20 Discrete PDTA: Linearization Constraint 4 j=2 (j 1)zj at < η a (x t a) 4 j=2 jzj at Denote τ j a = η 1 a (j), j 1 and τ 1 a = 0 4 j=2 τj 1 a z j at < x t a 4 j=2 τj az j at Periodic Dynamic Traffic Assignment Problem p. 18/?

21 Linear Approx. of PDTA (LA-PDTA) min y,z c T y s.t. Wy k = d k y j at = k C ykj at x a = Q a y a 4 j=2 τj 1 a z j at x t a 4 j=2 τj az j at 4 j=2 zj at = 1 y j at Mz j at, y kj at 0, z j at {0, 1} Periodic Dynamic Traffic Assignment Problem p. 19/?

22 Approximation Procedure Let (ŷ, ẑ) solves LA-PDTA y solves D-PDTA with z = ẑ The approximate solution is (y, ẑ). Periodic Dynamic Traffic Assignment Problem p. 20/?

23 Convergence Lets [0, T) divide into N intervals with equal length. (y (N), ẑ(n)) is the solution of the approximation procedure. (ȳ, z) is the solution of the continuous PDTA. Then lim N (y (N), ẑ(n)) = (ȳ, z) Periodic Dynamic Traffic Assignment Problem p. 21/?

24 Computational Results: Data [0, T) = [0, 10) Travel time functions: η a (x a (t)) = x a (t) η a (x a (t)) = x 2 a(t): Periodic Dynamic Traffic Assignment Problem p. 22/?

25 Computational Results: Data Three travel demand functions for the interval [0, 10): Total demands: 600, 800, and Periodic Dynamic Traffic Assignment Problem p. 23/?

26 Computational Results: Solvers All problems were solved on NEOS server using the following solvers D-PDTA - SBB solver LA-PDTA - Xpress-MP solver D-PDTA with z = ẑ - CONOPT Periodic Dynamic Traffic Assignment Problem p. 24/?

27 Computational Results: Linear Travel Time CPU time. Demand D-PDTA LA-PDTA Ratio Solution quality of LA-PDTA Demand D-PDTA LA-PDTA Diff (%) Periodic Dynamic Traffic Assignment Problem p. 25/?

28 Computational Results: Quadratic Travel Time CPU time. Demand D-PDTA LA-PDTA Ratio Solution quality of LA-PDTA Demand D-PDTA LA-PDTA Diff (%) Periodic Dynamic Traffic Assignment Problem p. 26/?

29 Conclusion Periodic Dynamic Traffic Assignment Problem. Does not require the network to be empty at time 0 and T. Discrete Dynamic Traffic Assignment Problem Constructed based on time-expanded network. It is Mixed Integer NLP. Linear Approximation Procedure Can be solved by MIP and NLP solvers. lim N (y (N),ẑ(N)) = (ȳ, z). Computational results. Periodic Dynamic Traffic Assignment Problem p. 27/?

30 Questions? Periodic Dynamic Traffic Assignment Problem p. 28/?

Discrete-Time Dynamic Traffic Assignment Models with Periodic Planning Horizon: System Optimum

Discrete-Time Dynamic Traffic Assignment Models with Periodic Planning Horizon: System Optimum Discrete-Time Dynamic Traffic Assignment Models with Periodic Planning Horizon: System Optimum Artyom Nahapetyan Siriphong Lawphongpanich Center for Applied Optimization Industrial and Systems Engineering

More information

Dynamic Toll Pricing Framework. for Discrete-Time Dynamic Traffic Assignment Models

Dynamic Toll Pricing Framework. for Discrete-Time Dynamic Traffic Assignment Models Dynamic Toll Pricing Framework for Discrete-Time Dynamic Traffic Assignment Models Artyom Nahapetyan (corresponding author) Tel. (352) 392 1464 ex. 2032 Fax: (352) 392 3537 Email address: artyom@ufl.edu

More information

ON MIXING SETS ARISING IN CHANCE-CONSTRAINED PROGRAMMING

ON MIXING SETS ARISING IN CHANCE-CONSTRAINED PROGRAMMING ON MIXING SETS ARISING IN CHANCE-CONSTRAINED PROGRAMMING Abstract. The mixing set with a knapsack constraint arises in deterministic equivalent of chance-constrained programming problems with finite discrete

More information

Disconnecting Networks via Node Deletions

Disconnecting Networks via Node Deletions 1 / 27 Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms Siqian Shen 1 J. Cole Smith 2 R. Goli 2 1 IOE, University of Michigan 2 ISE, University of Florida 2012 INFORMS

More information

Travelling Salesman Problem

Travelling Salesman Problem Travelling Salesman Problem Fabio Furini November 10th, 2014 Travelling Salesman Problem 1 Outline 1 Traveling Salesman Problem Separation Travelling Salesman Problem 2 (Asymmetric) Traveling Salesman

More information

Large-scale optimization and decomposition methods: outline. Column Generation and Cutting Plane methods: a unified view

Large-scale optimization and decomposition methods: outline. Column Generation and Cutting Plane methods: a unified view Large-scale optimization and decomposition methods: outline I Solution approaches for large-scaled problems: I Delayed column generation I Cutting plane methods (delayed constraint generation) 7 I Problems

More information

Notes on Ewald summation techniques

Notes on Ewald summation techniques February 3, 011 Notes on Ewald summation techniques Adapted from similar presentation in PHY 71 he total electrostatic potential energy of interaction between point charges {q i } at the positions {r i

More information

Stochastic Optimization for Undergraduate Computer Science Students

Stochastic Optimization for Undergraduate Computer Science Students Stochastic Optimization for Undergraduate Computer Science Students Professor Joongheon Kim School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea 1 Reference 2 Outline

More information

CDS 101/110a: Lecture 2.1 Dynamic Behavior

CDS 101/110a: Lecture 2.1 Dynamic Behavior CDS 11/11a: Lecture.1 Dynamic Behavior Richard M. Murray 6 October 8 Goals: Learn to use phase portraits to visualize behavior of dynamical systems Understand different types of stability for an equilibrium

More information

CDS 101/110a: Lecture 2.1 Dynamic Behavior

CDS 101/110a: Lecture 2.1 Dynamic Behavior CDS 11/11a: Lecture 2.1 Dynamic Behavior Richard M. Murray 6 October 28 Goals: Learn to use phase portraits to visualize behavior of dynamical systems Understand different types of stability for an equilibrium

More information

The Higgins-Selkov oscillator

The Higgins-Selkov oscillator The Higgins-Selkov oscillator May 14, 2014 Here I analyse the long-time behaviour of the Higgins-Selkov oscillator. The system is ẋ = k 0 k 1 xy 2, (1 ẏ = k 1 xy 2 k 2 y. (2 The unknowns x and y, being

More information

Probabilistic Choice Models

Probabilistic Choice Models Econ 3: James J. Heckman Probabilistic Choice Models This chapter examines different models commonly used to model probabilistic choice, such as eg the choice of one type of transportation from among many

More information

DUALITY AND INTEGER PROGRAMMING. Jean B. LASSERRE

DUALITY AND INTEGER PROGRAMMING. Jean B. LASSERRE LABORATOIRE d ANALYSE et d ARCHITECTURE des SYSTEMES DUALITY AND INTEGER PROGRAMMING Jean B. LASSERRE 1 Current solvers (CPLEX, XPRESS-MP) are rather efficient and can solve many large size problems with

More information

Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University

Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University Hyperbolic Systems of Conservation Laws in One Space Dimension I - Basic concepts Alberto Bressan Department of Mathematics, Penn State University http://www.math.psu.edu/bressan/ 1 The Scalar Conservation

More information

Risk-Averse Second-Best Toll Pricing

Risk-Averse Second-Best Toll Pricing Risk-Averse Second-Best Toll Pricing Xuegang (Jeff) Ban, Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, banx@rpi.edu, Corresponding Author Shu Lu, Department of Statistics

More information

Supplementary Technical Details and Results

Supplementary Technical Details and Results Supplementary Technical Details and Results April 6, 2016 1 Introduction This document provides additional details to augment the paper Efficient Calibration Techniques for Large-scale Traffic Simulators.

More information

Intersection Models and Nash Equilibria for Traffic Flow on Networks

Intersection Models and Nash Equilibria for Traffic Flow on Networks Intersection Models and Nash Equilibria for Traffic Flow on Networks Alberto Bressan Department of Mathematics, Penn State University bressan@math.psu.edu (Los Angeles, November 2015) Alberto Bressan (Penn

More information

Linear Systems Theory

Linear Systems Theory ME 3253 Linear Systems Theory Review Class Overview and Introduction 1. How to build dynamic system model for physical system? 2. How to analyze the dynamic system? -- Time domain -- Frequency domain (Laplace

More information

BCOL RESEARCH REPORT 17.07

BCOL RESEARCH REPORT 17.07 BCOL RESEARCH REPORT 17.07 Industrial Engineering & Operations Research University of California, Berkeley, CA 9470 1777 ON CAPACITY MODELS FOR NETWORK DESIGN ALPER ATAMTÜRK AND OKTAY GÜNLÜK Abstract.

More information

z 0 > 0 z = 0 h; (x, 0)

z 0 > 0 z = 0 h; (x, 0) n = (q 1,..., q n ) T (,, t) V (,, t) L(,, t) = T V d dt ( ) L q i L q i = 0, i = 1,..., n. l l 0 l l 0 l > l 0 {x} + = max(0, x) x = k{l l 0 } +ˆ, k > 0 ˆ (x, z) x z (0, z 0 ) (0, z 0 ) z 0 > 0 x z =

More information

Scheduling and Optimization Course (MPRI)

Scheduling and Optimization Course (MPRI) MPRI Scheduling and optimization: lecture p. /6 Scheduling and Optimization Course (MPRI) Leo Liberti LIX, École Polytechnique, France MPRI Scheduling and optimization: lecture p. /6 Teachers Christoph

More information

Adaptive fuzzy observer and robust controller for a 2-DOF robot arm

Adaptive fuzzy observer and robust controller for a 2-DOF robot arm Adaptive fuzzy observer and robust controller for a 2-DOF robot arm S. Bindiganavile Nagesh Zs. Lendek A. A. Khalate R. Babuška Delft University of Technology, Technical University of Cluj-Napoca FUZZ-IEEE-2012

More information

Models and Cuts for the Two-Echelon Vehicle Routing Problem

Models and Cuts for the Two-Echelon Vehicle Routing Problem Models and Cuts for the Two-Echelon Vehicle Routing Problem Guido Perboli Roberto Tadei Francesco Masoero Department of Control and Computer Engineering, Politecnico di Torino Corso Duca degli Abruzzi,

More information

34.3. Resisted Motion. Introduction. Prerequisites. Learning Outcomes

34.3. Resisted Motion. Introduction. Prerequisites. Learning Outcomes Resisted Motion 34.3 Introduction This Section returns to the simple models of projectiles considered in Section 34.1. It explores the magnitude of air resistance effects and the effects of including simple

More information

Semester University of Sheffield. School of Mathematics and Statistics

Semester University of Sheffield. School of Mathematics and Statistics University of Sheffield School of Mathematics and Statistics MAS140: Mathematics (Chemical) MAS152: Civil Engineering Mathematics MAS152: Essential Mathematical Skills & Techniques MAS156: Mathematics

More information

A Tighter Variant of Jensen s Lower Bound for Stochastic Programs and Separable Approximations to Recourse Functions

A Tighter Variant of Jensen s Lower Bound for Stochastic Programs and Separable Approximations to Recourse Functions A Tighter Variant of Jensen s Lower Bound for Stochastic Programs and Separable Approximations to Recourse Functions Huseyin Topaloglu School of Operations Research and Information Engineering, Cornell

More information

Often, in this class, we will analyze a closed-loop feedback control system, and end up with an equation of the form

Often, in this class, we will analyze a closed-loop feedback control system, and end up with an equation of the form ME 32, Spring 25, UC Berkeley, A. Packard 55 7 Review of SLODEs Throughout this section, if y denotes a function (of time, say), then y [k or y (k) denotes the k th derivative of the function y, y [k =

More information

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 14.1

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 14.1 OHSx XM5 Multivariable Differential Calculus: Homework Solutions 4. (8) Describe the graph of the equation. r = i + tj + (t )k. Solution: Let y(t) = t, so that z(t) = t = y. In the yz-plane, this is just

More information

Math review. Math review

Math review. Math review Math review 1 Math review 3 1 series approximations 3 Taylor s Theorem 3 Binomial approximation 3 sin(x), for x in radians and x close to zero 4 cos(x), for x in radians and x close to zero 5 2 some geometry

More information

21 Linear State-Space Representations

21 Linear State-Space Representations ME 132, Spring 25, UC Berkeley, A Packard 187 21 Linear State-Space Representations First, let s describe the most general type of dynamic system that we will consider/encounter in this class Systems may

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective Vehicle routing problem 1 / 33 Cutting stock

More information

Motion Planning for LTL Specifications: A Satisfiability Modulo Convex Optimization Approach

Motion Planning for LTL Specifications: A Satisfiability Modulo Convex Optimization Approach Motion Planning for LTL Specifications: A Satisfiability Modulo Convex Optimization Approach Yasser Shoukry UC Berkeley, UCLA, and UPenn Joint work with Pierluigi Nuzzo (UC Berkeley), Indranil Saha (IIT

More information

Theoretical Tutorial Session 2

Theoretical Tutorial Session 2 1 / 36 Theoretical Tutorial Session 2 Xiaoming Song Department of Mathematics Drexel University July 27, 216 Outline 2 / 36 Itô s formula Martingale representation theorem Stochastic differential equations

More information

Vector Calculus - GATE Study Material in PDF

Vector Calculus - GATE Study Material in PDF Vector Calculus - GATE Study Material in PDF In previous articles, we have already seen the basics of Calculus Differentiation and Integration and applications. In GATE 2018 Study Notes, we will be introduced

More information

Vehicle Routing and MIP

Vehicle Routing and MIP CORE, Université Catholique de Louvain 5th Porto Meeting on Mathematics for Industry, 11th April 2014 Contents: The Capacitated Vehicle Routing Problem Subproblems: Trees and the TSP CVRP Cutting Planes

More information

Md Momin Al Aziz. Analysis of Algorithms. Asymptotic Notations 3 COMP Computer Science University of Manitoba

Md Momin Al Aziz. Analysis of Algorithms. Asymptotic Notations 3 COMP Computer Science University of Manitoba Md Momin Al Aziz azizmma@cs.umanitoba.ca Computer Science University of Manitoba Analysis of Algorithms Asymptotic Notations 3 COMP 2080 Outline 1. Visualization 2. Little notations 3. Properties of Asymptotic

More information

Gramians based model reduction for hybrid switched systems

Gramians based model reduction for hybrid switched systems Gramians based model reduction for hybrid switched systems Y. Chahlaoui Younes.Chahlaoui@manchester.ac.uk Centre for Interdisciplinary Computational and Dynamical Analysis (CICADA) School of Mathematics

More information

Bilinear Programming: Applications in the Supply Chain Management

Bilinear Programming: Applications in the Supply Chain Management Bilinear Programming: Applications in the Supply Chain Management Artyom G. Nahapetyan Center for Applied Optimization Industrial and Systems Engineering Department University of Florida Gainesville, Florida

More information

= m(0) + 4e 2 ( 3e 2 ) 2e 2, 1 (2k + k 2 ) dt. m(0) = u + R 1 B T P x 2 R dt. u + R 1 B T P y 2 R dt +

= m(0) + 4e 2 ( 3e 2 ) 2e 2, 1 (2k + k 2 ) dt. m(0) = u + R 1 B T P x 2 R dt. u + R 1 B T P y 2 R dt + ECE 553, Spring 8 Posted: May nd, 8 Problem Set #7 Solution Solutions: 1. The optimal controller is still the one given in the solution to the Problem 6 in Homework #5: u (x, t) = p(t)x k(t), t. The minimum

More information

Cutting Planes for First Level RLT Relaxations of Mixed 0-1 Programs

Cutting Planes for First Level RLT Relaxations of Mixed 0-1 Programs Cutting Planes for First Level RLT Relaxations of Mixed 0-1 Programs 1 Cambridge, July 2013 1 Joint work with Franklin Djeumou Fomeni and Adam N. Letchford Outline 1. Introduction 2. Literature Review

More information

Hyperbolic Systems of Conservation Laws. I - Basic Concepts

Hyperbolic Systems of Conservation Laws. I - Basic Concepts Hyperbolic Systems of Conservation Laws I - Basic Concepts Alberto Bressan Mathematics Department, Penn State University Alberto Bressan (Penn State) Hyperbolic Systems of Conservation Laws 1 / 27 The

More information

Lifted Inequalities for 0 1 Mixed-Integer Bilinear Covering Sets

Lifted Inequalities for 0 1 Mixed-Integer Bilinear Covering Sets 1 2 3 Lifted Inequalities for 0 1 Mixed-Integer Bilinear Covering Sets Kwanghun Chung 1, Jean-Philippe P. Richard 2, Mohit Tawarmalani 3 March 1, 2011 4 5 6 7 8 9 Abstract In this paper, we study 0 1 mixed-integer

More information

TEST CODE: MMA (Objective type) 2015 SYLLABUS

TEST CODE: MMA (Objective type) 2015 SYLLABUS TEST CODE: MMA (Objective type) 2015 SYLLABUS Analytical Reasoning Algebra Arithmetic, geometric and harmonic progression. Continued fractions. Elementary combinatorics: Permutations and combinations,

More information

A Gaussian-Poisson Conditional Model for Defaults

A Gaussian-Poisson Conditional Model for Defaults 1 / 26 A Gaussian-Poisson Conditional Model for Defaults Ambar N. Sengupta Department of Mathematics University of Connecticut 2016 High Frequency Conference 2 / 26 Initial remarks Risky Portfolios and

More information

EE C128 / ME C134 Final Exam Fall 2014

EE C128 / ME C134 Final Exam Fall 2014 EE C128 / ME C134 Final Exam Fall 2014 December 19, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket

More information

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations:

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations: Homework Exercises 1 1 Find the complete solutions (if any!) to each of the following systems of simultaneous equations: (i) x 4y + 3z = 2 3x 11y + 13z = 3 2x 9y + 2z = 7 x 2y + 6z = 2 (ii) x 4y + 3z =

More information

Metastability for the Ising model on a random graph

Metastability for the Ising model on a random graph Metastability for the Ising model on a random graph Joint project with Sander Dommers, Frank den Hollander, Francesca Nardi Outline A little about metastability Some key questions A little about the, and

More information

Dense LU factorization and its error analysis

Dense LU factorization and its error analysis Dense LU factorization and its error analysis Laura Grigori INRIA and LJLL, UPMC February 2016 Plan Basis of floating point arithmetic and stability analysis Notation, results, proofs taken from [N.J.Higham,

More information

CONTROL OF THE NONHOLONOMIC INTEGRATOR

CONTROL OF THE NONHOLONOMIC INTEGRATOR June 6, 25 CONTROL OF THE NONHOLONOMIC INTEGRATOR R. N. Banavar (Work done with V. Sankaranarayanan) Systems & Control Engg. Indian Institute of Technology, Bombay Mumbai -INDIA. banavar@iitb.ac.in Outline

More information

RO: Exercices Mixed Integer Programming

RO: Exercices Mixed Integer Programming RO: Exercices Mixed Integer Programming N. Brauner Université Grenoble Alpes Exercice 1 : Knapsack A hiker wants to fill up his knapsack of capacity W = 6 maximizing the utility of the objects he takes.

More information

PDEs, part 3: Hyperbolic PDEs

PDEs, part 3: Hyperbolic PDEs PDEs, part 3: Hyperbolic PDEs Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2011 Hyperbolic equations (Sections 6.4 and 6.5 of Strang). Consider the model problem (the

More information

Chapter 3: Discrete Optimization Integer Programming

Chapter 3: Discrete Optimization Integer Programming Chapter 3: Discrete Optimization Integer Programming Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-16-17.shtml Academic year 2016-17

More information

EE263 Review Session 1

EE263 Review Session 1 EE263 Review Session 1 October 5, 2018 0.1 Importing Variables from a MALAB.m file If you are importing variables given in file vars.m, use the following code at the beginning of your script. close a l

More information

Outline. 1 Introduction. 2 Modeling and Applications. 3 Algorithms Convex. 4 Algorithms Nonconvex. 5 The Future of MINLP? 2 / 126

Outline. 1 Introduction. 2 Modeling and Applications. 3 Algorithms Convex. 4 Algorithms Nonconvex. 5 The Future of MINLP? 2 / 126 Outline 1 Introduction 2 3 Algorithms Convex 4 Algorithms Nonconvex 5 The Future of MINLP? 2 / 126 Larry Leading Off 3 / 126 Introduction Outline 1 Introduction Software Tools and Online Resources Basic

More information

Structure of Valid Inequalities for Mixed Integer Conic Programs

Structure of Valid Inequalities for Mixed Integer Conic Programs Structure of Valid Inequalities for Mixed Integer Conic Programs Fatma Kılınç-Karzan Tepper School of Business Carnegie Mellon University 18 th Combinatorial Optimization Workshop Aussois, France January

More information

Colloids transport in porous media: analysis and applications.

Colloids transport in porous media: analysis and applications. Colloids transport in porous media: analysis and applications. Oleh Krehel joint work with Adrian Muntean and Peter Knabner CASA, Department of Mathematics and Computer Science. Eindhoven University of

More information

Outline. 3. Implementation. 1. Introduction. 2. Algorithm

Outline. 3. Implementation. 1. Introduction. 2. Algorithm Outline 1. Introduction 2. Algorithm 3. Implementation What s Dynamic Traffic Assignment? Dynamic traffic assignment is aimed at allocating traffic flow to every path and making their travel time minimized

More information

Optima and Equilibria for Traffic Flow on Networks with Backward Propagating Queues

Optima and Equilibria for Traffic Flow on Networks with Backward Propagating Queues Optima and Equilibria for Traffic Flow on Networks with Backward Propagating Queues Alberto Bressan and Khai T Nguyen Department of Mathematics, Penn State University University Park, PA 16802, USA e-mails:

More information

Chap. 3. Controlled Systems, Controllability

Chap. 3. Controlled Systems, Controllability Chap. 3. Controlled Systems, Controllability 1. Controllability of Linear Systems 1.1. Kalman s Criterion Consider the linear system ẋ = Ax + Bu where x R n : state vector and u R m : input vector. A :

More information

Asynchronous Training in Wireless Sensor Networks

Asynchronous Training in Wireless Sensor Networks u t... t. tt. tt. u.. tt tt -t t t - t, t u u t t. t tut t t t t t tt t u t ut. t u, t tt t u t t t t, t tt t t t, t t t t t. t t tt u t t t., t- t ut t t, tt t t tt. 1 tut t t tu ut- tt - t t t tu tt-t

More information

1 (30 pts) Dominant Pole

1 (30 pts) Dominant Pole EECS C8/ME C34 Fall Problem Set 9 Solutions (3 pts) Dominant Pole For the following transfer function: Y (s) U(s) = (s + )(s + ) a) Give state space description of the system in parallel form (ẋ = Ax +

More information

From Evolutionary Biology to Interior-Point Methods

From Evolutionary Biology to Interior-Point Methods From Evolutionary Biology to Interior-Point Methods Paul Tseng Mathematics, University of Washington Seattle WCOM, UBC Kelowna October 27, 2007 Joint work with Immanuel Bomze and Werner Schachinger (Univ.

More information

From quantum to classical statistical mechanics. Polyatomic ideal gas.

From quantum to classical statistical mechanics. Polyatomic ideal gas. From quantum to classical statistical mechanics. Polyatomic ideal gas. Peter Košovan peter.kosovan@natur.cuni.cz Dept. of Physical and Macromolecular Chemistry Lecture 5, Statistical Thermodynamics, MC260P105,

More information

Time-Optimal Automobile Test Drives with Gear Shifts

Time-Optimal Automobile Test Drives with Gear Shifts Time-Optimal Control of Automobile Test Drives with Gear Shifts Christian Kirches Interdisciplinary Center for Scientific Computing (IWR) Ruprecht-Karls-University of Heidelberg, Germany joint work with

More information

Continuous methods for numerical linear algebra problems

Continuous methods for numerical linear algebra problems Continuous methods for numerical linear algebra problems Li-Zhi Liao (http://www.math.hkbu.edu.hk/ liliao) Department of Mathematics Hong Kong Baptist University The First International Summer School on

More information

IBM Research Report. On the Linear Relaxation of the p-median Problem I: Oriented Graphs

IBM Research Report. On the Linear Relaxation of the p-median Problem I: Oriented Graphs RC4396 (W07-007) November, 007 Mathematics IBM Research Report On the Linear Relaxation of the p-median Problem I: Oriented Graphs Mourad Baïou CNRS LIMOS Complexe scientifique des Czeaux 6377 Aubiere

More information

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization Plan of the Lecture Review: control, feedback, etc Today s topic: state-space models of systems; linearization Goal: a general framework that encompasses all examples of interest Once we have mastered

More information

Online Model Predictive Torque Control for Permanent Magnet Synchronous Motors

Online Model Predictive Torque Control for Permanent Magnet Synchronous Motors Online Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini, Daniele Bernardini, Alberto Bemporad and Stephen Levijoki ODYS Srl General Motors Company 2015 IEEE International

More information

The discrete-time second-best day-to-day dynamic pricing scheme

The discrete-time second-best day-to-day dynamic pricing scheme The discrete-time second-best day-to-day dynamic pricing scheme Linghui Han, David Z.W. Wang & Chengjuan Zhu 25-07-2017 School of Civil & Environmental Engineering Nanyang Technological University, Singapore

More information

Optimizing the Efficiency of the Liver Allocation System through Region Selection

Optimizing the Efficiency of the Liver Allocation System through Region Selection Optimizing the Efficiency of the Liver Allocation System through Region Selection Nan Kong Department of Industrial and Management Systems Engineering, University of South Florida Andrew J. Schaefer, Brady

More information

An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization

An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with Travis Johnson, Northwestern University Daniel P. Robinson, Johns

More information

Column Generation for Extended Formulations

Column Generation for Extended Formulations 1 / 28 Column Generation for Extended Formulations Ruslan Sadykov 1 François Vanderbeck 2,1 1 INRIA Bordeaux Sud-Ouest, France 2 University Bordeaux I, France ISMP 2012 Berlin, August 23 2 / 28 Contents

More information

Part II. Dynamical Systems. Year

Part II. Dynamical Systems. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 34 Paper 1, Section II 30A Consider the dynamical system where β > 1 is a constant. ẋ = x + x 3 + βxy 2, ẏ = y + βx 2

More information

Homework If the inverse T 1 of a closed linear operator exists, show that T 1 is a closed linear operator.

Homework If the inverse T 1 of a closed linear operator exists, show that T 1 is a closed linear operator. Homework 3 1 If the inverse T 1 of a closed linear operator exists, show that T 1 is a closed linear operator Solution: Assuming that the inverse of T were defined, then we will have to have that D(T 1

More information

Nonlinear Programming Models

Nonlinear Programming Models Nonlinear Programming Models Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Nonlinear Programming Models p. Introduction Nonlinear Programming Models p. NLP problems minf(x) x S R n Standard form:

More information

MINLP: Theory, Algorithms, Applications: Lecture 3, Basics of Algorothms

MINLP: Theory, Algorithms, Applications: Lecture 3, Basics of Algorothms MINLP: Theory, Algorithms, Applications: Lecture 3, Basics of Algorothms Jeff Linderoth Industrial and Systems Engineering University of Wisconsin-Madison Jonas Schweiger Friedrich-Alexander-Universität

More information

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017 CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford TT 2017 1 OUTLINE : CP1 REVISION LECTURE 3 : INTRODUCTION TO CLASSICAL MECHANICS 1. Angular velocity and

More information

ORF 522. Linear Programming and Convex Analysis

ORF 522. Linear Programming and Convex Analysis ORF 522 Linear Programming and Convex Analysis The Simplex Method Marco Cuturi Princeton ORF-522 1 Reminder: Basic Feasible Solutions, Extreme points, Optima Some important theorems last time for standard

More information

Transportation Problem

Transportation Problem Transportation Problem Alireza Ghaffari-Hadigheh Azarbaijan Shahid Madani University (ASMU) hadigheha@azaruniv.edu Spring 2017 Alireza Ghaffari-Hadigheh (ASMU) Transportation Problem Spring 2017 1 / 34

More information

Math 304 (Spring 2010) - Lecture 2

Math 304 (Spring 2010) - Lecture 2 Math 304 (Spring 010) - Lecture Emre Mengi Department of Mathematics Koç University emengi@ku.edu.tr Lecture - Floating Point Operation Count p.1/10 Efficiency of an algorithm is determined by the total

More information

Differentiable Functions

Differentiable Functions Differentiable Functions Let S R n be open and let f : R n R. We recall that, for x o = (x o 1, x o,, x o n S the partial derivative of f at the point x o with respect to the component x j is defined as

More information

A model predictive control approach for the line balancing in baggage handling systems

A model predictive control approach for the line balancing in baggage handling systems Delft University of Technology Delft Center for Systems and Control Technical report 12-32 A model predictive control approach for the line balancing in baggage handling systems Y. Zeinaly, B. De Schutter,

More information

Lecture 2: The Simplex method

Lecture 2: The Simplex method Lecture 2 1 Linear and Combinatorial Optimization Lecture 2: The Simplex method Basic solution. The Simplex method (standardform, b>0). 1. Repetition of basic solution. 2. One step in the Simplex algorithm.

More information

Timetabling and Robustness Computing Good and Delay-Resistant Timetables

Timetabling and Robustness Computing Good and Delay-Resistant Timetables Timetabling and Robustness Computing Good and Delay-Resistant Timetables Rolf Möhring GK MDS, 24 Nov 2008 DFG Research Center MATHEON mathematics for key technologies Overview The Periodic Event Scheduling

More information

Chapter 3: Discrete Optimization Integer Programming

Chapter 3: Discrete Optimization Integer Programming Chapter 3: Discrete Optimization Integer Programming Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Sito web: http://home.deib.polimi.it/amaldi/ott-13-14.shtml A.A. 2013-14 Edoardo

More information

A Computable Theory of Dynamic Congestion Pricing

A Computable Theory of Dynamic Congestion Pricing A Computable Theory of Dynamic Congestion Pricing Terry L. Friesz Changhyun Kwon Reetabrata Mookherjee Abstract In this paper we present a theory of dynamic congestion pricing for the day-to-day as well

More information

An Integer Programming Approach for Linear Programs with Probabilistic Constraints

An Integer Programming Approach for Linear Programs with Probabilistic Constraints An Integer Programming Approach for Linear Programs with Probabilistic Constraints James Luedtke Shabbir Ahmed George Nemhauser Georgia Institute of Technology 765 Ferst Drive, Atlanta, GA, USA luedtke@gatech.edu

More information

Functional SVD for Big Data

Functional SVD for Big Data Functional SVD for Big Data Pan Chao April 23, 2014 Pan Chao Functional SVD for Big Data April 23, 2014 1 / 24 Outline 1 One-Way Functional SVD a) Interpretation b) Robustness c) CV/GCV 2 Two-Way Problem

More information

Convex Optimization Algorithms for Machine Learning in 10 Slides

Convex Optimization Algorithms for Machine Learning in 10 Slides Convex Optimization Algorithms for Machine Learning in 10 Slides Presenter: Jul. 15. 2015 Outline 1 Quadratic Problem Linear System 2 Smooth Problem Newton-CG 3 Composite Problem Proximal-Newton-CD 4 Non-smooth,

More information

Adaptive fuzzy observer and robust controller for a 2-DOF robot arm

Adaptive fuzzy observer and robust controller for a 2-DOF robot arm Adaptive fuzzy observer and robust controller for a -DOF robot arm S. Bindiganavile Nagesh, Zs. Lendek, A.A. Khalate, R. Babuška Delft University of Technology, Mekelweg, 8 CD Delft, The Netherlands (email:

More information

Minimizing Total Delay in Fixed-Time Controlled Traffic Networks

Minimizing Total Delay in Fixed-Time Controlled Traffic Networks Minimizing Total Delay in Fixed-Time Controlled Traffic Networks Ekkehard Köhler, Rolf H. Möhring, and Gregor Wünsch Technische Universität Berlin, Institut für Mathematik, MA 6-1, Straße des 17. Juni

More information

Cutting Plane Separators in SCIP

Cutting Plane Separators in SCIP Cutting Plane Separators in SCIP Kati Wolter Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies 1 / 36 General Cutting Plane Method MIP min{c T x : x X MIP }, X MIP := {x

More information

Surface x(u, v) and curve α(t) on it given by u(t) & v(t). Math 4140/5530: Differential Geometry

Surface x(u, v) and curve α(t) on it given by u(t) & v(t). Math 4140/5530: Differential Geometry Surface x(u, v) and curve α(t) on it given by u(t) & v(t). α du dv (t) x u dt + x v dt Surface x(u, v) and curve α(t) on it given by u(t) & v(t). α du dv (t) x u dt + x v dt ( ds dt )2 Surface x(u, v)

More information

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 5

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 5 CIVL - 7904/8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 5 Agenda for Today Headway Distributions Pearson Type III Composite Goodness of fit Visit to the Traffic Management Center (April **)

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

Lagrangian Analysis of 2D and 3D Ocean Flows from Eulerian Velocity Data

Lagrangian Analysis of 2D and 3D Ocean Flows from Eulerian Velocity Data Flows from Second-year Ph.D. student, Applied Math and Scientific Computing Project Advisor: Kayo Ide Department of Atmospheric and Oceanic Science Center for Scientific Computation and Mathematical Modeling

More information

Adaptive Dynamic Cost Updating Procedure for Solving Fixed Charge Network Flow Problems.

Adaptive Dynamic Cost Updating Procedure for Solving Fixed Charge Network Flow Problems. Adaptive Dynamic Cost Updating Procedure for Solving Fixed Charge Network Flow Problems. Artyom Nahapetyan, Panos Pardalos Center for Applied Optimization Industrial and Systems Engineering Department

More information

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Alberto Bressan ) and Khai T. Nguyen ) *) Department of Mathematics, Penn State University **) Department of Mathematics,

More information

14 : Theory of Variational Inference: Inner and Outer Approximation

14 : Theory of Variational Inference: Inner and Outer Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 14 : Theory of Variational Inference: Inner and Outer Approximation Lecturer: Eric P. Xing Scribes: Yu-Hsin Kuo, Amos Ng 1 Introduction Last lecture

More information

Part 8: Rigid Body Dynamics

Part 8: Rigid Body Dynamics Document that contains homework problems. Comment out the solutions when printing off for students. Part 8: Rigid Body Dynamics Problem 1. Inertia review Find the moment of inertia for a thin uniform rod

More information