Time-Optimal Automobile Test Drives with Gear Shifts

Size: px
Start display at page:

Download "Time-Optimal Automobile Test Drives with Gear Shifts"

Transcription

1 Time-Optimal Control of Automobile Test Drives with Gear Shifts Christian Kirches Interdisciplinary Center for Scientific Computing (IWR) Ruprecht-Karls-University of Heidelberg, Germany joint work with Sebastian Sager, Hans Georg Bock, Johannes P. Schlöder International Workshop on Hybrid Systems Koç University, Istanbul, Turkey May 15, 2008

2 Outline of the Talk Introduction 1 Introduction 2 3 A Mixed-Integer Optimal Control Approach 4 Test-driving Scenarios & Computational Results 5

3 Introduction Outline of the Talk Introduction Mixed-Integer Optimal Control (MIOC) Optimization of dynamic processes, Nonlinear stiff/non-stiff ODE/DAE models, Discrete and continuous controls, Nonlinear constraints. Tasks Reduce infinite-dimensional MIOCP to NLP. Want to avoid MINLP: How to treat discrete controls? Applications Chemistry, Bioinformatics, Engineering, Economics,...

4 Outline of the Talk Introduction Introduction Today s Application Driver shall complete a prescribed track: Time optimal, energy optimal, pareto, periodic,... ODE model: Vehicle dynamics. Continuous decisions: Acceleration, brakes, steering wheel? Discrete decisions: When to select which gear? Constraints: Stay on track, control bounds, engine speed,...

5 Forces Introduction Forces States Controls F sf, F lf, F sr, F lr : Side and lateral forces at front and rear tyre (Pacejka), F Ax, F Ay : Accelerating forces attacking car s c.o.g. Source: M. Gerdts, Solving mixed-integer optimal control problems by branch&bound: A case study from automobile test-driving with gear shift. Opt. Contr. Appl. Meth. 2005; 26:118.

6 Coordinates Introduction Forces States Controls x, y Global coordinate system, e SP c x, c y ψ Displacement of car s center of gravity, Car body s geometric center, Angle of longitudinal axis against global ordinate.

7 Angles Introduction Forces States Controls α f α r β δ Front wheel s direction of movement against longitudinal axis, Rear wheel s direction of movement against longitudinal axis, Car s direction of movement against longitudinal axis, Steering wheel angle against longitudinal axis.

8 Velocities Introduction Forces States Controls v f, v r Front and rear wheel s velocity into directions α f, α r, v Car s velocity into direction β.

9 Forces States Controls Controls δ in [ 0.5, 0.5] R: Time derivative of steering wheel angle, φ in [0, 1] R: Pedal position, translates to engine torque M eng, F brk in [0, ] R: Braking force. µ in {1, 2, 3, 4, 5} Z: Selected gear, translates to gearbox transm. ratio i µ g. Model part relevant for µ: Rear wheel drive F µ lr := i µ g i r R Mµ eng(φ, w µ eng) F Br F Rr, M eng µ (φ, w eng µ ) := some nonlinear function of φ and engine speed weng in gear µ

10 Optimal Control Problem Class Problem Class Solution by Multiple Shooting Treatment of Integer Controls Optimal Control Problem min t f,x( ),u( ),p φ(t f, x(t f ), p) s.t. ẋ(t) = f (t, x(t), u(t), p) t [t 0, t f ] 0 c(t, x(t), u(t), p) t [t 0, t f ] 0 = r eq (t 0, x(t 0 ),..., t m, x(t m), p) 0 r in (t 0, x(t 0 ),..., t m, x(t m), p) u(t) U R nu t [t 0, t f ] ODE states trajectory x( ), control functions u( ), Free final time t f and global parameters p.

11 Problem Class Solution by Multiple Shooting Treatment of Integer Controls Bock s Direct Multiple Shooting Method: Controls Discretization Grid Select a partition of the time horizon [t 0, t f ] into m 1 intervals t 0 < t 1 <... < t m 1 < t m = t f. Control Discretization Select n q base functions b j : R R nu. Using control parameters q R nq, let for all 0 i m 1 n q u i (t) := q ij b ij (t) t [t i, t i+1 ] j=1 Choices: Piecewise constant/linear/cubic splines, continuity by external constraints.

12 Problem Class Solution by Multiple Shooting Treatment of Integer Controls Bock s Direct Multiple Shooting Method: States State Discretization Introduce initial states s i for 0 i m 1 and solve m IVPs ẋ i (t) = f (t, x i (t), q i, p) t [t i, t i+1 ] x i (t i ) := s i s i+1 = x(t i+1 ; t i, s i, q i, p) Advantages Existence of solution of IVP, Improve condition of BVP, Distribute nonlinearity, Supply additional a-priori information using the s i, Use state-of-the-art adaptive ODE/DAE solver with IND.

13 Problem Class Solution by Multiple Shooting Treatment of Integer Controls Bock s Direct Multiple Shooting Method: Discrete NLP Optimal Control NLP min t f,s i,q i,p φ(t f, s m, p) s.t. ẋ i (t) = f (t, x i (t), q i, p) t [t i, t i+1 ] i 0 = s i+1 x i (t i+1 ; t i, s i, q i, p) i 0 = r eq (t 0, x 0, q 0,..., t m, x m, q m, p) 0 r in (t 0, x 0, q 0,..., t m, x m, q m, p) x i (t i+1 ; t i, s i, q i, p) denotes end point of solution of IVP i depending on initial values of t i, s i, q i, and p.

14 Problem Class Solution by Multiple Shooting Treatment of Integer Controls Bock s Direct Multiple Shooting Method: Solution of NLP Exploiting Structure Partial separability of objective, Can evaluate intervals in parallel, Block sparse jacobians and hessians, High-rank updates to hessian (modified L-BFGS). Solution of NLP by structured SQP method Reduce NLP to size of single shooting system, Dense active-set QP solvers: QPSOL, QPOPT, qpoases,...

15 Problem Class Solution by Multiple Shooting Treatment of Integer Controls Mixed-Integer Optimal Control Problem Class Optimal Control Problem min t f,x( ),u( ),ω( ),p φ(t f, x(t f ), p) s.t. ẋ(t) = f (t, x(t), u(t), ω(t), p) t [t 0, t f ] 0 c(t, x(t), u(t), ω(t), p) t [t 0, t f ] 0 = r eq (t 1, x(t 1 ),..., t m, x(t m), p) 0 r in (t 1, x(t 1 ),..., t m, x(t m), p) u(t) U R nu t [t 0, t f ] ω(t) Ω R nω t [t 0, t f ] Ω := {ω 1, ω 2,..., ω nw } R nω is a finite set of control choices, Ω <.

16 Problem Class Solution by Multiple Shooting Treatment of Integer Controls Inner Convexification for Integer Controls Inner Convexification Let Ω be the finite set of all control choices. Relax ω(t) Ω to w(t) conv Ω R nω. Effects + Same number of controls n ω. + Dense QPs solvers faster, less active set changes. Model must be evaluatable & valid for potentially nonintegral w(t). How to reconstruct integral choice ω (t) from relaxed w (t)?

17 Problem Class Solution by Multiple Shooting Treatment of Integer Controls Outer Convexification for Integer Controls Outer Convexification For all t and for each member ω i Ω R nω introduce w i (t) {0, 1}. Let then ω(t) := n w ω i w i (t), 1 = n w i=1 i=1 w i (t) (SOS1) Relax all w i (t) {0, 1} to w i (t) [0, 1] R to obtain choice ω(t). Effects Increased number of controls n w = Ω instead of n ω. + Model can rely on integrality of the fixed evaluation points ω i. + Relaxed solution often bang-bang in w i (t), thus integer. + If not, SUR-0.5 as ε-approximative scheme.

18 Avoiding an Obstacle Introduction Scenario 1: Avoiding an Obstacle Computational Effort Scenario 2: Racing on an ellipsoidal track Start to the left, driving straight ahead at 10 km/h. Complete track in a time-optimal fashion. Predefined evasive manoeuvre to avoid obstacle.

19 Avoiding an Obstacle: Initialization Scenario 1: Avoiding an Obstacle Computational Effort Scenario 2: Racing on an ellipsoidal track Example: 40 multiple shooting nodes.

20 Avoiding an Obstacle: Solution Scenario 1: Avoiding an Obstacle Computational Effort Scenario 2: Racing on an ellipsoidal track Example: 40 multiple shooting nodes. Differential state trajectories: Control trajectories:

21 Scenario 1: Avoiding an Obstacle Computational Effort Scenario 2: Racing on an ellipsoidal track Avoiding an Obstacle: Constraint Discretization Example: 10, 40, and 80 multiple shooting nodes.

22 Why is it integer? Introduction Scenario 1: Avoiding an Obstacle Computational Effort Scenario 2: Racing on an ellipsoidal track Maximum indicated engine torque depending on velocity.

23 Scenario 1: Avoiding an Obstacle Computational Effort Scenario 2: Racing on an ellipsoidal track Computation Times Branch & Bound N t f hh:mm:ss 10 not given :23: :25: [M. Gerdts, 2005] on a P-III 750 MHz Outer Convexification N t f hh:mm:ss :00: :00: :00: :04:19 [K. et al., 2008] on an Athlon 2166 MHz

24 Racing on an ellipsoidal track Scenario 1: Avoiding an Obstacle Computational Effort Scenario 2: Racing on an ellipsoidal track Ellipsoidal track of 340m x 160m, Width of 5 car widths, Find time-optimal periodic solution.

25 Racing on an ellipsoidal track: Solution Scenario 1: Avoiding an Obstacle Computational Effort Scenario 2: Racing on an ellipsoidal track Differential state trajectories: Control trajectories:

26 Racing on an ellipsoidal track: Solution Scenario 1: Avoiding an Obstacle Computational Effort Scenario 2: Racing on an ellipsoidal track

27 Extensions and Future Work Thank you Future Work More complicated tasks More complicated circuits (think Istanbul Park, Hockenheimring,...); requires slight modification of model & coordinate system. More detailed modelling of integer decision effects. More sophisticated techniques For longer tracks: use a moving horizon optimization technique. Closed-loop offline optimization. Closed-loop online optimization with an industry partner. Real-time Feasibility Computation for reasonable discretization quite fast. Active set QP can solve a sequence of related problems at cheap additional cost.

28 Extensions and Future Work Thank you References References C. Kirches, S. Sager, H.G. Bock, J.P. Schlöder. Time-optimal control of automobile test drives with gear shifts. Opt. Contr. Appl. Meth. 2008; (submitted). M. Gerdts. Solving mixed-integer optimal control problems by branch&bound: A case study from automobile test-driving with gear shift. Opt. Contr. Appl. Meth. 2005; 26:1-18. M. Gerdts. A variable time transformation method for mixed-integer optimal control problems. Opt. Contr. Appl. and Meth. 2006; 27(3): S. Sager. Numerical methods for mixedinteger optimal control problems. Der andere Verlag: Tönning, Lübeck, Marburg, isbn

29 Extensions and Future Work Thank you Thank you for your attention. Questions?

On Perspective Functions, Vanishing Constraints, and Complementarity Programming

On Perspective Functions, Vanishing Constraints, and Complementarity Programming On Perspective Functions, Vanishing Constraints, and Complementarity Programming Fast Mixed-Integer Nonlinear Feedback Control Christian Kirches 1, Sebastian Sager 2 1 Interdisciplinary Center for Scientific

More information

On Perspective Functions and Vanishing Constraints in Mixed-Integer Nonlinear Optimal Control

On Perspective Functions and Vanishing Constraints in Mixed-Integer Nonlinear Optimal Control On Perspective Functions and Vanishing Constraints in Mixed-Integer Nonlinear Optimal Control Michael N. Jung and Christian Kirches and Sebastian Sager Abstract Logical implications appear in a number

More information

Direct Methods. Moritz Diehl. Optimization in Engineering Center (OPTEC) and Electrical Engineering Department (ESAT) K.U.

Direct Methods. Moritz Diehl. Optimization in Engineering Center (OPTEC) and Electrical Engineering Department (ESAT) K.U. Direct Methods Moritz Diehl Optimization in Engineering Center (OPTEC) and Electrical Engineering Department (ESAT) K.U. Leuven Belgium Overview Direct Single Shooting Direct Collocation Direct Multiple

More information

Time-optimal control of automobile test drives with gear shifts

Time-optimal control of automobile test drives with gear shifts OPTIMAL CONTROL APPLICATIONS AND METHODS Optim. Control Appl. Meth. (2009) Published online in Wiley InterScience (www.interscience.wiley.com)..892 Time-optimal control of automobile test drives with gear

More information

The single track model

The single track model The single track model Dr. M. Gerdts Uniersität Bayreuth, SS 2003 Contents 1 Single track model 1 1.1 Geometry.................................... 1 1.2 Computation of slip angles...........................

More information

Combinatorial Integral Approximation for Mixed-Integer Nonlinear Optimal Control

Combinatorial Integral Approximation for Mixed-Integer Nonlinear Optimal Control Combinatorial Integral Approximation for Mixed-Integer Nonlinear Optimal Control Sebastian Sager Junior Research Group Mathematical and Computational Optimization Interdisciplinary Center for Scientific

More information

We provide two sections from the book (in preparation) Intelligent and Autonomous Road Vehicles, by Ozguner, Acarman and Redmill.

We provide two sections from the book (in preparation) Intelligent and Autonomous Road Vehicles, by Ozguner, Acarman and Redmill. We provide two sections from the book (in preparation) Intelligent and Autonomous Road Vehicles, by Ozguner, Acarman and Redmill. 2.3.2. Steering control using point mass model: Open loop commands We consider

More information

Numerical Optimal Control Overview. Moritz Diehl

Numerical Optimal Control Overview. Moritz Diehl Numerical Optimal Control Overview Moritz Diehl Simplified Optimal Control Problem in ODE path constraints h(x, u) 0 initial value x0 states x(t) terminal constraint r(x(t )) 0 controls u(t) 0 t T minimize

More information

Hot-Starting NLP Solvers

Hot-Starting NLP Solvers Hot-Starting NLP Solvers Andreas Wächter Department of Industrial Engineering and Management Sciences Northwestern University waechter@iems.northwestern.edu 204 Mixed Integer Programming Workshop Ohio

More information

Simple Car Dynamics. Outline. Claude Lacoursière HPC2N/VRlab, Umeå Universitet, Sweden, May 18, 2005

Simple Car Dynamics. Outline. Claude Lacoursière HPC2N/VRlab, Umeå Universitet, Sweden, May 18, 2005 Simple Car Dynamics Claude Lacoursière HPC2N/VRlab, Umeå Universitet, Sweden, and CMLabs Simulations, Montréal, Canada May 18, 2005 Typeset by FoilTEX May 16th 2005 Outline basics of vehicle dynamics different

More information

Direct and indirect methods for optimal control problems and applications in engineering

Direct and indirect methods for optimal control problems and applications in engineering Direct and indirect methods for optimal control problems and applications in engineering Matthias Gerdts Computational Optimisation Group School of Mathematics The University of Birmingham gerdtsm@maths.bham.ac.uk

More information

Trajectory Planning and Collision Detection for Robotics Applications

Trajectory Planning and Collision Detection for Robotics Applications Trajectory Planning and Collision Detection for Robotics Applications joint work with Rene Henrion, Dietmar Homberg, Chantal Landry (WIAS) Institute of Mathematics and Applied Computing Department of Aerospace

More information

ELEC4631 s Lecture 2: Dynamic Control Systems 7 March Overview of dynamic control systems

ELEC4631 s Lecture 2: Dynamic Control Systems 7 March Overview of dynamic control systems ELEC4631 s Lecture 2: Dynamic Control Systems 7 March 2011 Overview of dynamic control systems Goals of Controller design Autonomous dynamic systems Linear Multi-input multi-output (MIMO) systems Bat flight

More information

Low Complexity MPC Schemes for Integrated Vehicle Dynamics Control Problems

Low Complexity MPC Schemes for Integrated Vehicle Dynamics Control Problems AVEC 8 Low Complexity MPC Schemes for Integrated Vehicle Dynamics Control Problems Paolo Falcone, a Francesco Borrelli, b H. Eric Tseng, Jahan Asgari, Davor Hrovat c a Department of Signals and Systems,

More information

Robust Model Predictive Control for Autonomous Vehicle/Self-Driving Cars

Robust Model Predictive Control for Autonomous Vehicle/Self-Driving Cars Robust Model Predictive Control for Autonomous Vehicle/Self-Driving Cars Che Kun Law, Darshit Dalal, Stephen Shearrow A robust Model Predictive Control (MPC) approach for controlling front steering of

More information

An Active-Set Quadratic Programming Method Based On Sequential Hot-Starts

An Active-Set Quadratic Programming Method Based On Sequential Hot-Starts An Active-Set Quadratic Programg Method Based On Sequential Hot-Starts Travis C. Johnson, Christian Kirches, and Andreas Wächter October 7, 203 Abstract A new method for solving sequences of quadratic

More information

MPC Infeasibility Handling

MPC Infeasibility Handling MPC Handling Thomas Wiese, TU Munich, KU Leuven supervised by H.J. Ferreau, Prof. M. Diehl (both KUL) and Dr. H. Gräb (TUM) October 9, 2008 1 / 42 MPC General MPC Strategies 2 / 42 Linear Discrete-Time

More information

A study on wheel force measurement using strain gauge equipped wheels

A study on wheel force measurement using strain gauge equipped wheels A study on wheel force measurement using strain gauge equipped wheels PAVLOS MAVROMATIDIS a, ANDREAS KANARACHOS b Electrical Engineering Department a, Mechanical Engineering Department b Frederick University

More information

Optimal Control for Race Car Minimum Time Maneuvering

Optimal Control for Race Car Minimum Time Maneuvering Optimal Control for Race Car Minimum Time Maneuvering Master of Science Thesis Delft Center for Systems and Control Optimal Control for Race Car Minimum Time Maneuvering Master of Science Thesis For the

More information

On Perspective Functions and Vanishing Constraints in Mixed-Integer Nonlinear Optimal Control

On Perspective Functions and Vanishing Constraints in Mixed-Integer Nonlinear Optimal Control On Perspective Functions and Vanishing Constraints in Mixed-Integer Nonlinear Optimal Control Michael N. Jung, Christian Kirches, and Sebastian Sager Abstract Logical implications appear in a number of

More information

Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Closed-form Solution

Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Closed-form Solution Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Closed-form Solution Alexander Viehweider Dept. of Advanced Energy The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan

More information

The Lifted Newton Method and Its Use in Optimization

The Lifted Newton Method and Its Use in Optimization The Lifted Newton Method and Its Use in Optimization Moritz Diehl Optimization in Engineering Center (OPTEC), K.U. Leuven, Belgium joint work with Jan Albersmeyer (U. Heidelberg) ENSIACET, Toulouse, February

More information

Extending the Inverse Vehicle Propulsion Simulation Concept -To Improve Simulation Performance

Extending the Inverse Vehicle Propulsion Simulation Concept -To Improve Simulation Performance Linköping Studies in Science and Technology Thesis No. 1181 Extending the Inverse Vehicle Propulsion Simulation Concept -To Improve Simulation Performance Anders Fröberg Department of Electrical Engineering

More information

Development of the new MINLP Solver Decogo using SCIP - Status Report

Development of the new MINLP Solver Decogo using SCIP - Status Report Development of the new MINLP Solver Decogo using SCIP - Status Report Pavlo Muts with Norman Breitfeld, Vitali Gintner, Ivo Nowak SCIP Workshop 2018, Aachen Table of contents 1. Introduction 2. Automatic

More information

Software for Integer and Nonlinear Optimization

Software for Integer and Nonlinear Optimization Software for Integer and Nonlinear Optimization Sven Leyffer, leyffer@mcs.anl.gov Mathematics & Computer Science Division Argonne National Laboratory Roger Fletcher & Jeff Linderoth Advanced Methods and

More information

Deterministic Global Optimization Algorithm and Nonlinear Dynamics

Deterministic Global Optimization Algorithm and Nonlinear Dynamics Deterministic Global Optimization Algorithm and Nonlinear Dynamics C. S. Adjiman and I. Papamichail Centre for Process Systems Engineering Department of Chemical Engineering and Chemical Technology Imperial

More information

Robotics, Geometry and Control - A Preview

Robotics, Geometry and Control - A Preview Robotics, Geometry and Control - A Preview Ravi Banavar 1 1 Systems and Control Engineering IIT Bombay HYCON-EECI Graduate School - Spring 2008 Broad areas Types of manipulators - articulated mechanisms,

More information

Time-optimal Race Car Driving using an Online Exact Hessian based Nonlinear MPC Algorithm

Time-optimal Race Car Driving using an Online Exact Hessian based Nonlinear MPC Algorithm Time-optimal Race Car Driving using an Online Exact Hessian based Nonlinear MPC Algorithm Robin Verschueren 1, Mario Zanon 3, Rien Quirynen 1,2, Moritz Diehl 1 Abstract This work presents an embedded nonlinear

More information

Trajectory Tracking Control of Bimodal Piecewise Affine Systems

Trajectory Tracking Control of Bimodal Piecewise Affine Systems 25 American Control Conference June 8-1, 25. Portland, OR, USA ThB17.4 Trajectory Tracking Control of Bimodal Piecewise Affine Systems Kazunori Sakurama, Toshiharu Sugie and Kazushi Nakano Abstract This

More information

A Model Predictive Control Approach for Combined Braking and Steering in Autonomous Vehicles

A Model Predictive Control Approach for Combined Braking and Steering in Autonomous Vehicles A Model Predictive Control Approach for Combined Braking and Steering in Autonomous Vehicles Paolo Falcone, Francesco Borrelli, Jahan Asgari, H. Eric Tseng, Davor Hrovat Università del Sannio, Dipartimento

More information

Team-Exercises for DGC 100 Modelica Course

Team-Exercises for DGC 100 Modelica Course Team-Exercises for DGC 100 Modelica Course Hubertus Tummescheit United Technologies Research Center, East Hartford, CT 06108. November 4, 2003 Abstract This document is a preliminary version and is going

More information

Prediktivno upravljanje primjenom matematičkog programiranja

Prediktivno upravljanje primjenom matematičkog programiranja Prediktivno upravljanje primjenom matematičkog programiranja Doc. dr. sc. Mato Baotić Fakultet elektrotehnike i računarstva Sveučilište u Zagrebu www.fer.hr/mato.baotic Outline Application Examples PredictiveControl

More information

Nonlinear Regulation for Motorcycle Maneuvering

Nonlinear Regulation for Motorcycle Maneuvering Nonlinear Regulation for Motorcycle Maneuvering John Hauser Univ of Colorado in collaboration with Alessandro Saccon* & Ruggero Frezza, Univ Padova * email asaccon@dei.unipd.it for dissertation aggressive

More information

Optimum Experimental Design for Nonlinear Dynamical Models Mathematical Basic Research of High Economic Impact

Optimum Experimental Design for Nonlinear Dynamical Models Mathematical Basic Research of High Economic Impact Optimum Experimental Design for Nonlinear Dynamical Models Mathematical Basic Research of High Economic Impact Hans Georg Bock, Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University

More information

AP Physics 1 Summer Assignment (2014)

AP Physics 1 Summer Assignment (2014) Name: Date: AP Physics 1 Summer Assignment (2014) Instructions: 1. Read and study Chapter 2 Describing Motion: Kinematics in One Dimension. 2. Answer the questions below. 3. Submit your answers online

More information

Distributed and Real-time Predictive Control

Distributed and Real-time Predictive Control Distributed and Real-time Predictive Control Melanie Zeilinger Christian Conte (ETH) Alexander Domahidi (ETH) Ye Pu (EPFL) Colin Jones (EPFL) Challenges in modern control systems Power system: - Frequency

More information

Robotics. Dynamics. Marc Toussaint U Stuttgart

Robotics. Dynamics. Marc Toussaint U Stuttgart Robotics Dynamics 1D point mass, damping & oscillation, PID, dynamics of mechanical systems, Euler-Lagrange equation, Newton-Euler recursion, general robot dynamics, joint space control, reference trajectory

More information

Suboptimal Open-loop Control Using POD. Stefan Volkwein

Suboptimal Open-loop Control Using POD. Stefan Volkwein Institute for Mathematics and Scientific Computing University of Graz, Austria PhD program in Mathematics for Technology Catania, May 22, 2007 Motivation Optimal control of evolution problems: min J(y,

More information

Hybrid Electric Vehicle energy management control based on stochastic dynamic programming

Hybrid Electric Vehicle energy management control based on stochastic dynamic programming DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE Hybrid Electric Vehicle energy management control based on stochastic dynamic programming Master Degree Candidate Enrico Mion Advisor Prof. Maria Elena Valcher

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 6.4/43 Principles of Autonomy and Decision Making Lecture 8: (Mixed-Integer) Linear Programming for Vehicle Routing and Motion Planning Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute

More information

String tyre model for evaluating steering agility performance using tyre cornering force and lateral static characteristics

String tyre model for evaluating steering agility performance using tyre cornering force and lateral static characteristics Vehicle System Dynamics International Journal of Vehicle Mechanics and Mobility ISSN: 0042-3114 (Print) 1744-5159 (Online) Journal homepage: http://www.tandfonline.com/loi/nvsd20 String tyre model for

More information

Research Article Minimum Time Approach to Emergency Collision Avoidance by Vehicle Handling Inverse Dynamics

Research Article Minimum Time Approach to Emergency Collision Avoidance by Vehicle Handling Inverse Dynamics Mathematical Problems in Engineering Volume 2015 Article ID 276460 9 pages http://dx.doi.org/10.1155/2015/276460 Research Article Minimum Time Approach to Emergency Collision Avoidance by Vehicle Handling

More information

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 6. Lagrangian Relaxation 6.3 Lagrangian Relaxation and Integer Programming Fall 2010 Instructor: Dr. Masoud Yaghini Integer Programming Outline Branch-and-Bound Technique

More information

Efficient upper and lower bounds for global mixed-integer optimal control

Efficient upper and lower bounds for global mixed-integer optimal control Optimization Online preprint Efficient upper and lower bounds for global mixed-integer optimal control Sebastian Sager Mathieu Claeys Frédéric Messine Received: date / Accepted: date Abstract We present

More information

Robot Control Basics CS 685

Robot Control Basics CS 685 Robot Control Basics CS 685 Control basics Use some concepts from control theory to understand and learn how to control robots Control Theory general field studies control and understanding of behavior

More information

Optimization of a Nonlinear Workload Balancing Problem

Optimization of a Nonlinear Workload Balancing Problem Optimization of a Nonlinear Workload Balancing Problem Stefan Emet Department of Mathematics and Statistics University of Turku Finland Outline of the talk Introduction Some notes on Mathematical Programming

More information

CONTROL OF THE NONHOLONOMIC INTEGRATOR

CONTROL OF THE NONHOLONOMIC INTEGRATOR June 6, 25 CONTROL OF THE NONHOLONOMIC INTEGRATOR R. N. Banavar (Work done with V. Sankaranarayanan) Systems & Control Engg. Indian Institute of Technology, Bombay Mumbai -INDIA. banavar@iitb.ac.in Outline

More information

An Efficient Nonlinear Model-Predictive Eco-Cruise Control for Electric Vehicles

An Efficient Nonlinear Model-Predictive Eco-Cruise Control for Electric Vehicles An Efficient Nonlinear Model-Predictive Eco-Cruise Control for Electric Vehicles Tim Schwickart, Holger Voos and Jean-Régis Hadji-Minaglou University of Luxembourg L-1359 Luxembourg, Luxembourg Email:

More information

Integer Programming. Wolfram Wiesemann. December 6, 2007

Integer Programming. Wolfram Wiesemann. December 6, 2007 Integer Programming Wolfram Wiesemann December 6, 2007 Contents of this Lecture Revision: Mixed Integer Programming Problems Branch & Bound Algorithms: The Big Picture Solving MIP s: Complete Enumeration

More information

Chapter 2 Optimal Control Problem

Chapter 2 Optimal Control Problem Chapter 2 Optimal Control Problem Optimal control of any process can be achieved either in open or closed loop. In the following two chapters we concentrate mainly on the first class. The first chapter

More information

SOP Release. FEV Chassis Reliable Partner in Chassis Development. FEV Chassis Applications and Activities. Concept Layout. Design

SOP Release. FEV Chassis Reliable Partner in Chassis Development. FEV Chassis Applications and Activities. Concept Layout. Design CHASSIS Reliable Partner in Chassis Development FEV Chassis Applications and Activities Founded in 1978, FEV is an internationally recognized leader in the design and development of internal combustion

More information

Introduction to centralized control

Introduction to centralized control Industrial Robots Control Part 2 Introduction to centralized control Independent joint decentralized control may prove inadequate when the user requires high task velocities structured disturbance torques

More information

A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse

A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse Ted Ralphs 1 Joint work with Menal Güzelsoy 2 and Anahita Hassanzadeh 1 1 COR@L Lab, Department of Industrial

More information

An SR1/BFGS SQP algorithm for nonconvex nonlinear programs with block-diagonal Hessian matrix

An SR1/BFGS SQP algorithm for nonconvex nonlinear programs with block-diagonal Hessian matrix Math. Prog. Comp. (2016) 8:435 459 DOI 10.1007/s12532-016-0101-2 FULL LENGTH PAPER An SR1/BFGS SQP algorithm for nonconvex nonlinear programs with block-diagonal Hessian matrix Dennis Janka 1 Christian

More information

Trajectory Planning Using High-Order Polynomials under Acceleration Constraint

Trajectory Planning Using High-Order Polynomials under Acceleration Constraint Journal of Optimization in Industrial Engineering (07) -6 Trajectory Planning Using High-Order Polynomials under Acceleration Constraint Hossein Barghi Jond a,*,vasif V. Nabiyev b, Rifat Benveniste c a

More information

arxiv: v1 [math.oc] 27 Oct 2016

arxiv: v1 [math.oc] 27 Oct 2016 A Multiobjective MPC Approach for Autonomously Driven Electric Vehicles Sebastian Peitz *, Kai Schäfer *, Sina Ober-Blöbaum **, Julian Eckstein ***, Ulrich Köhler ***, and Michael Dellnitz * * Department

More information

Real-time energy management of the Volvo V60 PHEV based on a closed-form minimization of the Hamiltonian

Real-time energy management of the Volvo V60 PHEV based on a closed-form minimization of the Hamiltonian Real-time energy management of the Volvo V6 PHEV based on a closed-form minimization of the Hamiltonian Viktor Larsson 1, Lars Johannesson 1, Bo Egardt 1 Andreas Karlsson 2, Anders Lasson 2 1 Department

More information

Quadrotor Modeling and Control for DLO Transportation

Quadrotor Modeling and Control for DLO Transportation Quadrotor Modeling and Control for DLO Transportation Thesis dissertation Advisor: Prof. Manuel Graña Computational Intelligence Group University of the Basque Country (UPV/EHU) Donostia Jun 24, 2016 Abstract

More information

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Institut für Mathematik M7 - A Skateboard(v1.) Andreas Steinbrecher Preprint 216/8 Preprint-Reihe des Instituts für Mathematik Technische Universität Berlin http://www.math.tu-berlin.de/preprints

More information

MA 108 Math The Language of Engineers. Stan Żak. School of Electrical and Computer Engineering

MA 108 Math The Language of Engineers. Stan Żak. School of Electrical and Computer Engineering MA 108Math The Language of Engineers p. 1/2 MA 108 Math The Language of Engineers Stan Żak School of Electrical and Computer Engineering October 14, 2010 MA 108Math The Language of Engineers p. 2/2 Outline

More information

An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization

An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with Travis Johnson, Northwestern University Daniel P. Robinson, Johns

More information

Optimal Control Theory SF 2852

Optimal Control Theory SF 2852 Optimal Control Theory SF 2852 Johan Karlsson Optimization and Systems Theory, Department of Mathematics Royal Institute of Technology (KTH) Spring 2017 Optimal Control Theory SF 2852 1 Course information

More information

Dynamic and Adversarial Reachavoid Symbolic Planning

Dynamic and Adversarial Reachavoid Symbolic Planning Dynamic and Adversarial Reachavoid Symbolic Planning Laya Shamgah Advisor: Dr. Karimoddini July 21 st 2017 Thrust 1: Modeling, Analysis and Control of Large-scale Autonomous Vehicles (MACLAV) Sub-trust

More information

Introduction to centralized control

Introduction to centralized control ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Control Part 2 Introduction to centralized control Independent joint decentralized control may prove inadequate when the user requires high task

More information

Estimation of Tire-Road Friction by Tire Rotational Vibration Model

Estimation of Tire-Road Friction by Tire Rotational Vibration Model 53 Research Report Estimation of Tire-Road Friction by Tire Rotational Vibration Model Takaji Umeno Abstract Tire-road friction is the most important piece of information used by active safety systems.

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING TW32 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) AUTOMOTIVE PERFORMANCE ENGINEERING and BSC (HONS) MOTORSPORT TECHNOLOGY EXAMINATION SEMESTER 2-2015/2016 VEHICLE DYNAMICS AND ADVANCED ELECTRONICS

More information

DRIVE RESPONSIBLY, ARRIVE SAFELY! Advice for driving in wintry conditions. We wish you a safe and comfortable journey!

DRIVE RESPONSIBLY, ARRIVE SAFELY! Advice for driving in wintry conditions. We wish you a safe and comfortable journey! DRIVE RESPONSIBLY, ARRIVE SAFELY! Advice for driving in wintry conditions We wish you a safe and comfortable journey! WHAT ARE WINTRY ROAD CONDITIONS? The road conditions are considered to be wintry when

More information

Analysis and Design of an Electric Vehicle using Matlab and Simulink

Analysis and Design of an Electric Vehicle using Matlab and Simulink Analysis and Design of an Electric Vehicle using Matlab and Simulink Advanced Support Group January 22, 29 23-27: University of Michigan Research: Optimal System Partitioning and Coordination Original

More information

Optimization-Based Control

Optimization-Based Control Optimization-Based Control Richard M. Murray Control and Dynamical Systems California Institute of Technology DRAFT v2.1a, November 20, 2016 c California Institute of Technology All rights reserved. This

More information

A motion planner for nonholonomic mobile robots

A motion planner for nonholonomic mobile robots A motion planner for nonholonomic mobile robots Miguel Vargas Material taken form: J. P. Laumond, P. E. Jacobs, M. Taix, R. M. Murray. A motion planner for nonholonomic mobile robots. IEEE Transactions

More information

Functional Mockup Interface (FMI)

Functional Mockup Interface (FMI) Functional Mockup Interface (FMI) A framework for coarse-grained parallel time integration in nonlinear system dynamics PinT 2015 4th Workshop on Parallel-in-Time Integration May 2015, Dresden, Germany

More information

TAM 212 Worksheet 5: Car steering

TAM 212 Worksheet 5: Car steering Name: Group members: TM 212 Worksheet 5: ar steering This worksheet aims to understand how cars steer. The #avs webpage on Steering geometry illustrates the basic ideas. On the diagram below, the kingpins

More information

Momentum-centric whole-body control and kino-dynamic motion generation for floating-base robots

Momentum-centric whole-body control and kino-dynamic motion generation for floating-base robots Momentum-centric whole-body control and kino-dynamic motion generation for floating-base robots Alexander Herzog The Movement Generation and Control Group (Ludovic Righetti) Conflicting tasks & constraints

More information

EE C128 / ME C134 Feedback Control Systems

EE C128 / ME C134 Feedback Control Systems EE C128 / ME C134 Feedback Control Systems Lecture Additional Material Introduction to Model Predictive Control Maximilian Balandat Department of Electrical Engineering & Computer Science University of

More information

Underwater vehicles: a surprising non time-optimal path

Underwater vehicles: a surprising non time-optimal path Underwater vehicles: a surprising non time-optimal path M. Chyba Abstract his paper deals with the time-optimal problem for a class of underwater vehicles. We prove that if two configurations at rest can

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction CHAPTER 1 Introduction Linear geometric control theory was initiated in the beginning of the 1970 s, see for example, [1, 7]. A good summary of the subject is the book by Wonham [17]. The term geometric

More information

Collision warning system based on probability density functions van den Broek, T.H.A.; Ploeg, J.

Collision warning system based on probability density functions van den Broek, T.H.A.; Ploeg, J. Collision warning system based on probability density functions van den Broek, T.H.A.; Ploeg, J. Published in: Proceedings of the 7th International Workshop on Intelligent Transportation WIT 2010, 23-24

More information

Funnel control in mechatronics: An overview

Funnel control in mechatronics: An overview Funnel control in mechatronics: An overview Position funnel control of stiff industrial servo-systems C.M. Hackl 1, A.G. Hofmann 2 and R.M. Kennel 1 1 Institute for Electrical Drive Systems and Power Electronics

More information

Single-track models of an A-double heavy vehicle combination

Single-track models of an A-double heavy vehicle combination Single-track models of an A-double heavy vehicle combination PETER NILSSON KRISTOFFER TAGESSON Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics Group

More information

Generation and Representation of Piecewise Polyhedral Value Functions

Generation and Representation of Piecewise Polyhedral Value Functions Generation and Representation of Piecewise Polyhedral Value Functions Ted Ralphs 1 Joint work with Menal Güzelsoy 2 and Anahita Hassanzadeh 1 1 COR@L Lab, Department of Industrial and Systems Engineering,

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Rigid body physics Particle system Most simple instance of a physics system Each object (body) is a particle Each particle

More information

Motion. Aristotle. Motion: usually something abstract, such as the laws of motion.

Motion. Aristotle. Motion: usually something abstract, such as the laws of motion. Motion Key Words position graph uniform speed trajectory ax-is (-es plural) motion velocity velocity unit movement distance acceleration relative displacement rectilinear deceleration A body in motion

More information

A first car following model

A first car following model A first car following model CE 391F March 21, 2013 ANNOUNCEMENTS Homework 3 to be posted this weekend Course project abstracts due Tuesday Announcements REVIEW Driver characteristics... Reaction time and

More information

DYNAMIC MODELLING AND IDENTIFICATION OF A CAR. Gentiane Venture* Wisama Khalil** Maxime Gautier** Philippe Bodson*

DYNAMIC MODELLING AND IDENTIFICATION OF A CAR. Gentiane Venture* Wisama Khalil** Maxime Gautier** Philippe Bodson* DYNAMIC MODELLING AND IDENTIFICATION OF A CAR Gentiane Venture* Wisama Khalil** Maxime Gautier** Philippe Bodson* *P.S.A. Peugeot Citroën Direction Plates-formes, Techniques et Achats Route de Gisy 78943

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67 1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure

More information

Observability matrix and parameter identification: application to vehicle tire cornering stiffness

Observability matrix and parameter identification: application to vehicle tire cornering stiffness Proceedings of the th IEEE Conference on Decision and Control, and the European Control Conference 005 Seville, Spain, December -5, 005 ThA3.5 Observability matrix and parameter identification: application

More information

2nd International Conference on Electronic & Mechanical Engineering and Information Technology (EMEIT-2012)

2nd International Conference on Electronic & Mechanical Engineering and Information Technology (EMEIT-2012) Estimation of Vehicle State and Road Coefficient for Electric Vehicle through Extended Kalman Filter and RS Approaches IN Cheng 1, WANG Gang 1, a, CAO Wan-ke 1 and ZHOU Feng-jun 1, b 1 The National Engineering

More information

Learning Model Predictive Control for Iterative Tasks: A Computationally Efficient Approach for Linear System

Learning Model Predictive Control for Iterative Tasks: A Computationally Efficient Approach for Linear System Learning Model Predictive Control for Iterative Tasks: A Computationally Efficient Approach for Linear System Ugo Rosolia Francesco Borrelli University of California at Berkeley, Berkeley, CA 94701, USA

More information

Minimizing Total Delay in Fixed-Time Controlled Traffic Networks

Minimizing Total Delay in Fixed-Time Controlled Traffic Networks Minimizing Total Delay in Fixed-Time Controlled Traffic Networks Ekkehard Köhler, Rolf H. Möhring, and Gregor Wünsch Technische Universität Berlin, Institut für Mathematik, MA 6-1, Straße des 17. Juni

More information

Real-time Constrained Nonlinear Optimization for Maximum Power Take-off of a Wave Energy Converter

Real-time Constrained Nonlinear Optimization for Maximum Power Take-off of a Wave Energy Converter Real-time Constrained Nonlinear Optimization for Maximum Power Take-off of a Wave Energy Converter Thomas Bewley 23 May 2014 Southern California Optimization Day Summary 1 Introduction 2 Nonlinear Model

More information

The estimation problem ODE stability The embedding method The simultaneous method In conclusion. Stability problems in ODE estimation

The estimation problem ODE stability The embedding method The simultaneous method In conclusion. Stability problems in ODE estimation Mathematical Sciences Institute Australian National University HPSC Hanoi 2006 Outline The estimation problem ODE stability The embedding method The simultaneous method In conclusion Estimation Given the

More information

Electrical Machine & Automatic Control (EEE-409) (ME-II Yr) UNIT-3 Content: Signals u(t) = 1 when t 0 = 0 when t <0

Electrical Machine & Automatic Control (EEE-409) (ME-II Yr) UNIT-3 Content: Signals u(t) = 1 when t 0 = 0 when t <0 Electrical Machine & Automatic Control (EEE-409) (ME-II Yr) UNIT-3 Content: Modeling of Mechanical : linear mechanical elements, force-voltage and force current analogy, and electrical analog of simple

More information

Numerical Methods for Embedded Optimization and Optimal Control. Exercises

Numerical Methods for Embedded Optimization and Optimal Control. Exercises Summer Course Numerical Methods for Embedded Optimization and Optimal Control Exercises Moritz Diehl, Daniel Axehill and Lars Eriksson June 2011 Introduction This collection of exercises is intended to

More information

Posture regulation for unicycle-like robots with. prescribed performance guarantees

Posture regulation for unicycle-like robots with. prescribed performance guarantees Posture regulation for unicycle-like robots with prescribed performance guarantees Martina Zambelli, Yiannis Karayiannidis 2 and Dimos V. Dimarogonas ACCESS Linnaeus Center and Centre for Autonomous Systems,

More information

Extremal Trajectories for Bounded Velocity Differential Drive Robots

Extremal Trajectories for Bounded Velocity Differential Drive Robots Extremal Trajectories for Bounded Velocity Differential Drive Robots Devin J. Balkcom Matthew T. Mason Robotics Institute and Computer Science Department Carnegie Mellon University Pittsburgh PA 523 Abstract

More information

CHAPTER 2: Describing Motion: Kinematics in One Dimension

CHAPTER 2: Describing Motion: Kinematics in One Dimension CHAPTER : Describing Motion: Kinematics in One Dimension Answers to Questions 1. A car speedometer measures only speed. It does not give any information about the direction, and so does not measure velocity..

More information

Nonlinear Programming Models: A Survey

Nonlinear Programming Models: A Survey Nonlinear Programming Models: A Survey Robert Vanderbei and David Shanno NJ-INFORMS Nov 16, 2000 Rutgers University Operations Research and Financial Engineering, Princeton University http://www.princeton.edu/

More information

Objective. 1 Specification/modeling of the controlled system. 2 Specification of a performance criterion

Objective. 1 Specification/modeling of the controlled system. 2 Specification of a performance criterion Optimal Control Problem Formulation Optimal Control Lectures 17-18: Problem Formulation Benoît Chachuat Department of Chemical Engineering Spring 2009 Objective Determine the control

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s rotation

More information

Ascent Phase Trajectory Optimization for a Hypersonic Vehicle Using Nonlinear Programming

Ascent Phase Trajectory Optimization for a Hypersonic Vehicle Using Nonlinear Programming Ascent Phase Trajectory Optimization for a Hypersonic Vehicle Using Nonlinear Programming H.M. Prasanna,D.Ghose, M.S. Bhat, C. Bhattacharyya, and J. Umakant 3 Department of Aerospace Engineering Department

More information