Dynamic and Adversarial Reachavoid Symbolic Planning

Size: px
Start display at page:

Download "Dynamic and Adversarial Reachavoid Symbolic Planning"

Transcription

1 Dynamic and Adversarial Reachavoid Symbolic Planning Laya Shamgah Advisor: Dr. Karimoddini July 21 st 2017 Thrust 1: Modeling, Analysis and Control of Large-scale Autonomous Vehicles (MACLAV) Sub-trust 1-2: Cooperative Localization, Navigation and Control of LSASVs 1

2 Motivation Reach-avoid Problem: Traveling from an initial point to a desired location while avoiding obstacles Static Environment Dynamic Environment Dynamic Adversarial Environment Challenge: Autonomous Coordination of autonomous vehicles to achieve their sophisticated goals in an dynamic and adversarial environment Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 2

3 Objective Objective of research: To develop a computationally effective reactive planning method for autonomous vehicles in a dynamic adversarial environment. Dynamic Adversarial Reach-avoid scenario: attacker: tries to reach the target while avoiding of capture. defender: tries to capture the attacker before reaching the defending area. Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 3 3

4 Challenges and Gaps Existing methods Pursuit-evasion games [Bhadauria et al. 2012] Probabilistic approaches [Vitus et sl. 2011] Differential games [Tomlin et al.2011,2015] Challenges Solving only the avoidance problem Assuming limitations on the vehicle s movements Requiring information about the opponent vehicle High computational cost Lack of Reactiveness Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 4 4

5 Proposed approach To reduce the complexity: 1- Using Symbolic Control Techniques for abstraction of the (infinitely) large original problem to a (finite) small abstracted environment, 2- Designing a DES supervisor to achieve a complex task over an abstract environment 3- Projecting back the solution to the original domain. Remark: This is the first result in the literature that uses symbolic control techniques for the reach-avoid problem. attacker Target Abstraction? defender P Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 5 5

6 Proposed Hybrid Structure DES supervisor Abstraction of Vehicle Dynamics Discrete Signal Bisumulation-based abstraction Interface Continuous Signals Vehicle Dynamics Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 6 6

7 Proposed Implementation Approach Hierarchical Control Supervisor Supervisor, operator, Temporal Logic Symbolic Planning Planner high-level Controller Real-time low-level controller Low-level Controller Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 7 7

8 Reach-avoid Problem Description attacker? defender Target P Assumptions: Defender vehicle dynamics: x t = f(x t, u(t)) Environment (P) is a bounded convex set Target is in a fixed position The initial position of the attacker and the defender are within P Defender vehicle has full observability over the position of the attacker other Problem: Design a controller to obtain trajectory x t P = j=1,,m i=1,,n P ij, which satisfies the objective of the defender. Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 8 8

9 Proposed Framework Design Steps: 1.Extracting decision-making strategies 2.Construction of LTL Specification φ = φ a φ d 3.Checking realizability of φ 4.Synthesizing the supervisor automaton G which satisfies φ 5.Designing the hybrid controller Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 9 9

10 Step1: Optimal Decision-making Strategies Modeled as a finite two-player zero-sum game in matrix form Attacker is the maximizer player and Defender is the minimizer Objective Function P 11 P 12 P 13 P 21 a P 22 P 23 * P 31 P 32 P 33 d 0 if x a, x d P ij L x a, x d = ifx a, x t P ij α x a x β d + x a x t + γ x d x t otherwise Distance between the vehicles Distance between the attacker and the target Distance between the defender and the target Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 10 10

11 Step1: Decision-making Example: P 11 P 12 P 13 P 21 a P 22 P 23 * P 31 P 32 P 33 d Optimization Parameters: α = 1 β = 1 γ = 0.5 defender attacker P 22 P 31 P 11 P P Defender : min max 3.414, 4.650, min 2, = P 23 Attacker : max min 3.414, 2, 4.650, = P 11 Nash Equilibrium decision : (a 11, d 23 ) Temporal formula (a 21 d 33 d 23 ) nm(nm 2) games should be solved to calculate all the temporal transition rules. Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 11 11

12 Step 2: Construction of LTL Specification Classical logic: I am hungry Temporal logic "I am always hungry "I will eventually be hungry "I will be hungry until I eat something" Temporal logic: Linear Temporal Logic (LTL) is a formal high-level language to describe many complex missions and a wide class of properties can be expressed by LTL: Coverage: eventually visit all regions Sequencing: visit P2 before you go to P3 Avoidance: until you go to P2 avoid P1 and P3 Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 12

13 Step 2: Construction of LTL Specification The LTL formulas (φ) are constructed over (Σ) using Boolean operators and temporal operators. Σ : A finite set of atomic proposition: p Σ (p can be either T or F) Boolean operators: negation ( ), disjunction ( ), conjunction ( ), implication ( ) Modal temporal operators: next (O), until (U), eventually ( ) and always ( ) Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 13

14 Step 2: Construction of LTL Specification Temporal Operators: Operators Definition Diagram φ φ is true in the next moment of time φ φ is true in all future moments φ φ is true in some future moment φuψ φ is true until ψis true Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 14

15 Step 2: Construction of LTL Specification Static Environment Reactive to changes in Dynamic Environment Dynamic Environment Vehicle φ vehicle φ = (φ e φ s ) Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 15

16 Step 2: Construction of LTL Specification Reach-avoid Specification: φ = φ a φ d φ a : all assumptions on the attacker φ d : all assumptions on the defender and its desired behavior v v φ v = φ init φ sing v φ term φ v v rul φ obj attacker? defender Target P v 1 φ init v 2 φ sing Boolean (B) Temporal ( T) Initial position of vehicle v 3 φ term Temporal ( T) Termination of the game v 4 φ rul v 5 φ obj Temporal ( T) Temporal ( B) Singularity constraint: At each time the vehicle can be in only one region Transitions rules over the partitioned area Objective of the vehicle Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 16

17 Step 3-4: Discrete Design Procedure Step 3: Checking realizability of φ Check if there exists any admissible behavior of the attacker such that no behavior of adapter can satisfy φ d. Step 4: Synthesis of automaton G If φ is realizable then G = Q, q 0, A, D, δ, h Synthesis Process: GS =< V, A, D, Θ, ρ a, ρ d, φ > G φ Every path on G is a behavior of the attacker and the corresponding behavior of the defender, which ends when the defender will win Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 17 17

18 Step 5: Hybrid Control Design Online implementation: Heading angle(θ) Velocity(u) Attacker s behavior Discrete path Interface Continuous path x(t) a i a i+1 d i d i+1 Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 18 18

19 Example: Description attacker P 11 P 12 P 13 defender P 21 P 22 P 23 Operation region Initial positions Target P = 3 i,j=1 P ij attacker: P 11 defender: P 31 P 23 P 31 P 32 P 33 Problem: Design a controller to obtain trajectory x(t) which satisfies φ = φ a φ d Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 19 19

20 Example: Task Specification all assumptions on the attacker φ = φ a φ d all assumptions on the defender and its desired behavior φ d = φ d d init φ sing d φ term d φ init d 13 d 11 d 12 d 33 d φ sing d φ term φ d d rul φ obj [(d 11 d 12 d 13 d 33 ) ] [((a 23 a 11 ) d 11 ) d 11 ) ] d φ rul [((a 11 d 31 a 21 ) d 21 ) ] d φ obj [ a 11 d 11 a 12 d 12 ] a φ init a φ sing a φ term a φ rul a φ obj φ a = φ a a init φ sing a φ term a 11 a 12 a 13 a 33 φ a a rul φ obj [(a 11 a 12 a 13 a 33 ) ] [(a 23 a 23 ) [(a 11 d 11 ) a 11 ) ] [(a 11 ( a 12 a 21 )) ] True Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 20 20

21 Example: Discrete Results 1. φ = φ a φ d is realizable. 2. Automaton G: Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 21 21

22 Example: Final Results (1) Discrete path Continuous path a 11 a 12 a 12 a 13 Attacker Defender a 11 a 12 a 13 a 12 d 31 d 32 d 22 d 12 Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 22 22

23 Example: Final Results (2) Discrete path Continuous path a 11 a 21 a 12 a 11 Attacker Defender a 11 a 12 a 22 a 21 d 13 d 32 d 22 d 21 Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 23 23

24 Example: Final Results (3) Discrete path Continuous path a 11 a 12 a 12 a 11 Attacker Defender a 11 a 12 a 11 a 12 d 13 d 32 d 22 d 12 Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 24 24

25 Conclusion Conclusion: A novel, formal hybrid symbolic controller was developed for the vehicles involved in a reach-avoid scenario. Significance of the results: Future Work: To the best of our knowledge, this is the first work in the literature that employs symbolic motion planning for reach-avoid problem. The proposed method is a computationally effective method that can reactively capture the changes in a dynamic and adversarial environment. The developed approach considers less restrictions on the robot motion and requires no knowledge about the model of the opponent. The extension of the proposed framework to more complex scenarios and environments, for example reach-avoid problem with more number of players. Dynamic and Adversarial Reach-avoid Symbolic Planning Laya Shamgah 25 25

26 Thank You 26

Lecture 9 Synthesis of Reactive Control Protocols

Lecture 9 Synthesis of Reactive Control Protocols Lecture 9 Synthesis of Reactive Control Protocols Nok Wongpiromsarn Singapore-MIT Alliance for Research and Technology Richard M. Murray and Ufuk Topcu California Institute of Technology EECI, 16 May 2012

More information

Lecture 7 Synthesis of Reactive Control Protocols

Lecture 7 Synthesis of Reactive Control Protocols Lecture 7 Synthesis of Reactive Control Protocols Richard M. Murray Nok Wongpiromsarn Ufuk Topcu California Institute of Technology AFRL, 25 April 2012 Outline Review: networked control systems and cooperative

More information

Lecture 8 Receding Horizon Temporal Logic Planning & Finite-State Abstraction

Lecture 8 Receding Horizon Temporal Logic Planning & Finite-State Abstraction Lecture 8 Receding Horizon Temporal Logic Planning & Finite-State Abstraction Ufuk Topcu Nok Wongpiromsarn Richard M. Murray AFRL, 26 April 2012 Contents of the lecture: Intro: Incorporating continuous

More information

Compositional Synthesis with Parametric Reactive Controllers

Compositional Synthesis with Parametric Reactive Controllers Compositional Synthesis with Parametric Reactive Controllers Rajeev Alur University of Pennsylvania alur@seas.upenn.edu Salar Moarref University of Pennsylvania moarref@seas.upenn.edu Ufuk Topcu University

More information

Receding Horizon Temporal Logic Planning

Receding Horizon Temporal Logic Planning 1 Receding Horizon Temporal Logic Planning Tichaorn Wongpiromsarn, Ufu Topcu, and Richard M. Murray Abstract We present a methodology for automatic synthesis of embedded control software that incorporates

More information

Synthesis of Control Protocols for Autonomous Systems

Synthesis of Control Protocols for Autonomous Systems Unmanned Systems, Vol. 0, No. 0 (2013) 1 19 c World Scientific Publishing Company Synthesis of Control Protocols for Autonomous Systems Tichakorn Wongpiromsarn a, Ufuk Topcu b, Richard M. Murray c a Ministry

More information

Probabilistic Model Checking and Strategy Synthesis for Robot Navigation

Probabilistic Model Checking and Strategy Synthesis for Robot Navigation Probabilistic Model Checking and Strategy Synthesis for Robot Navigation Dave Parker University of Birmingham (joint work with Bruno Lacerda, Nick Hawes) AIMS CDT, Oxford, May 2015 Overview Probabilistic

More information

Receding Horizon Control for Temporal Logic Specifications

Receding Horizon Control for Temporal Logic Specifications Receding Horizon Control for Temporal Logic Specifications Tichaorn Wongpiromsarn California Institute of Technology Pasadena, CA no@caltech.edu Ufu Topcu California Institute of Technology Pasadena, CA

More information

Synthesis of Switching Protocols from Temporal Logic Specifications

Synthesis of Switching Protocols from Temporal Logic Specifications Submitted, 2012 American Control Conference (ACC) http://www.cds.caltech.edu/~murray/papers DRAFT 1 Synthesis of Switching Protocols from Temporal Logic Specifications Jun Liu, Necmiye Ozay, Ufuk Topcu,

More information

Integrating Induction and Deduction for Verification and Synthesis

Integrating Induction and Deduction for Verification and Synthesis Integrating Induction and Deduction for Verification and Synthesis Sanjit A. Seshia Associate Professor EECS Department UC Berkeley DATE 2013 Tutorial March 18, 2013 Bob s Vision: Exploit Synergies between

More information

Admissible Strategies for Synthesizing Systems

Admissible Strategies for Synthesizing Systems Admissible Strategies for Synthesizing Systems Ocan Sankur Univ Rennes, Inria, CNRS, IRISA, Rennes Joint with Romain Brenguier (DiffBlue), Guillermo Pérez (Antwerp), and Jean-François Raskin (ULB) (Multiplayer)

More information

Synthesis of Reactive Switching Protocols from Temporal Logic Specifications

Synthesis of Reactive Switching Protocols from Temporal Logic Specifications 1 Synthesis of Reactive Switching Protocols from Temporal Logic Specifications Jun Liu, Necmiye Ozay, Ufuk Topcu, and Richard M. Murray Abstract We propose formal means for synthesizing switching protocols

More information

Formal Synthesis of Embedded Control Software: Application to Vehicle Management Systems

Formal Synthesis of Embedded Control Software: Application to Vehicle Management Systems Formal Synthesis of Embedded Control Software: Application to Vehicle Management Systems T. Wongpiromsarn, U. Topcu, and R. M. Murray Control and Dynamical Systems, California Institute of Technology,

More information

Provably Correct Persistent Surveillance for Unmanned Aerial Vehicles Subject to Charging Constraints

Provably Correct Persistent Surveillance for Unmanned Aerial Vehicles Subject to Charging Constraints Provably Correct Persistent Surveillance for Unmanned Aerial Vehicles Subject to Charging Constraints Kevin Leahy, Dingjiang Zhou, Cristian-Ioan Vasile, Konstantinos Oikonomopoulos, Mac Schwager, and Calin

More information

Optimal Control of Mixed Logical Dynamical Systems with Linear Temporal Logic Specifications

Optimal Control of Mixed Logical Dynamical Systems with Linear Temporal Logic Specifications Optimal Control of Mixed Logical Dynamical Systems with Linear Temporal Logic Specifications Sertac Karaman, Ricardo G. Sanfelice, and Emilio Frazzoli Abstract Recently, Linear Temporal Logic (LTL) has

More information

Automata-based Verification - III

Automata-based Verification - III COMP30172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20: email: howard.barringer@manchester.ac.uk March 2009 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

Compositional Synthesis of Reactive Controllers for Multi-Agent Systems

Compositional Synthesis of Reactive Controllers for Multi-Agent Systems Compositional Synthesis of Reactive Controllers for Multi-Agent Systems Rajeev Alur, Salar Moarref, and Ufuk Topcu alur@seas.upenn.edu, moarref@seas.upenn.edu, utopcu@utexas.edu Abstract. In this paper

More information

Distributed Multi-Agent Persistent Surveillance Under Temporal Logic Constraints

Distributed Multi-Agent Persistent Surveillance Under Temporal Logic Constraints Distributed Multi-Agent Persistent Surveillance Under Temporal Logic Constraints Derya Aksaray Kevin Leahy Calin Belta Department of Mechanical Engineering, Boston University, Boston, MA 2215, USA (e-mail:

More information

Synthesis of Designs from Property Specifications

Synthesis of Designs from Property Specifications Synthesis of Designs from Property Specifications Amir Pnueli New York University and Weizmann Institute of Sciences FMCAD 06 San Jose, November, 2006 Joint work with Nir Piterman, Yaniv Sa ar, Research

More information

Route-Planning for Real-Time Safety-Assured Autonomous Aircraft (RTS3A)

Route-Planning for Real-Time Safety-Assured Autonomous Aircraft (RTS3A) Route-Planning for Real-Time Safety-Assured Autonomous Aircraft (RTS3A) Raghvendra V. Cowlagi 1 Jeffrey T. Chambers 2 Nikola Baltadjiev 2 1 Worcester Polytechnic Institute, Worcester, MA. 2 Aurora Flight

More information

THE objective of this paper is to synthesize switching. Synthesis of Reactive Switching Protocols from Temporal Logic Specifications

THE objective of this paper is to synthesize switching. Synthesis of Reactive Switching Protocols from Temporal Logic Specifications Synthesis of Reactive Switching Protocols from Temporal Logic Specifications Jun Liu, Member, IEEE, Necmiye Ozay, Member, IEEE, Ufuk Topcu, Member, IEEE, and Richard M Murray, Fellow, IEEE Abstract We

More information

LTL Control in Uncertain Environments with Probabilistic Satisfaction Guarantees

LTL Control in Uncertain Environments with Probabilistic Satisfaction Guarantees LTL Control in Uncertain Environments with Probabilistic Satisfaction Guarantees Xu Chu (Dennis) Ding Stephen L. Smith Calin Belta Daniela Rus Department of Mechanical Engineering, Boston University, Boston,

More information

Planning Under Uncertainty II

Planning Under Uncertainty II Planning Under Uncertainty II Intelligent Robotics 2014/15 Bruno Lacerda Announcement No class next Monday - 17/11/2014 2 Previous Lecture Approach to cope with uncertainty on outcome of actions Markov

More information

Optimal Control of Markov Decision Processes with Temporal Logic Constraints

Optimal Control of Markov Decision Processes with Temporal Logic Constraints Optimal Control of Markov Decision Processes with Temporal Logic Constraints Xuchu (Dennis) Ding Stephen L. Smith Calin Belta Daniela Rus Abstract In this paper, we develop a method to automatically generate

More information

Hybrid Controllers for Path Planning: A Temporal Logic Approach

Hybrid Controllers for Path Planning: A Temporal Logic Approach Hybrid Controllers for Path Planning: A Temporal Logic Approach Georgios E. Fainekos, Hadas Kress-Gazit, and George J. Pappas Abstract Robot motion planning algorithms have focused on low-level reachability

More information

Bounded Model Checking with SAT/SMT. Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39

Bounded Model Checking with SAT/SMT. Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39 Bounded Model Checking with SAT/SMT Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39 Recap: Symbolic Model Checking with BDDs Method used by most industrial strength model checkers:

More information

ENES 489p. Verification and Validation: Logic and Control Synthesis

ENES 489p. Verification and Validation: Logic and Control Synthesis 11/18/14 1 ENES 489p Verification and Validation: Logic and Control Synthesis Mumu Xu mumu@umd.edu November 18, 2014 Institute for Systems Research Aerospace Engineering University of Maryland, College

More information

Switching Protocol Synthesis for Temporal Logic Specifications

Switching Protocol Synthesis for Temporal Logic Specifications Switching Protocol Synthesis for Temporal Logic Specifications Jun Liu, Necmiye Ozay, Ufuk Topcu, and Richard M. Murray Abstract We consider the problem of synthesizing a robust switching controller for

More information

Automata-based Verification - III

Automata-based Verification - III CS3172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20/22: email: howard.barringer@manchester.ac.uk March 2005 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

Hierarchical Synthesis of Hybrid Controllers from Temporal Logic Specifications

Hierarchical Synthesis of Hybrid Controllers from Temporal Logic Specifications Hierarchical Synthesis of Hybrid Controllers from Temporal Logic Specifications Georgios E. Fainekos 1, Antoine Girard 2, and George J. Pappas 3 1 Department of Computer and Information Science, Univ.

More information

Online Horizon Selection in Receding Horizon Temporal Logic Planning

Online Horizon Selection in Receding Horizon Temporal Logic Planning Online Horizon Selection in Receding Horizon Temporal Logic Planning Vasumathi Raman 1 and Mattias Fält 2 and Tichakorn Wongpiromsarn 3 and Richard M. Murray 1 Abstract Temporal logics have proven effective

More information

Theoretical Foundations of the UML

Theoretical Foundations of the UML Theoretical Foundations of the UML Lecture 17+18: A Logic for MSCs Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group moves.rwth-aachen.de/teaching/ws-1718/fuml/ 5.

More information

Synthesis of Correct-by-Construction Behavior Trees

Synthesis of Correct-by-Construction Behavior Trees Submitted, 2017 IEEE/RSJ International Conference on Intelligent Robots Systems (IROS) http://www.cds.caltech.edu/~murray/preprints/cmo17-iros_s.pdf Synthesis of Correct-by-Construction Behavior Trees

More information

Alternating Time Temporal Logics*

Alternating Time Temporal Logics* Alternating Time Temporal Logics* Sophie Pinchinat Visiting Research Fellow at RSISE Marie Curie Outgoing International Fellowship * @article{alur2002, title={alternating-time Temporal Logic}, author={alur,

More information

Chapter 5: Linear Temporal Logic

Chapter 5: Linear Temporal Logic Chapter 5: Linear Temporal Logic Prof. Ali Movaghar Verification of Reactive Systems Spring 94 Outline We introduce linear temporal logic (LTL), a logical formalism that is suited for specifying LT properties.

More information

Synthesis weakness of standard approach. Rational Synthesis

Synthesis weakness of standard approach. Rational Synthesis 1 Synthesis weakness of standard approach Rational Synthesis 3 Overview Introduction to formal verification Reactive systems Verification Synthesis Introduction to Formal Verification of Reactive Systems

More information

Online Task Planning and Control for Aerial Robots with Fuel Constraints in Winds

Online Task Planning and Control for Aerial Robots with Fuel Constraints in Winds Online Task Planning and Control for Aerial Robots with Fuel Constraints in Winds Chanyeol Yoo, Robert Fitch, and Salah Sukkarieh Australian Centre for Field Robotics, The University of Sydney, Australia,

More information

THEORY OF SYSTEMS MODELING AND ANALYSIS. Henny Sipma Stanford University. Master class Washington University at St Louis November 16, 2006

THEORY OF SYSTEMS MODELING AND ANALYSIS. Henny Sipma Stanford University. Master class Washington University at St Louis November 16, 2006 THEORY OF SYSTEMS MODELING AND ANALYSIS Henny Sipma Stanford University Master class Washington University at St Louis November 16, 2006 1 1 COURSE OUTLINE 8:37-10:00 Introduction -- Computational model

More information

POLYNOMIAL SPACE QSAT. Games. Polynomial space cont d

POLYNOMIAL SPACE QSAT. Games. Polynomial space cont d T-79.5103 / Autumn 2008 Polynomial Space 1 T-79.5103 / Autumn 2008 Polynomial Space 3 POLYNOMIAL SPACE Polynomial space cont d Polynomial space-bounded computation has a variety of alternative characterizations

More information

Linear Temporal Logic and Büchi Automata

Linear Temporal Logic and Büchi Automata Linear Temporal Logic and Büchi Automata Yih-Kuen Tsay Department of Information Management National Taiwan University FLOLAC 2009 Yih-Kuen Tsay (SVVRL @ IM.NTU) Linear Temporal Logic and Büchi Automata

More information

Time-Constrained Temporal Logic Control of Multi-Affine Systems

Time-Constrained Temporal Logic Control of Multi-Affine Systems Time-Constrained Temporal Logic Control of Multi-Affine Systems Ebru Aydin Gol Calin Belta Boston University, Boston, MA 02215, USA e-mail: {ebru,cbelta}@bu.edu Abstract: We consider the problem of controlling

More information

Ranking Verification Counterexamples: An Invariant guided approach

Ranking Verification Counterexamples: An Invariant guided approach Ranking Verification Counterexamples: An Invariant guided approach Ansuman Banerjee Indian Statistical Institute Joint work with Pallab Dasgupta, Srobona Mitra and Harish Kumar Complex Systems Everywhere

More information

arxiv: v1 [cs.sy] 26 Mar 2012

arxiv: v1 [cs.sy] 26 Mar 2012 Time-Constrained Temporal Logic Control of Multi-Affine Systems Ebru Aydin Gol Calin Belta Boston University, Boston, MA 02215, USA e-mail: {ebru,cbelta}@bu.edu arxiv:1203.5683v1 [cs.sy] 26 Mar 2012 Abstract:

More information

Abstraction-based synthesis: Challenges and victories

Abstraction-based synthesis: Challenges and victories Abstraction-based synthesis: Challenges and victories Majid Zamani Hybrid Control Systems Group Electrical Engineering Department Technische Universität München December 14, 2015 Majid Zamani (TU München)

More information

Hierarchical Hybrid Symbolic Robot Motion Planning and Control

Hierarchical Hybrid Symbolic Robot Motion Planning and Control Asian Journal of Control, Vol. 00, No. 0, pp. 1 11, Month 2008 Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/asjc.0000 Hierarchical Hybrid Symbolic Robot Motion Planning

More information

Resilient Formal Synthesis

Resilient Formal Synthesis Resilient Formal Synthesis Calin Belta Boston University CDC 2017 Workshop: 30 years of the Ramadge-Wonham Theory of Supervisory Control: A Retrospective and Future Perspectives Outline Formal Synthesis

More information

Multi-Objective Planning with Multiple High Level Task Specifications

Multi-Objective Planning with Multiple High Level Task Specifications Multi-Objective Planning with Multiple High Level Task Specifications Seyedshams Feyzabadi Stefano Carpin Abstract We present an algorithm to solve a sequential stochastic decision making problem whereby

More information

Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) Chapter 9 Linear Temporal Logic (LTL) This chapter introduces the Linear Temporal Logic (LTL) to reason about state properties of Labelled Transition Systems defined in the previous chapter. We will first

More information

A Simple Approach to the Multi-Predator Multi-Prey Pursuit Domain

A Simple Approach to the Multi-Predator Multi-Prey Pursuit Domain A Simple Approach to the Multi-Predator Multi-Prey Pursuit Domain Javier A. Alcazar Sibley School of Mechanical and Aerospace Engineering Cornell University jaa48@cornell.edu 1. Abstract We present a different

More information

NCS Lecture 11 Distributed Computation for Cooperative Control. Richard M. Murray (Caltech) and Erik Klavins (U. Washington) 17 March 2008

NCS Lecture 11 Distributed Computation for Cooperative Control. Richard M. Murray (Caltech) and Erik Klavins (U. Washington) 17 March 2008 NCS Lecture 11 Distributed Computation for Cooperative Control Richard M. Murray (Caltech) and Erik Klavins (U. Washington) 17 March 2008 Goals: Describe methods for modeling and analyzing distributed

More information

ONR MURI AIRFOILS: Animal Inspired Robust Flight with Outer and Inner Loop Strategies. Calin Belta

ONR MURI AIRFOILS: Animal Inspired Robust Flight with Outer and Inner Loop Strategies. Calin Belta ONR MURI AIRFOILS: Animal Inspired Robust Flight with Outer and Inner Loop Strategies Provable safety for animal inspired agile flight Calin Belta Hybrid and Networked Systems (HyNeSs) Lab Department of

More information

Reasoning about Strategies: From module checking to strategy logic

Reasoning about Strategies: From module checking to strategy logic Reasoning about Strategies: From module checking to strategy logic based on joint works with Fabio Mogavero, Giuseppe Perelli, Luigi Sauro, and Moshe Y. Vardi Luxembourg September 23, 2013 Reasoning about

More information

Synthesis of Reactive Switching Protocols From Temporal Logic Specifications

Synthesis of Reactive Switching Protocols From Temporal Logic Specifications IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 7, JULY 2013 1771 Synthesis of Reactive Switching Protocols From Temporal Logic Specifications Jun Liu, Member, IEEE, Necmiye Ozay, Member, IEEE, Ufuk

More information

Bounded Synthesis. Sven Schewe and Bernd Finkbeiner. Universität des Saarlandes, Saarbrücken, Germany

Bounded Synthesis. Sven Schewe and Bernd Finkbeiner. Universität des Saarlandes, Saarbrücken, Germany Bounded Synthesis Sven Schewe and Bernd Finkbeiner Universität des Saarlandes, 66123 Saarbrücken, Germany Abstract. The bounded synthesis problem is to construct an implementation that satisfies a given

More information

Modeling and control of a multi-agent system using mixed integer linear programming

Modeling and control of a multi-agent system using mixed integer linear programming Modeling and control of a multi-agent system using mixed integer linear programming Matthew G. Earl 1 Raffaello D Andrea Abstract The RoboFlag competition was proposed by the second author as a means to

More information

Synthesis of Reactive Control Protocols for Differentially Flat Systems

Synthesis of Reactive Control Protocols for Differentially Flat Systems DRAFT 1 Synthesis of Reactive Control Protocols for Differentially Flat Systems Jun Liu, Ufuk Topcu, Necmiye Ozay, and Richard M. Murray Abstract We propose a procedure for the synthesis of control protocols

More information

Synthesis of Provably Correct Controllers for Autonomous Vehicles in Urban Environments

Synthesis of Provably Correct Controllers for Autonomous Vehicles in Urban Environments 2011 14th International IEEE Conference on Intelligent Transportation Systems Washington, DC, USA. October 57, 2011 Synthesis of Provably Correct Controllers for Autonomous Vehicles in Urban Environments

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 6.4/43 Principles of Autonomy and Decision Making Lecture 8: (Mixed-Integer) Linear Programming for Vehicle Routing and Motion Planning Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute

More information

Multi-Robotic Systems

Multi-Robotic Systems CHAPTER 9 Multi-Robotic Systems The topic of multi-robotic systems is quite popular now. It is believed that such systems can have the following benefits: Improved performance ( winning by numbers ) Distributed

More information

For general queries, contact

For general queries, contact PART I INTRODUCTION LECTURE Noncooperative Games This lecture uses several examples to introduce the key principles of noncooperative game theory Elements of a Game Cooperative vs Noncooperative Games:

More information

Safe Control under Uncertainty

Safe Control under Uncertainty Safe Control under Uncertainty Dorsa Sadigh UC Berkeley Berkeley, CA, USA dsadigh@berkeley.edu Ashish Kapoor Microsoft Research Redmond, WA, USA akapoor@microsoft.com ical models [20] have been very popular

More information

Revisiting Synthesis of GR(1) Specifications

Revisiting Synthesis of GR(1) Specifications Revisiting Synthesis of GR(1) Specifications Uri Klein & Amir Pnueli Courant Institute of Mathematical Sciences, NYU Haifa Verification Conference, October 2010 What Is Synthesis? Rather than implement

More information

Formalizing knowledge-how

Formalizing knowledge-how Formalizing knowledge-how Tszyuen Lau & Yanjing Wang Department of Philosophy, Peking University Beijing Normal University November 29, 2014 1 Beyond knowing that 2 Knowledge-how vs. Knowledge-that 3 Our

More information

Infinite Games. Sumit Nain. 28 January Slides Credit: Barbara Jobstmann (CNRS/Verimag) Department of Computer Science Rice University

Infinite Games. Sumit Nain. 28 January Slides Credit: Barbara Jobstmann (CNRS/Verimag) Department of Computer Science Rice University Infinite Games Sumit Nain Department of Computer Science Rice University 28 January 2013 Slides Credit: Barbara Jobstmann (CNRS/Verimag) Motivation Abstract games are of fundamental importance in mathematics

More information

Georgios E. Fainekos, Savvas G. Loizou and George J. Pappas. GRASP Lab Departments of CIS, MEAM and ESE University of Pennsylvania

Georgios E. Fainekos, Savvas G. Loizou and George J. Pappas. GRASP Lab Departments of CIS, MEAM and ESE University of Pennsylvania Georgios E. Fainekos, Savvas G. Loizou and George J. Pappas CDC 2006 Math free Presentation! Lab Departments of CIS, MEAM and ESE University of Pennsylvania Motivation Motion Planning 60 50 40 π 0 π 4

More information

Automatic Synthesis of Robust Embedded Control Software

Automatic Synthesis of Robust Embedded Control Software AAAI Spring Symposium on Embedded Reasoning (2224 Mar 2010, Stanford) http://www.cds.caltech.edu/~murray/papers/wtm10aaai.html Automatic Synthesis of Robust Embedded Control Software Tichakorn Wongpiromsarn,

More information

Introduction to Embedded Systems

Introduction to Embedded Systems Introduction to Embedded Systems Sanjit A. Seshia UC Berkeley EECS 149/249A Fall 2015 2008-2015: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia. All rights reserved. Chapter 13: Specification and

More information

A Symbolic Approach to Safety LTL Synthesis

A Symbolic Approach to Safety LTL Synthesis A Symbolic Approach to Safety LTL Synthesis Shufang Zhu 1 Lucas M. Tabajara 2 Jianwen Li Geguang Pu 1 Moshe Y. Vardi 2 1 East China Normal University 2 Rice Lucas M. Tabajara (Rice University) 2 University

More information

Description Logics. Foundations of Propositional Logic. franconi. Enrico Franconi

Description Logics. Foundations of Propositional Logic.   franconi. Enrico Franconi (1/27) Description Logics Foundations of Propositional Logic Enrico Franconi franconi@cs.man.ac.uk http://www.cs.man.ac.uk/ franconi Department of Computer Science, University of Manchester (2/27) Knowledge

More information

EgGS - The Energy Game Strategizer

EgGS - The Energy Game Strategizer Aalborg University Distributed and Embedded Systems Semantics and Verification EgGS - The Energy Game Strategizer Master Thesis Authors: Mads V. Carlsen Rasmus S. Jacobsen Supervisors: Kim G. Larsen Erik

More information

1 FUNDAMENTALS OF LOGIC NO.10 HERBRAND THEOREM Tatsuya Hagino hagino@sfc.keio.ac.jp lecture URL https://vu5.sfc.keio.ac.jp/slide/ 2 So Far Propositional Logic Logical connectives (,,, ) Truth table Tautology

More information

: Cryptography and Game Theory Ran Canetti and Alon Rosen. Lecture 8

: Cryptography and Game Theory Ran Canetti and Alon Rosen. Lecture 8 0368.4170: Cryptography and Game Theory Ran Canetti and Alon Rosen Lecture 8 December 9, 2009 Scribe: Naama Ben-Aroya Last Week 2 player zero-sum games (min-max) Mixed NE (existence, complexity) ɛ-ne Correlated

More information

Gradient Sampling for Improved Action Selection and Path Synthesis

Gradient Sampling for Improved Action Selection and Path Synthesis Gradient Sampling for Improved Action Selection and Path Synthesis Ian M. Mitchell Department of Computer Science The University of British Columbia November 2016 mitchell@cs.ubc.ca http://www.cs.ubc.ca/~mitchell

More information

Receding Horizon Temporal Logic Planning for Dynamical Systems

Receding Horizon Temporal Logic Planning for Dynamical Systems Submitted, 2009 Conference on Decision and Control (CDC) http://www.cds.caltech.edu/~murray/papers/wtm09-cdc.html Receding Horizon Temporal Logic Planning for Dynamical Systems Tichaorn Wongpiromsarn,

More information

Synthesis of Winning Strategies for Interaction under Partial Information

Synthesis of Winning Strategies for Interaction under Partial Information Synthesis of Winning Strategies for Interaction under Partial Information Oberseminar Informatik Bernd Puchala RWTH Aachen University June 10th, 2013 1 Introduction Interaction Strategy Synthesis 2 Main

More information

ESE601: Hybrid Systems. Introduction to verification

ESE601: Hybrid Systems. Introduction to verification ESE601: Hybrid Systems Introduction to verification Spring 2006 Suggested reading material Papers (R14) - (R16) on the website. The book Model checking by Clarke, Grumberg and Peled. What is verification?

More information

Linear Time Logic Control of Discrete-Time Linear Systems

Linear Time Logic Control of Discrete-Time Linear Systems University of Pennsylvania ScholarlyCommons Departmental Papers (ESE) Department of Electrical & Systems Engineering December 2006 Linear Time Logic Control of Discrete-Time Linear Systems Paulo Tabuada

More information

Symbolic Control of Incrementally Stable Systems

Symbolic Control of Incrementally Stable Systems Symbolic Control of Incrementally Stable Systems Antoine Girard Laboratoire Jean Kuntzmann, Université Joseph Fourier Grenoble, France Workshop on Formal Verification of Embedded Control Systems LCCC,

More information

Wheelchair Collision Avoidance: An Application for Differential Games

Wheelchair Collision Avoidance: An Application for Differential Games Wheelchair Collision Avoidance: An Application for Differential Games Pooja Viswanathan December 27, 2006 Abstract This paper discusses the design of intelligent wheelchairs that avoid obstacles using

More information

Cyber Security Games with Asymmetric Information

Cyber Security Games with Asymmetric Information Cyber Security Games with Asymmetric Information Jeff S. Shamma Georgia Institute of Technology Joint work with Georgios Kotsalis & Malachi Jones ARO MURI Annual Review November 15, 2012 Research Thrust:

More information

Synthesis of Distributed Control and Communication Schemes from Global LTL Specifications

Synthesis of Distributed Control and Communication Schemes from Global LTL Specifications Synthesis of Distributed Control and Communication Schemes from Global LTL Specifications Yushan Chen, Xu Chu Ding, and Calin Belta Abstract We introduce a technique for synthesis of control and communication

More information

Motion planning applications of Satisfiability Modulo Convex Optimization

Motion planning applications of Satisfiability Modulo Convex Optimization Motion planning applications of Satisfiability Modulo Convex Optimization Yasser Shoukry (1) and Paulo Tabuada (2) (1) Department of Electrical and Computer Engineering, UMD (2) Electrical and Computer

More information

Synthesis for Human-in-the-Loop Control Systems

Synthesis for Human-in-the-Loop Control Systems Synthesis for Human-in-the-Loop Control Systems Wenchao Li 1, Dorsa Sadigh 2, S. Shankar Sastry 2, and Sanjit A. Seshia 2 1 SRI International, Menlo Park, USA li@csl.sri.com 2 University of California,

More information

Assume-admissible synthesis

Assume-admissible synthesis Assume-admissible synthesis Romain Brenguier, Jean-François Raskin, Ocan Sankur To cite this version: Romain Brenguier, Jean-François Raskin, Ocan Sankur. Assume-admissible synthesis. Acta Informatica,

More information

Property Checking of Safety- Critical Systems Mathematical Foundations and Concrete Algorithms

Property Checking of Safety- Critical Systems Mathematical Foundations and Concrete Algorithms Property Checking of Safety- Critical Systems Mathematical Foundations and Concrete Algorithms Wen-ling Huang and Jan Peleska University of Bremen {huang,jp}@cs.uni-bremen.de MBT-Paradigm Model Is a partial

More information

Analyzing fuzzy and contextual approaches to vagueness by semantic games

Analyzing fuzzy and contextual approaches to vagueness by semantic games Analyzing fuzzy and contextual approaches to vagueness by semantic games PhD Thesis Christoph Roschger Institute of Computer Languages Theory and Logic Group November 27, 2014 Motivation Vagueness ubiquitous

More information

Robust Linear Temporal Logic

Robust Linear Temporal Logic Robust Linear Temporal Logic Paulo Tabuada 1 and Daniel Neider 2 1 Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095, USA tabuada@ucla.edu 2 Department

More information

Nondeterministic/conditional planning

Nondeterministic/conditional planning Nondeterministic/conditional planning World is not predictable. AI robotics: imprecise movement of the robot other robots human beings, animals machines (cars, trains, airplanes, lawn-mowers,...) natural

More information

CHURCH SYNTHESIS PROBLEM and GAMES

CHURCH SYNTHESIS PROBLEM and GAMES p. 1/? CHURCH SYNTHESIS PROBLEM and GAMES Alexander Rabinovich Tel-Aviv University, Israel http://www.tau.ac.il/ rabinoa p. 2/? Plan of the Course 1. The Church problem - logic and automata. 2. Games -

More information

FORMAL METHODS LECTURE III: LINEAR TEMPORAL LOGIC

FORMAL METHODS LECTURE III: LINEAR TEMPORAL LOGIC Alessandro Artale (FM First Semester 2007/2008) p. 1/39 FORMAL METHODS LECTURE III: LINEAR TEMPORAL LOGIC Alessandro Artale Faculty of Computer Science Free University of Bolzano artale@inf.unibz.it http://www.inf.unibz.it/

More information

CHAPTER 11. Introduction to Intuitionistic Logic

CHAPTER 11. Introduction to Intuitionistic Logic CHAPTER 11 Introduction to Intuitionistic Logic Intuitionistic logic has developed as a result of certain philosophical views on the foundation of mathematics, known as intuitionism. Intuitionism was originated

More information

Intermittent Connectivity Control in Mobile Robot Networks

Intermittent Connectivity Control in Mobile Robot Networks Intermittent Connectivity Control in Mobile Robot Networks Yiannis Kantaros and Michael M. Zavlanos Abstract In this paper, we consider networks of mobile robots responsible for accomplishing tasks, captured

More information

Multiagent Systems and Games

Multiagent Systems and Games Multiagent Systems and Games Rodica Condurache Lecture 5 Lecture 5 Multiagent Systems and Games 1 / 31 Multiagent Systems Definition A Multiagent System is a tuple M = AP, Ag, (Act i ) i Ag, V, v 0, τ,

More information

Games and Synthesis. Nir Piterman University of Leicester Telč, July-Autugst 2014

Games and Synthesis. Nir Piterman University of Leicester Telč, July-Autugst 2014 Games and Synthesis Nir Piterman University of Leicester Telč, July-Autugst 2014 Games and Synthesis, EATCS Young Researchers School, Telč, Summer 2014 Games and Synthesis, EATCS Young Researchers School,

More information

Receding Horizon Control in Dynamic Environments from Temporal Logic Specifications

Receding Horizon Control in Dynamic Environments from Temporal Logic Specifications Receding Horizon Control in Dynamic Environments from Temporal Logic Specifications Alphan Ulusoy, Michael Marrazzo, and Calin Belta Division of Systems Engineering, Boston University, Brookline, MA, 02446

More information

Price: $25 (incl. T-Shirt, morning tea and lunch) Visit:

Price: $25 (incl. T-Shirt, morning tea and lunch) Visit: Three days of interesting talks & workshops from industry experts across Australia Explore new computing topics Network with students & employers in Brisbane Price: $25 (incl. T-Shirt, morning tea and

More information

Specification Mining of Industrial-scale Control Systems

Specification Mining of Industrial-scale Control Systems 100 120 Specification Mining of Industrial-scale Control Systems Alexandre Donzé Joint work with Xiaoqing Jin, Jyotirmoy V. Deshmuck, Sanjit A. Seshia University of California, Berkeley May 14, 2013 Alexandre

More information

}w!"#$%&'()+,-./012345<ya

}w!#$%&'()+,-./012345<ya MASARYK UNIVERSITY FACULTY OF INFORMATICS }w!"#$%&'()+,-./012345

More information

Synthesis of Reactive(1) Designs

Synthesis of Reactive(1) Designs Synthesis of Reactive(1) Designs Roderick Bloem a, Barbara Jobstmann b, Nir Piterman c, Amir Pnueli, Yaniv Sa ar d a Graz University of Technology, Austria b CNRS/Verimag, France c Imperial College London,

More information